
 Jagetia, M., & Kocak, T. (2004). A novel scrambling algorithm for a robust
WEP implementation [wired equivalent privacy protocol]. IEEE 59th
Vehicular Technology Conference, 5, 2487 - 2491.
10.1109/VETECS.2004.1391370

Link to published version (if available):
10.1109/VETECS.2004.1391370

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/VETECS.2004.1391370
http://research-information.bristol.ac.uk/en/publications/a-novel-scrambling-algorithm-for-a-robust-wep-implementation-wired-equivalent-privacy-protocol(fa26748b-03fc-448d-9997-b2952cc2b187).html
http://research-information.bristol.ac.uk/en/publications/a-novel-scrambling-algorithm-for-a-robust-wep-implementation-wired-equivalent-privacy-protocol(fa26748b-03fc-448d-9997-b2952cc2b187).html

A Novel Scrambling Algorithm for a Robust WEP
Implementation
Mohit Jagetia and Taskin Kocak,

Department of Electrical and Computer Engineering,
University of Central Florida, Orlando, FL 328 16-2450.

e-mail: tkocak@cpe.ucf.edu.

Abstract- Internet enabled wireless devices continue to
proliferate and are expected to surpass traditional Internet in the
near future. However, data security and privacy remains major
concerns in the current generation of wireless connectivity.
Wired Equivalent Privacy (WEP) protocol used within the 802.11
standard has “major security flaws” thus WLANs using the
protocol are vulnerable to attacks. I n this paper, we propose a
scrambling algorithm that reduces the vulnerability of the WEP.
Both the software and hardware implementations of the
algorithm reveal at least 10,000 times improvement in security.

Keywords: wireless LAN, 802.11, security, WEP.

I. INTRODUCTION
Wireless technology has become an integral part of today’s

life. The use of wireless networking is rapidly rising with an
ever-increasing need for businesses to cut costs and to provide
mobility to workers. The wireless technology has spread to
devices from small-embedded systems to large general purpose
PCs. This is due to cheaper prices, faster speeds and also due to
the need for greater mobility. It is desirable to have as much
data privacy as possible. Hence in today’s networked world
security is at a premium. Wireless network is very essential, as
it is not bound to any region. Any unauthorized person can
read, change or use the private data. Wired equivalent privacy
(WEP) is a security protocol, specified in the IEEE Wireless
Fidelity (Wi-Fi) standard, 802.11 [I], that is designed to
provide a wireless local area network (WLAN) with a level of
security and privacy comparable to what is usually expected of
a wired LAN. WEP seeks to establish similar protection to that
offered by the wired network‘s physical security measures by
encrypting data transmitted over the WLAN. Data encryption
protects the vulnerable wireless link between clients and access
points; once this measure has been taken, other typical LAN
security mechanisms such as password protection, end-to-end
encryption, virtual private networks (VPNs), and authentication
can be put in place to ensure privacy. However, WEP has
“major security flaws” thus WLANs using the protocol are
vulnerable to attacks [2,3]. These so called wireless equivalent
privacy attacks show themselves in the form of intercepting
and modifying the transmissions, and gaining access to
restricted networks. In this paper, we propose an algorithm to
patch WEP protocol against these attacks.

~7803-8255-2/o4p$u).OO 82004 IEE. 2487

11. THE PROBLEM STATEMENT AND OUR APPROACH

WEP uses RC4 enclyption algorithm [4], which operates by
expanding a short key into an infinite pseudo-random key
stream. If an anacker flips a bit in the cipher text, then upon
decryption, the corresponding hit in the plaintext will be
flipped. If an eavesdropper intercepts two cipher text encrypted
with the same key stream, it is possible to obtain the XOR of
the two plaintexts. Knowledge of this XOR can enable
statistical attacks to recover the plaintexts. The statistical
attacks become increasingly practical as more cipher text that
use the same key stream are known. Once one of the plaintexts
becomes known, it is trivial to recover all of the others. To
ensure that a packet has not been modified, WEP uses,an
Integrity Check Value (ICV) field in the packet. To avoid
encrypting two cipher text with the same key stream, an
initialization vector (IV) is used to augment the shared key and
produce a different RC4 key for each packet. The major attacks
to WEP are given as follows:

1. Active attack Modification of the packet by mod/fying the
ICV.

2. Passive attacks:
a.
b.

Integrity violation by analyzing the IV
Table based attack for decrypting every packet that
is sent over the wireless link.

In order to avoid these attacks, we propose a novel Scrambling
algorithm, which randomize the data from the unauthorized
user by adding some standard randomness to it. This random
characteristic is a function of the private attribute shared
between transmitter and receiver only. In this approach the
randomness is achieved by RC4 algorithm and distribution of
randomness is provided with different algorithms to increase
the complexity of rectifying the encrypted data and optimize
utilization of randomness.

A . The Algorithms
In the Scrambling, Algorithm (SA), a random octet is

inserted in a random position. The random position is obtained
by RC4 as a function of the secret key. Currently, the octets
contain random information, however, we are in the process of
developing ways to utilize these octets for further improvement
in security of the packets (e.g., dynamically changing secret
keys (TUP)). Octet insertion as shown in Fig.1 is applied to
three different fields in the packet format, namely, ICV, IV and

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on July 9, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

mailto:tkocak@cpe.ucf.edu

2 4 R 16 X-I 6-8-4-2+5 Bvtes

Figure I : Packet formats for the WEP and modified WEP by the scrambling algorithm

cipher text , to reduce the vulnerability for each of the attacks
mentioned above. One octet is inserted for both ICV and IV.
However, due to the length and to improve the security, more
octets are inserted to the cipher text. In the cipher text, the SA
distribute the random octets at random positions in such a way
that density of octets reduces along with the length of the
packet, which ensures insignificant increase in the packet size
for large packets.

Each field (IV, cipher text , ICV) uses one RC4 key-stream
octet, to find random position for insertion of random octet.
Thus every packet requires 3 RC4 octets from key-stream, so
the key stream is divided in set of 3 octets and one set is used
for one WEP frame. We have two major algorithms for
inserting the random octet at a random position. Algorithm 1,
which is used to randomize IV and ICV; is using 5 lower bits
of first octet from a set to randomize IV and 5 lower bits of
third octet to randomize ICV. Depending upon the value of
these 5 bits it inserts random octet in IV and ICV.

Alporithm I : IV and ICV randomizations i extraction

For entire transmission
Fetch packet-number and IV/ICV from 802. I I protocol
Fetch random data content for the octetfiom memory

Calculate~randomgosition(RC4(secret~kw)
[i *packet-nurnher]~ield-leugth)

Insert/Extract the octet at the calculated random
position

End for
where i is the number of RC4 octets used per packet for
randomness.

Algorithm 2 is using the second octet of the set to
randomize cipher text. The distrihutiveAlgorithm used in
Algorithm2; uses the LSBs of octet to find the random point in
the chunk. Random point is the offset of insertion point in the
chunk. The size of the chunk is increased exponentially to
utilize the different panems of the second octet and to create
high random density at the starting of the cipher field
(explained in section IV). distributiveAlgorithm ensures the
insertion of the random octet at the random position throughout
the chunk, which is always in the range of 0 to cument chunk
size. A chunk is a portion of input stream whose size is
increasing logarithmically and dependent on the chunk number
or chunk position. Each chunk is 2 times in size of its previous
chunk and the first chunk is 1 byte wide. This is because every
time the random pointer is pre-pended with one bit to point the
random position, which results in twice as many points as by
the earlier one, so the size is doubled every time. If pre-pending
is not binary but rather octal or hex then chunk sizes will be 8
times or 16 times ofits predecessor.

Algorithm 2: Cipher text randomization and extraction

Fetch packetnumherfiom 802.1 I protocol
Reset Cipher-octet-cntr to 0;
Reset octetsgrocessed to 0;
While not end ofthe cipher text

For Entire transmission

If(randomgosition == current_position) then

WEP input

Scrambled WEP
output

Access to RC4 octets,

Control signals

Figure 2: Architecture of the implemented algorithm for scrambling

2488

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on July 9, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

. , ,

Figure 3: Ciphertext randomization

/* (randomgosition = distributiveAlgorithm
(No-of-insertedoctets, packet-number)) =
Cipher-octet-cntr *I
(Fetch random data content for the octet ftom
memoT AND
Insert /he octet in the current position) OR
(Remove the current octet from stream)
ocatsgrocessed = octetsgrocessed+ I ;

End if
Insert an octet of cipher text ;
Cipher-octet-cntr = Cipher-oc/et-cntr + I ;
Fetch next cipher octet:

End while
End For

SubProc:
Return pos distributiveAlgorithm (No_of_inserted_octets,

packet-number)
pos = RC4(secret-key)[packet-number*i+2][0 to
No-of-inserted-octets]
I* packet-number*i+2 points to the second octet
among the current set of RC4 octets used ' I

End SubProc;

B. Scrambling
Performing the insert action in the above algorithms results

in the scrambling of the original WEP cipher text . This action
causes the insertion of the random octet at the random position
obtaincd from the distributiveAlgorithm. Insertion could be the

part of another protocol enhancing security or other robustness,
but must not be the function of Secret Key, because
combination of scrambling algorithm and it may cause major
leak of secret key information.

C. DeScrambling
Performing the extract action in the above algorithms

results in the Descrambling of the scrambled WEP cipher text.
Tbc extracted octet is then made available for other processors
if used for other enhancements.

111. IMPLEMENTATION OF THE ALGORITHMS
The cipher text is randomized in decreasing density of

randomness. We are dividing cipher text into virtual chunks of
different sizes and adding random contents at random positions
in each chunk. The size of a chunk is determined by 2'"'""k
"umber)

We have implemented the proposed algorithm in MATLAB
to verify the functionality at the system level. Furthermore, the
algorithm is behaviorally modeled in VHDL to obtain
hardware simulation and verification. The architecture of the
implemented scrambling algorithm is given in Fig.2. The
algorithm works as a post-processor to the WEP protocol. It
takes the WEP input and applies randomness to it as specified
in section 2. In the architecture, BAB (Bit Addressable'
Memory Bank) has 2 banks of bit addressable memory. Bank 1
is, of size 32 bits, used to hold input WEP content either IV

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on July 9, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

or ICV. Bank 2 is, of size 48 bits, used to hold the resultant
randomized output of IV or ICV. Cntr 1 is used to point bits in
Bank 1 for the IV starting of the packet and decreases across
the length of the packet.

Random insertion positions in above test simulation are
calculated by the controller (shown in architecture), which has
access to RC4 octets from WEP implementation. In the above
test, the RC4 octet has a binary value of “0001 1100”. The last
bits of the obtained RC4 octet are used to give different
positions in the mth chunk between the range of 0 and the
maximum chunk size.

The dashed region in Fig. 3 is zoomed in Fig. 4 to illustrate
the insertion of random octet in details. In every clock cycle,
input is read and forwarded to output if the current state is
“read-inpgort” state. When the current state is “insert” state, a
control signal is sent to FIFO to wait for a clock cycle; in
which the system inserts the random content.

Iv. ANALYSIS OF THE SCRAMBLING ALGORITHMS
Notation:

n: number of bytes (octets) received as WEP cipher text
N: number of bytes (octets) result of application of SA
Cs: chunk size
Cp: chunk position
Ro: number of random octets

d h : density of random octets

Algorithm 1 :
Insertion of an 8-bit random octet in 24-bit IV at any

random position, obtained from Calculate-randomgosition
function, results in 6,144 (24’28) different patterns of the same
IV. This means an attacker needs to analyze 6,144 more
patterns to decrypt the message in case of an IV collision.
Thus, the improvement in security is 6,144 times for IV based
attacks. The same improvement in the ICV based attacks is
8,192 (32*28) times as ICV is 32 bits long.

Algorithm 2:
Calculation of achieved randomization:
We insert 1 octet per chunk thus
No of octets inserted = N o of chunks processed.
No of chunks processed = I+log,(number of cipher text

octets processed)
Cp as a function of incoming octets can be written as

cp(n) = ceil(log,(n)) (1)
Each insertion has s positions among which one has to he

selected randomly where s = chunk size.

Before applying the algorithm, the size of a chunk at position
Cp can be calculated as

c s tc,) = 2cp (2)
Since every chunk has one random octet in it, the total

number of random octets inserted can be given as

Ro(n) = 1 + C,(n) (3)

randomization(Cs) = Cs*28 (41

For each chunk obtained randomization is:

For C, chunks the total randomization will be

fi c, (C,) x 28
i=l

which is the improvement in security for cipher text table based
attacks.

The density of inserted random octets in the cipher text can
he given as

-
5 o 0.3
B

0.2

0.1

0

Figure 5 : Density ofrandom Dctes

As depicted in Fig. 5, the density makes a peak at the first 2
bytes of the insertion, and then it reduces logarithmically. The
irregular peaks in the curve are caused by the insertion of the
random octet. As it requires lesser computational power to
retrieve original WEP cipher text from small number of input
octets, so we used distributiveAlgorithm to keep high density
of randomness at the beginning of frame and reducing
logarithmically over the length of the frame.

The number of octets in the modified packet will be given
by

N (n) = n + R d n) (7)

Fig. 6 illustrates the change in the cipher part of WEP
packet due to the Algorithm2, which shows that for 50 input
octets modified cipher will be 56 octets, and for 1024 octets it
will be 1035 octets.

Now, let us calculate the probability that an intruder will
successhlly retrieve the cipher text stream from the scrambled
WEP output.

First, the probability of finding a random octet in a chunk
can be given as

C-78CI3-8255-2’Wu).Oo 02W4 IEE. 2490

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on July 9, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

Effective Ciphertext Size (in octets)
60

50 . -. Original

40

Modified

’ / ._
yi

m
r

m
.c 20

.......

0 20 30 40 50
lo Incoming ciphertext size

Figure 6: The number ofoctets in the modified packet against the number
of incoming wtets

Then, the probability of successfully retrieving the whole
cipher text (i.e., breaking the scrambling algorithm for the
cipher text randomization - The probability of finding all
random octets) will be

(9)
,=I

Probabilitv of successful retrieval of ciahertext
I : I

- 2 4 n 6 8 10

Figure 1: Probability of successful retrieval of cipher text

As the number of cipher text octets increases linearly, the
probability of breaking the scrambling algorithm for the cipher
text randomization decreases exponentially. For the packets
with a cipher text of 5 octets or more, the probability becomes
0.00097 or less.

Finally we calculate the computational difficulty in terms of
the number of different panems generated for same data
panem. Different pattems for the same 24-bit IV can be given
as:

CD,,, = 28 x 24 (10)

2491

Different panems for the same n data hits can be given as:

CD,-(~) = 28 xlog, (n) x c,(n) (I 1)

Figure 8: Computational difficulty

Fig. 8 shows the increase in the requirement of
computational power to recover the WEP cipher text from the
scrambled cipher text.

Different panems for the same ICV can be given as:

CDjc, = 2’ x 32 (12)

Increased total computational difficulty can be given as

CD (n) = CD,, + CD,(n)+ CD,,,, (13)

V. CONCLUSIONS
A scrambling algorithm is proposed to patch WEP protocol.

The algorithm is implemented in MATLAB and VHDL and is
verified through simulations. Mathematically, it achieves an
aggregate of at least 14848 times (6144 + 8192 + 512(for only
one byte cipher text input)) improvement in WEP security. The
hardware implementation of the algorithm requires only adding
two counters, few registers and a simple controller. Thus the
algorithm provides a robust WEP security system without
substantially increasing the overall implementation cost.

REF E RE N c E s
[I] Std802.1Ib,IEEE, 1999.
[Z I N. Borisov, I. Coldberg. and D. Wagner, “Intercepting Mobile

Communications: The lnsecurlty O f 802.1 I”, Proc. o/ /he 7th Annual
hrernarional Conference on Mobile Compuring and Neworking, July
2WI.

[3] J. R. Walker, “Unsafe at any key size; an analysis of the WEP
encapsulation”, IEEE Document 802.1 1-00/362, Oct. 2000.

I41 The RC4 Encryption Algorithm, RSA Data Secunty, Inc., 1992.

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on July 9, 2009 at 05:27 from IEEE Xplore. Restrictions apply.

