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The stability analysis of systems with nonlinear feedback expressed by
a quadratic program

Guang Li*, William P. Heath* and Barry Lennox*

Abstract— We consider the stability of the feedback connec-
tion of a stable linear time invariant (LTI) plant with a static
nonlinearity expressed by a certain class of quadratic program
(QP). We establish quadratic constraints from the Karush-
Kuhn-Tucker (KKT) conditions that may be used to construct
a piecewise quadratic Lyapunov function via the S-procedure.
The approach is based on existing results in the literature, but
gives a more parsimonious Linear Matrix Inequality (LMI)
criterion. Our approach can be extended to Model Predictive
Control (MPC), and gives equivalent results to those in the
literature but with a much lower dimension LMI criterion.

I. INTRODUCTION

The stability analysis of a closed loop system consisting

of an LTI plant in feedback with a static nonlinearity has

been studied for a long time, e.g. [3]. Primbs [9] and Primbs

and Giannelli [11] observed that an important subclass of

such nonlinearities can be represented as the solution of a

convex QP—see Fig. 1. They developed a new approach

to derive stability by showing that a candidate Lyapunov

function is decreasing subject to the plant dynamics and

constraints determined by the KKT conditions [2] for the QP.

This approach is implemented by applying the S-procedure

[12] [13], which leads to the stability conditions in terms of

an LMI [1]. It is shown [11] that the test outperforms the

circle criterion if a piecewise quadratic Lyapunov function in

[xT , uT ] is constructed (as opposed to a function in x alone).

It is also suggested [11] that the approach may outperform

the Zames-Falb multiplier method [14] for reducing the

conservatism of stability criterion in some cases.

One acknowledged drawback of the method is that “a
priori, it is not clear how effective a constraint will be” [11].

The inclusion of redundant constraints leads to an LMI with

large dimension, which both increases the computational

burden and reduces the numerical accuracy, especially for

a high order system. In the case of saturation constraint [11]

ten constraints are chosen for the S-procedure.

In this paper we are concerned with the further subclass

where the nonlinearity u = φ(y) may be expressed as a

convex QP with constraints taking the form

Lu � b and Mu = 0 (1)

for some fixed L, M and b � 0. Here “�” and “�”

signifies term by term inequality. This includes saturation
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Fig. 1. The system connected with a nonlinearity expressed as a QP

and input-constrained MPC (the two main examples in [9]

and [11] respectively). For the continuous case we establish

two quadratic equalities satisfied by u, y, u̇ and ẏ. For the

case of saturation these equalities, together with a sector

bound inequality, are sufficient to establish Primbs’ stability

criterion without any loss of conservatism. Although the class

we consider excludes other important applications of Primbs’

method, the methodology may be extended in many such

cases; we state the equivalent result for a dead zone.

The paper is structured as follows. In section II the

continuous time case is considered. Three constraints for

the QP are derived from the KKT conditions and the

corresponding stability criterion is proposed. We show that

under fairly general conditions it gives a more parsimonious

LMI stability condition than Primbs’ method without loss

of conservatism. We consider a saturation nonlinearity as

an illustrative example. We also state the corresponding

constraints for a deadzone. In section III we derive results for

the discrete time case that correspond to those of section II.

In section IV we use the same simulation example in [9],

which is an MPC problem with uncertainty and disturbance.

The results demonstrate again that our reduction can give

an equivalent result, but with a much lower dimension LMI

criterion.

II. CONTINUOUS TIME CASE

A. Problem setup

Consider a stable continuous time multivariable plant

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) (2)

with x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
m. The input and

output are assumed to have the same dimension without loss

of generality. This plant has a feedback connection with a

nonlinearity expressed by a QP

u(t) = φ (y(t)) = arg min
ũ

1
2
ũT Hũ + ũT y(t)

subject to Lu(t) � b and Mu(t) = 0
(3)
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with the Hessian matrix H = HT ≥ 0 and b � 0.

B. Main results

Result 1 (QP properties—continuous time case): The

constrained QP (3) has the following properties

uT (Hu + y) ≤ 0 (4)

u̇T (Hu + y) = 0 where u̇ exists (5)

u̇T (Hu̇ + ẏ) = 0 where u̇ exists (6)

Proof: See Appendix. �
Remark: The first condition is the sector bound condition,

which has been found and used in stability establishment by

Heath, et al. [6], [4]; the second is for the description of the

saturation property of the QP; the third is the slope restricted

condition (cf [5]).

The three quadratic constraints (4), (5) and (6) may be

used to establish stability:

Corollary 1 (stability criterion—continuous time case):
Consider a continuous time system (2) in feedback with a

nonlinearity expressed as a QP (3). Then the system is stable

if there exists a symmetric positive definite matrix

P =
[
P11 P12

PT
12 P22

]
(7)

such that the following LMI is satisfied

Π0 +
3∑

i=1

riΠi ≤ 0 (8)

where

Π0 =

⎡
⎣AT P11 + P11A AT P12 + P11B P12

PT
12A + BT P11 PT

12B + BT P12 P22

PT
12 P22 0

⎤
⎦ (9)

Π1 =

⎡
⎣ 0 −CT 0
−C −2H 0
0 0 0

⎤
⎦ Π2 =

⎡
⎣ 0 0 −CT

0 0 −HT

−C −H 0

⎤
⎦

Π3 =

⎡
⎣ 0 0 −(CA)T

0 0 −(CB)T

−CA −CB −2H

⎤
⎦ (10)

and scalars r1 ≥ 0, r2, r3 ∈ R.

Proof: See Appendix. �
Remark: The LMI (8) requires that A is Hurwitz. The same

requirement holds for Corollary 2.

Remark: Following the definition of stability and asymptotic

stability given in [8], we may also say that the system is

asymptotically stable if (8) holds with the strict inequality.

The stability test is constructed in a similar manner to

those proposed by Primbs and Giannelli [11] but with fewer

constraints. We now show that under fairly general conditions

it yields an equivalent stability criterion.

Result 2 (reduction for the general case): Consider the QP

(3) without the equality constraint Mu = 0. The following

constraints can be derived from the KKT conditions (with

the usual caveats about the existence of u̇ and λ̇):

Hu + y + LT λ = 0 (11)

Hu̇ + ẏ + LT λ̇ = 0 (12)

λT Lu ≥ 0 (13)

λT Lu̇ = 0 (14)

λ̇T Lu̇ = 0 (15)

Suppose L ∈ R
nc×nu with nc ≥ nu and rank(L) = nu.

When using the S-procedure to establish stability, the above

constraints can be further reduced to the three constraints

(4), (5) and (6) without increasing the conservatism.

Proof: See Appendix. �
Remark: It is straightforward to apply the results to the case

where there are also equality constraints of the form Mu =
0, as these can be represented as the combined inequalities

Mu � 0 and −Mu � 0. Specifically, for this case relations

(11)-(15) also hold, and once again may be reduced to (4)-(6)

without increasing the conservatism of the stability analysis.

1) Example 1–Saturation nonlinearities: The benefits of

the reduction are best illustrated by an example. Primbs and

Giannelli [11] consider the stability analysis of a SISO plant

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

with a saturation nonlinearity:

u(t) = sat (y(t)) =
y(t)

max{1, |y(t)|}
which can be expressed by an optimization problem as

u(t) = arg min
ũ

1
2

(ũ − y(t))2

s.t. |u(t)| ≤ 1

Ten conditions are derived from the KKT conditions (with

appropriate caveats about the existence of derivatives):

u − y + λ1 − λ2 = 0 λ1u ≥ 0 u̇λ̇1 = 0 λ1u̇ = 0

u̇ − ẏ + λ̇1 − λ̇2 = 0 −λ2u ≥ 0 u̇λ̇2 = 0 λ2u̇ = 0

λ1λ2 = 0 λ̇1λ̇2 = 0 (16)

By applying the S-procedure on (16) and the first derivative

of a candidate Lyapunov function, a sufficient stability condi-

tion for the system is the satisfaction of the LMI ET
⊥ΩE⊥ ≤

0, which corresponds to ϕ = [xT , u, u̇, λ1, λ2, λ̇1, λ̇2]T . Here

E is formed by the coefficients of the equalities and the rows

of ET
⊥ span the null space of the space spanned by the rows

of E. Ω comes from all the other constraints and the first

derivative of the Lyapunov function. For this particular case,

we have the following result.

Result 3 (reduction for a saturation): Given a SISO plant

interconnected with a saturation function. We have the facts

1) If the candidate Lyapunov function is V (x) = xT Px,

the original ten conditions (16) can be replaced by
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the sector bound condition u(u − y) ≤ 0 without

influencing the final result.

2) If the candidate Lyapunov function is V (x, u) =
[xT , u]T P [xT , u], the ten conditions (16) can be re-

placed by the three conditions (with the usual caveats

about the existence of u̇):

u(u − y) ≤ 0 u̇(u − y) = 0 u̇(u̇ − ẏ) = 0 (17)

without influencing the final result.

Proof: See Appendix. �
Remark: From the proof of Result 3, we can see that the

conditions λ1λ2 = 0 and λ̇1λ̇2 = 0 are not actually useful

in reducing the conservatism. Hence if we delete them the

other conditions in (16) can be included by conditions (11)-

(15), and Result 3 can be viewed as a corollary of Result 2.

Remark: Using (17) to establish the stability criterion re-

quires an LMI with the same dimension as the vector

[xT , u, u̇]T and with three multipliers; using the conditions

(16) proposed by Primbs requires an LMI with the same

dimension as the vector [xT , u, u̇, λ1, λ̇1, λ2, λ̇2]T and with

ten multipliers.

2) Example 2–Extension to deadzone nonlinearities: We

have restricted our analysis to constraints of the form (3).

However similar results may be found for nonlinearities

that do not fall into this category. Consider, for example,

a deadzone given by

u =

⎧⎨
⎩

y + 1 for y < −1
0 for − 1 ≤ y ≤ 1
y − 1 for y > 1

(18)

which may be expressed as

u = arg min
ũ

1
2
ũT ũ

subject to |u − y| ≤ 1
(19)

Although this does not fall into the category of (3), it

is straightforward to derive the following, which we state

without proof or further analysis:

Result 4 (QP properties for a deadzone): Given a SISO

plant interconnected with a deadzone (18). Then, with the

usual caveats about the existence of u̇, we have the three

conditions: u(u − y) ≤ 0, u(u̇ − ẏ) = 0, u̇(u̇ − ẏ) = 0. �
III. DISCRETE TIME CASE

A. Problem setup

Given a stable discrete time MIMO plant

xk+1 = Axk + Buk

yk = Cxk (20)

Suppose this plant has a feedback connection with a nonlin-

earity or controller expressed by a discrete QP:

uk = φ(yk) = arg min
u

1
2
uT Hu + uT yk

subject to Luk � b and Muk = 0 (21)

with the Hessian matrix H = HT ≥ 0 and b � 0.

B. Main results

Result 5 (QP properties—discrete time case): The con-

strained QP proposed above has the following properties

uT
k (Huk + yk) ≤ 0 (22)

∆uT
k+1(Huk + yk) ≥ 0 (23)

∆uT
k+1(Huk+1 + yk+1) ≤ 0 (24)

with ∆uk+1 = uk+1 − uk.

Proof: See Appendix. �
Corollary 2 (stability criterion—discrete time case):
Consider a discrete time system (20) in feedback with a

nonlinearity expressed as a QP (21). Then the system is

stable if there is a symmetric positive definite matrix

P =
[
P11 P12

PT
12 P22

]
(25)

such that the following LMI is satisfied:

Π0 +
3∑

i=1

riΠi ≤ 0 (26)

where

Π0 =

⎡
⎣P̃11 P̃12 P̃13

P̃21 P̃22 P̃23

P̃31 P̃32 P̃33

⎤
⎦ (27)

with

P̃11 = AT P11A − P11

P̃21 = P̃T
12 = BT P11A + PT

12A − PT
12

P̃22 = BT P11B + PT
12B + BT P12

P̃31 = P̃T
13 = PT

12A

P̃32 = P̃T
23 = PT

12B + P22

P̃33 = P22

Π1 =

⎡
⎣ 0 −CT 0
−C −2H 0
0 0 0

⎤
⎦ Π2 =

⎡
⎣0 0 CT

0 0 H
C H 0

⎤
⎦

Π3 =

⎡
⎣ 0 0 −(CA)T

0 0 −(CB + H)T

−CA −(CB + H) −2H

⎤
⎦ (28)

Here r1 ≥ 0, r2 ≥ 0 and r3 ≥ 0.

Proof: See Appendix. �

IV. NUMERICAL EXAMPLE

We consider the MPC example used by Primbs [9]. The

extension from our results to the application of MPC can be

achieved by following the similar procedure in [9].

The plant with the structured uncertainty is expressed as

xk+1 = Axk + Buuk + Bwwk (29)

pk = Cxk + Duuk + Dwwk (30)

wk = ∆pk (31)
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with ∆ satisfying ‖∆‖2 ≤ 1 and the state space matrices

A =
[
4/3 −2/3
1 0

]
Bu =

[
1
0

]
Bw =

[
θ
0

]

C =
[
1 0

]
Du = 0 Dw = 0

where θ is a fixed value for the size of uncertainty. This

system is subject to |u| ≤ 1.

Suppose the cost function is

Jk = xT
k+NPxk+N +

N−1∑
i=0

[
xT

k+iQxk+i + uT
k+iRuk+i

]

with the horizon N = 3 and the parameters Q and R as

Q =
[

1 −2/3
−2/3 3/2

]
R = 1

The disturbance is assumed to be constant at each sam-

pling time k, i.e., wk = wk+1 = ... = wk+N . If just using the

sector bound constraint and the nominal Lyapunov function

to establish the stability criterion, the sufficient condition

of θ for the system to be stable is 0 ≤ θ ≤ 0.03; if

using the three constraints we proposed and the Lyapunov

function in [xT
k , uT

k ]T , the range of θ for the system to be

stable is 0 ≤ θ ≤ 0.19, which is same with the result

achieved by Primbs [9]. From this example we can see that

our result is no worse than Primbs’, but our reduction is

much easier to implement and the LMI criterion has a much

lower dimension compared with Primbs’. The benefits of

such a reduction become especially important for high order

systems with a long prediction horizon.

V. CONCLUSION

We have considered Primbs’ method for assessing the

stability of a closed-loop system with a static nonlinearity

that may be expressed as the solution of a class of QP.

This includes both simple nonlinearities, such as saturation

functions, and MPC applications. We have proposed a set of

constraints that lead to a concise and parsimonious applica-

tion of the S-procedure. For continuous time systems we have

shown analytically that the results are no worse than those of

Primbs for a fairly broad class of nonlinearity, and considered

a saturation nonlinearity as an example. For discrete time

systems we have demonstrated a similar phenomenon by

simulation example.

VI. APPENDIX

Proof of Result 1: We first write out the KKT conditions

of the QP and their corresponding derivatives (where they

exist); then two prerequisite conditions are proven, which

will be used in the proof of the properties (5) and (6); the

three properties are proven finally. Note that result (4) is

given in [6] and many of the equations below may be found

in [11] (cf also [5]). Nevertheless we include a full derivation

of (4)-(6) for completeness.

1) The KKT conditions [2] for the QP problem are

Hu + y + LT λ + MT µ = 0 (32)

Lu + s = b (33)

λT s = 0 (34)

Mu = 0 (35)

with λ � 0, s � 0 and λ, s ∈ R
l. Their first derivatives

are
Hu̇ + ẏ + LT λ̇ + MT µ̇ = 0 (36)

Lu̇ + ṡ = 0 (37)

λ̇T s + ṡT λ = 0 (38)

Mu̇ = 0 (39)

2) From (34), we have
∑l

i=1 λisi = 0. Since λi ≥ 0,

si ≥ 0 for all i = 0, . . . , l, we have λisi = 0, whose

first derivative is

λ̇isi + ṡiλi = 0 (40)

Multiplying (40) with λ̇isi, we have (λ̇isi)2 +
ṡiλiλ̇isi = 0. Since λisi = 0, the second term

disappears, which leads to (λ̇isi)2 = 0. Hence

λ̇isi = 0 (41)

Substituting (41) into (40) gives ṡiλi = 0. Hence

ṡT λ = 0 (42)

3) Multiplying (41) by ṡi gives ṡiλ̇isi = 0. Since si ≥ 0,

there are two cases: if si > 0 then ṡiλ̇i = 0; if si = 0
then ṡi = 0, hence ṡiλ̇i = 0, so we have ṡiλ̇i = 0.

Hence
ṡT λ̇ = 0 (43)

4) Premultiplying (32) by uT yields

uT Hu + uT y = −uT LT λ − uT MT µ

= −uT LT λ from (35)

= sT λ − bT λ from (33)

= −bT λ from (34)

≤0 from λ � 0 and b � 0

Hence (4).

5) Premultiplying (32) by u̇T yields

u̇T Hu + u̇T y = −u̇T LT λ − u̇T MT µ

= −u̇T LT λ = ṡT λ = 0 from (39), (37) and (42)

Hence (5).

6) Premultiplying (36) by u̇T yields

u̇T Hu̇ + u̇T ẏ = −u̇T LT λ̇ − u̇T MT µ̇

= −u̇T LT λ̇ = ṡT λ̇ = 0 from (39), (37) and (43)

Hence (6). �

Proof of Corollary 1: Consider a candidate

piecewise quadratic Lyapunov function V (x, u) =
1
2 [xT , uT ]P [xT , uT ]T with P as (7). Although u̇ does

not exist everywhere, continuity conditions ensure the

legitimacy of such a candidate Lyapunov function [10],[7].
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Introducing ϕ(t) = [x(t)T , u(t)T , u̇(t)T ]T , we can express

the first derivative of the candidate Lyapunov function

(where it exists) as σ0 = ϕT Π0ϕ with Π0 as (9). We can

express the three constraints (4), (5) and (6) separately as

σ1 = ϕT Π1ϕ ≥ 0, σ2 = ϕT Π2ϕ = 0 and σ3 = ϕT Π3ϕ = 0
with Π1, Π2 and Π3 as (10). A sufficient condition for the

system to be stable is that there exists a matrix P = PT > 0
such that σ0 ≤ 0 subject to the constraints σ1 ≥ 0, σ2 = 0
and σ3 = 0. Using the S-procedure, this implication can be

expressed as the LMI (8). �
Proof of Result 2:

1) The first condition (11) is one of the KKT conditions,

and the second one is the first derivative of (11). Using the

condition (34), i.e. λT s = 0 and the equations (42) and (43)

derived in the proof of Result 1, the conditions (13)-(15) can

be derived easily.
2) Introducing ϕ = [xT , uT , u̇T , λT , λ̇T ]T , the matrix

formed by the coefficients of the linear equalities (11) and

(12) is

E =
[

C H 0 LT 0
CA CB H 0 LT

]
(44)

We form the matrix

ET
⊥ =

⎡
⎢⎢⎢⎢⎣

I 0 0 −CT L† −(CA)T L†

0 I 0 −HT L† −(CB)T L†

0 0 I 0 −HT L†

0 0 0 (LT )⊥
T 0

0 0 0 0 (LT )⊥
T

⎤
⎥⎥⎥⎥⎦ (45)

which is in its row echelon form with L† = (LT L)−1LT

and L(LT )⊥ = 0, so that EE⊥ = 0.
If the candidate Lyapunov function is chosen as

V (x) = [xT , uT ]T P [xT , uT ]. The matrix Ω formed from

∇V (x, u) = 0 and the equations (13), (14) and (15) is

Ω =
[
Ω11 Ω12

ΩT
12 Ω22

]

where

Ω11 =

⎡
⎣AT P11 + PT

11A AT P12 + P11B P12

PT
12A + BT P11 PT

12B + BT P12 P22

PT
12 P22 0

⎤
⎦

Ω12 =

⎡
⎣ 0 0

r1L
T 0

r2L
T r3L

T

⎤
⎦ Ω22 =

[
0 0
0 0

]

with r1 ≥ 0, r2, r3 ∈ R. Hence the final LMI is

ẼT
⊥ΩẼ⊥ =

⎡
⎣F11 F12 F13

F21 F22 F23

F31 F32 F33

⎤
⎦ ≤ 0

where

F11 = AT P11 + P11A

F21 = FT
12 = PT

12A + BT P11 − r1C

F22 = PT
12 + BT P12 − 2r1H

F31 = FT
13 = PT

12 − r2C − r3CA

F32 = FT
23 = P22 − r2H − r3CB

F33 = −2r3H

which takes the same LMI form with the one by using the

three constraints (4)-(6) directly. This means the constraints

(11)-(15) can be replaced by (4)-(6) without influencing the

final result in establishing the stability criterion. In a similar

way, it can be shown that when the candidate Lyapunov

function is chosen as V (x) = xT Px, the constraints (11)-

(15) can be replaced by (4) without influencing the final

result. �
Proof of Result 3: The matrix E is

E =
[ −C 1 1 −1 0 0 0
−CA −CB 0 0 1 1 −1

]

and its corresponding ET
⊥ in row echelon form is

ET
⊥ =

⎡
⎢⎢⎢⎢⎣

1 0 0 −CT 0 0 −(CA)T

0 1 0 1 0 0 −(CB)T

0 0 1 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎦

1) When the candidate Lyapunov function is chosen as

V (x) = xT Px, The matrix Ω is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT P + PA PB 0 0 0 0 0
BT P 0 r11 −r12 0 0 0

0 r11 0 r23 r24 0 0
0 −r12 r23 0 r25 0 0
0 0 r24 r25 0 r21 r22

0 0 0 0 r21 0 r26

0 0 0 0 r22 r26 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with rij ∈ R associated with (16). We further require r11 ≥ 0
and r12 ≥ 0. Hence the final LMI is

ET
⊥ΩE⊥ =

[
Q ST

S R

]
≤ 0 (46)

with

Q =
[

AT PA PB + r12C
T

BT P + r12C −2r12

]

S =

⎡
⎣ −r23C r11 + r23 − r12

−r25C − r22CA r25 − r22CB
−r26CA −r26CB

⎤
⎦

and

R =

⎡
⎣ 2r23 r24 + r25 0

r24 + r25 2r22 r21 + r22 + r26

0 r21 + r22 + r26 2r26

⎤
⎦

We can set r21 = 0, r22 = 0, r23 = 0, r26 = 0,

r11 = r12 and r24 = −r25, so the LMI Q ≤ 0 is necessary

and sufficient for (46). But Q ≤ 0 is precisely the LMI

obtained when the S-procedure is applied to the sector bound

condition u(u − y) ≤ 0. In fact the criterion Q ≤ 0
corresponds to the circle criterion.

2) When the candidate Lyapunov function is chosen as

ϕT Pϕ ≥ 0 with ϕ = [xT , uT ]T , the matrix Ω is

Ω =
[
Ω11 Ω12

ΩT
12 Ω22

]
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with

Ω11 =

⎡
⎣AT P11 + P11A AT P12 + P11B P12

PT
12A + BT P11 PT

12B + BT P12 P22

P12 P22 0

⎤
⎦

Ω12 =

⎡
⎣ 0 0 0 0

r11 −r12 0 0
r24 r25 r21 r22

⎤
⎦

Ω22 =

⎡
⎢⎢⎣

0 r23 0 0
r23 0 0 0
0 0 0 r26

0 0 r26 0

⎤
⎥⎥⎦

and the rij is defined as before.

Following the same procedure, the final LMI is

ET
⊥ΩE⊥ =

[
Q ST

S R

]
≤ 0 (47)

where

Q =

⎡
⎣Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎤
⎦

with

Q11 = AT P11 + P11A

Q21 = QT
12 = PT

12A + BT P11 + r12C

Q22 = P12B + BT P12 − 2r12

Q31 = QT
13 = PT

12 − r25C − r22CA

Q32 = QT
23 = P22 + r25 − r22CB

Q33 = 2r22

S =
[ −r23C r11 + r23 − r12 r24 + r25

−r26CA −r26CB r21 + r26 + r22

]

and

R =
[
2r23 0
0 r26

]

We can set r11 = r12, r21 = −r22, r24 = −r25, r23 = 0 and

r26 = 0 so the LMI Q ≤ 0 is necessary and sufficient for

(47). Note that Q ≤ 0 is precisely the LMI obtained when

the S-procedure is applied to the three constraints (17). �
Proof of Result 5:

1) The KKT conditions for the discrete QP problem at

time instant k take the form (32)-(35) with u = uk,

y = yk, λ = λk and s = sk. The first inequality (22)

follows immediately from (4).

Premultiplying (32) at time k by ∆uT
k+1 yields

∆uT
k+1(Huk + yk)

= −∆uT
k+1L

T λk − ∆uT
k+1M

T µk

= −∆uT
k+1L

T λk from (35) at k, k + 1

= (sk+1 − sk)T λk from (33) at k and k + 1

= sT
k+1λk from (34) at k

≥ 0 from sk+1 � 0 and λk+1 � 0

Hence (23).

Premultiplying (32) at time k + 1 by ∆uT
k+1 yields

∆uT
k+1(Huk+1 + yk+1)

= −∆uT
k+1L

T λk+1 − ∆uT
k+1M

T µk+1

= −∆uT
k+1L

T λk+1 from (35) at k and k + 1

= (sk+1 − sk)T λk+1 from (33) at k and k + 1

= −sT
k λk+1 ≤ 0

Hence (24). �

Proof of Corollary 2: Consider a candidate

piecewise quadratic Lyapunov function V (x, u) =
1
2 [xT

k , uT
k ]T P [xT

k , uT
k ] with P as (25). Introducing

ϕk = [xT
k , uT

k , ∆uT
k+1]

T , we can express the first difference

of the Lyapunov function as σ0 = ϕT
k Π0ϕk with Π0 as

(27). We also express the three constraints (22), (23) and

(24) separately in quadratic forms as σ1 = ϕT Π1ϕ ≥ 0,

σ2 = ϕT Π2ϕ ≥ 0 and σ3 = ϕT Π3ϕ ≥ 0 with Π1, Π2 and

Π3 as (28).

The sufficient condition for the system to be stable is that

there is a matrix P = PT > 0 such that σ0 ≤ 0 subject

to the constraints σ1 ≥ 0, σ2 ≥ 0 and σ3 ≥ 0. Using the

S-procedure, this implication can be expressed in the LMI

(26). �
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