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Abstract - We describe an image fusion algorithm
for data exhibiting heavy tails with no convergent
second- or higher-order moments. Our developments
rely on recent results showing that wavelet decomposi-
tion coefficients of images are best modeled by alpha-
stable distributions, a family of heavy-tailed densities.
Thus, in the multiscale wavelet domain we develop a

novel fusion rule based on fractional lower order mo-

ments (FLOM's). Simulation results show that our

method achieves better performance in comparison with
previously proposed pixel-level fusion approaches.
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alpha-stable distributions, parameter estimation, sym-
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1 Introduction
The purpose of image fusion is to combine infor-

mation from multiple images of the same scene into
a single image that ideally contains all the impor-
tant features from each of the original images. The
resulting fused image will be thus more suitable for
human and machine perception or for further image
processing tasks. Many image fusion schemes have
been developed in the past. In general, these schemes
can be roughly classified into pixel-based and region-
based methods. In [1] it has been shown that com-

parable results can be achieved using both types of
methods with added advantages for the region based
approaches, mostly in terms of the possibility of im-
plementing more intelligent fusion rules. On the other
hand, pixel based algorithm are simpler and thus easier
to implement.

Recently, there has been considerably interest in us-

ing the wavelet transform as a powerful framework
for implementing image fusion algorithms [1, 2, 3, 4].
Specifically, methods based on multiscale decomposi-
tions consist of three main steps: First, the set of im-
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Figure 1: Pixel-based image fusion scheme using the
DTDWT.

ages to be fused are analyzed by means of the wavelet
transform, then the resulting wavelet coefficients are

fused through an appropriately designed rule, and fi-
nally, the fused image is synthesized from the processed
wavelet coefficients through the inverse wavelet trans-
form. This process is depicted in Fig. 1.

In this context, after more than ten years since its
inception as an image fusion algorithm, the method
proposed by Burt and Kolczinsky [2] remains one of
the most effective, yet simple and easy to implement.
Their method essentially consists in calculating a nor-

malised correlation (match measure) between the two
images' subbands over a small local area. Then, the
fused coefficient is calculated from this measure and
the local variance (salience measure) via a weighted
average of the two images' coefficients.
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In this work, we propose a generalization of the
above method for the case when the data to be fused
exhibit heavy tails with no convergent second- or
higher-order moments. Specifically, our developments
are based on recently published results showing that
wavelet decomposition coefficients of images are best
modelled by symmetric alpha-stable SaS distribu-
tions, a family of heavy-tailed densities [5, 6]. Unfortu-
nately, only moments of orders less then a (0 < a < 2)
can be defined for the general alpha-stable family mem-
bers. Consequently, as measure of salience we employ
the dispersion of the alpha-stable distribution com-
puted in a neighbourhood around the reference coef-
ficients. Also, due to the lack of finite variance, co-
variances do not exist either on the space of SaS ran-
dom variables. Instead, quantities like covariations or
codifferences, which under certain circumstances play
analogous roles for SaS random variables to the one
played by covariance for Gaussian random variables
have been introduced. Therefore, we propose the use
of symmetrized and normalised versions of these quan-
tities, which enable us to define a new match measure
for SaS random vectors. In our implementation we
make use of the dual-tree complex wavelet transform
(DTCWT) that has been shown to offer near shift
invariance and improved directional selectivity com-
pared to the standard wavelet transform [7, 8]. Due to
these properties, image fusion methods implemented in
the complex wavelet domain have been shown to out-
perform those implemented using the discrete wavelet
transform [4].
The paper is organized as follows: In Section 2, we

provide some necessary preliminaries on alpha-stable
processes with a special emphasis on bivariate mod-
els. Section 3 describes our proposed algorithm for
wavelet-domain image fusion, which is based on frac-
tional lower order moments. Section 4 compares the
performance of our proposed algorithm with the per-
formance of other current wavelet-based fusion tech-
niques applied on two pairs of test images. Finally, in
Section 5 we conclude the paper with a short summary.

2 Alpha-Stable Distributions
This section provides a brief, necessary overview of

the alpha-stable statistical model used to character-
ize wavelet coefficients of natural images. Since our
interest is in modeling wavelet coefficients, which are
symmetric in nature, we restrict our exposition to the
case of symmetric alpha-stable distributions. For de-
tailed accounts of the properties of the general stable
family, we refer the reader to [9] and [10].
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Figure 2: Tail behavior of the SaS probability den-
sity functions for a = 0.5, 1.0 (Cauchy), 1.5, and 2.0
(Gaussian). The dispersion parameter is kept constant
at y= 1.

2.1 Univariate SaS Distributions
The appeal of SaS distributions as a statistical

model for signals derives from two main theoretical
reasons. First, stable random variables satisfy the sta-
bility property which states that linear combinations of
jointly stable variables are indeed stable. Second, sta-
ble processes arise as limiting processes of sums of in-
dependent identically distributed (i.i.d.) random vari-
ables via the generalized central limit theorem.
The SaS distribution lacks a compact analytical

expression for its probability density function (pdf).
Consequently, it is most conveniently represented by
its characteristic function

=(w)= exp(36w - -YlIl) (1)

where a is the characteristic exponent, taking values
0 < a < 2, 6 (-oo < 6 < oo) is the location parameter,
and -y (-y > 0) is the dispersion of the distribution. For
values of a in the interval (1, 2], the location parameter
6 corresponds to the mean of the SaS distribution,
while for 0 < a < 1, 6 corresponds to its median. The
dispersion parameter a determines the spread of the
distribution around its location parameter 6, similar
to the variance of the Gaussian distribution.
The characteristic exponent a is the most important

parameter of the SaS distribution and it determines
the shape of the distribution. The smaller the charac-
teristic exponent a is, the heavier the tails of the SaS
density. This implies that random variables following
SaS distributions with small characteristic exponents
are highly impulsive. One consequence of heavy tails
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is that only moments of order less than a exist for
the non-Gaussian alpha-stable family members. As
a result, stable laws have infinite variance. Gaussian
processes are stable processes with a = 2 while Cauchy
processes result when a = 1. Figure 2 shows the tail
behavior of several SaS densities including the Cauchy
and the Gaussian.

2.2 Bivariate Stable Distributions
Much like univariate stable distributions, bivariate

stable distributions are characterized by the stability
property and the generalized central limit theorem [10].
The characteristic function of a bivariate stable distri-
bution has the form

exp (jWT6-WTAw) for a = 2
p (w) = exp (jwT6 - fIWTs| / (ds) + jf3S (w))

for 0 < a < 2
(2)

where

{ tan ' fs IwTs sign IWTSI p (ds)
fora#71,0< a<2

fJ wTs log IwTsl A (ds) for a = 1
(3)

and where w = (w1,w2), lwl = 2, and 6 =
(61,62). S is the unit circle, the measure a(.) is called
the spectral measure of the a-stable random vector and
A is a positive semidefinite symmetric matrix.

Unlike univariate stable distribution, bivariate sta-
ble distributions form a nonparametric set being thus
much more difficult to describe. An exception is the
family of multidimensional isotropic stable distribu-
tions who's characteristic function has the form

(w1,w2) = exp(3(61w1 + 62w2) - _ywI) (4)

The distribution is isotropic with respect to the loca-
tion point (61,62). The two marginal distributions of
the isotropic stable distribution are SaS with parame-
ters (61, y, a) and (32, y, a). Since our further devel-
opments are in the framework of wavelet analysis, in
the following we will assume that (61, 62) = (0, 0). The
bivariate isotropic Cauchy and Gaussian distributions
are special cases for a = 1 and a = 2, respectively.
The bivariate pdf in these two cases can be written as:

x lo

40 l_

o _ W ~~~~202
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Figure 3: Two dimensional Cauchy density surface
(a= 1, 'y = 15).

3 FLOM based match and
salience measures

Following the arguments in [2], we settle by consid-
ering two different modes for fusion: selection and av-
eraging. The overall fusion rule is determined by two
measures: a match measure that determines which of
the two modes is to be employed and a salience mea-
sure that determines which wavelet coefficient in the
pair will be copied in the fused subband. Unlike the
approach in [2], our match and salience measures are
not based on classical second order moments and corre-
lation. Instead, we introduce new measures, which can
be defined based on the so-called fractional lower or-
der moments (FLOM's) of SaS distributions. Specifi-
cally, we employ the dispersion -y, estimated in a neigh-
borhood around the reference wavelet coefficients as
a salience measure, while the symmetric coefficient of
covariation is introduced in order to account for the
similarities between corresponding patterns in the two
subbands to be fused.

3.1 Local dispersion estimation
The FLOM's of a SaS random variable with zero

location parameter and dispersion 7y are given by [10]:

40

{ 2 (za++y223I2 for a = 1

| Tr exp[- ]for a = 2.
(5) EIXII = C(p,a)-y for-1 <p< a

Figure 3 shows an example of a two-dimensional
Cauchy surface. As in the case of the univariate SaS
density function, when a 5$ 1 and a :A 2, no closed
form expressions exist for the density function of the
bivariate stable random variable, but a numerical cal-
culation algorithm is available [11].

where

C(p, a) = 2P+ (2 c)r(-)

aVirr(-P-)
(7)

and F(.) is the Gamma function. Using the above ex-

pression for the pth order moment of X, one can show
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that [12]

P)= 2 tan(pir/2) (8)

asin(pwx/a)
where 0 < p < min(a, 1) and therefore

sn(pir 2tan(pw7/2) 9sin(P-)- prE(IXIP)E(IXI-P) (9)

The estimation process involves inversion of the sinc
function in (9) to obtain a and then 'y can be found
using

(E(IXIP))a/P (10)

C(p,a)

In order to avoid having to invert a sinc function
as well as choosing the moment exponent p in the
above estimation process, one can rewrite E(IXIP) as

E(eP log XI) and define a new random variable Y =

loglXl. Hence, it can be shown [12] that the mean and
variance of Y are respectively given by

E(Y) = l -i Ce + log y (11)
a a

where Ce = 0.5772166... is the Euler constant, and

(y]2='2 a2 + 2

E([Y - E(Y)] = 12 a2 (12)

The estimation process simply involves now solving
(12) for a and substituting back in (11) to find the
value of the dispersion parameter -y.

3.2 Symmetric covariation coefficient
The notion of covariance between two random vari-

ables plays an important role in the second-order mo-

ment theory. However, due to the lack of finite vari-
ance, covariances do not exist either on the space of
SaS random variables. Instead, quantities like covari-
ations or codifferences, which under certain circum-
stances play analogous roles for SaS random variables
to the one played by covariance for Gaussian random
variables have been introduced [9]. Specifically, let X1
and X2 be jointly SaS random variables with a > 1,
zero location parameters and dispersions Yx, and 'YX2
respectively. The covariation of X1 with X2 is defined
in terms of the previously introduced FLOM's by [9]

[Xl X 2]a! E(XlX2P) YX2 (13)

where xP = jxlPsign(x). Moreover, the covariation
coefficient of X1 with X2, is the quantity

AX, X2 [X'1X2]a foranyl<p<a (14)
[X2, X2]a

Unfortunately, it is a well-known fact that the co-
variation coefficient in (14) is neither symmetric nor
bounded [9]. Therefore, we propose the use of a sym-
metrized and normalised version of the above quantity,
which enable us to define a new match measure for SaS
random vectors. The symmetric covariation coefficient
can be simply defined as

Corr0(Xl,X2) = Ax1,X2Ax2,xl = [X1,X21][X2,X1l0
[X1,X1]e [X2, X2]c

(15)
Garel et. al [13] have shown that the symmetric co-
variation coefficient is bounded, taking values between
-1 and 1. In our implementation, the above similarity
measure is computed in a square-shapped neighbor-
hood of size 7 x 7 around each reference coefficient.

3.3 Summary of fusion algorithm
I) Decompose each input image into subbands.
II) For each subband pair (except the

lowpass residuals):

1. Estimate neighborhood dispersions, yx1
and ^/x2 using (12) and (11)

2. Compute neighborhood symmetric
covariation coefficient Corr,(Xi, X2)
using (15)

3. Calculate the fused coefficients using
the formula Y - w1Xl + w2X2 as follows

* if Corr, < T then Wmin = 0 & Wmax 1

* elseif Corr, > T then
Wmin - 0.5-0.5 1-Corr- & Wmax - lWmin

* if 7x1 > Yx2 then w1 = wmax and w2
Wmin

* else wi = wmin and W2 = Wmax

III) Average coefficients in lowpass residual
IV) Reconstruct the fused image from the

processed subbands and the lowpass
residual

4 Results
Appropriate methodology for comparing different

image fusion methods generally depends on the ap-
plication. For example, in applications like medical
image fusion, the ultimate goal is to combine percep-
tually salient image elements such as edges and high
contrast regions. Evaluation of fusion techniques in
such situation can only be effective based on visual
assessment. There are also applications (e.g. multifo-
cus image fusion) when computational measures could
be employed. Several qualitative measures have been
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proposed for this purpose. For example, in [14] Zhang
and Blum have used a mutual information criterion,
the root mean square error as well as a measure rep-
resenting the percentage of correct decisions. Unfor-
tunately, all these measures involve the existence of a
reference image for their computation, which in prac-
tice is generally not available. Moreover, the prob-
lem with the mutual information measure, or with any
other metric, is their connection to the visual interpre-
tation of an human observer. On analyzing an image, a
human observer does not compute any such measure.
Hence, in order to study the merit of the proposed
fusion algorithm, we chose different images, applied
the algorithm, and visually evaluated the fused image.
We were interested in performing experiments on im-
ages of different types and with various content in or-
der to be able to obtain results, which we could claim
to be general enough. Thus, the first example shows
the "Cathe" image pair that can be found in Matlab's
Image Processing Toolbox. As a second example, we
chose to illustrate the fusion of two medical images, a
magnetic resonance (MR) image and a computer to-
mography (CT). The results of these experiments are
shown in Fig. 4 and Fig. 5.
The figures show results obtained using four dif-

ferent methods, including a maximum selection (MS)
scheme, a pixel averaging (PA) scheme, the weighted
average (WA) method [2], and our proposed algorithm.
Clearly, the last two techniques outperform the MS and
PA methods. Although further qualitative evaluation
in this way is highly subjective, it seems that the best
results are achieved by our proposed technique. It ap-
pears that our system performs like a feature detector,
retaining the features that are clearly distinguishable
in each of the two input images.

5 Summary
In this work, we proposed a novel image fusion al-

gorithm for the case when the data to be fused exhibit
heavy tails with no convergent second- or higher-order
moments. Specifically, our developments were based
on recently published results showing that wavelet de-
composition coefficients of images are best modeled
by SaS distributions. Due to the lack of second or
higher order moments for the general alpha-stable fam-
ily members, we proposed new salience and match mea-
sures, which are based on the so-called fractional lower
order moments. Thus, in the multiscale domain, we
employed the local dispersion of wavelet coefficients as
a salience measure, while symmetric covariation co-
efficients were computed in order to account for the
similarities between corresponding patterns in the two
subbands to be fused. Simulation results showed that
our method achieves better performance in comparison

with previously proposed pixel-level fusion approaches.
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MS method. (d) Image fused using PA method. (e) Image fused using WA method. (f)Image fused using our
proposed method.
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