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Abstract

Many network security applications require large virus
signature sets to be maintained, retrieved, and compared
against the network streams. Software applications fre-
quently fail to identify so many signatures through compar-
isons at very high network speeds. Bloom filters are one of
the main multi-hashing schemes utilized in hardware to sup-
port this level of security. Nevertheless Bloom filters con-
sume significant power to store, retrieve and lookup virus
signatures owing to many hash function computations re-
quired to index to the memory. We present a novel lookup
technique and architecture to decrease the power consump-
tion of multi-hashing schemes, predominantly Bloom filters,
in hardware. The theoretical analysis has shown that power
gain achieved through new lookup technique can go up to
90%. Simulation results with three different classes of the
hash functions embedded into the Bloom filter have indi-
cated that power consumption of the Bloom filters can be
considerably decreased by employing the low power lookup
technique.

1 Introduction

Many network security applications make use of multi-
hashing schemes. Either they require functionalities offered
by hash tables or hash functions. Not only the software
applications but also some hardware systems depend upon
the properties of a high performing multi-hashing scheme.
Such a multi-hashing scheme generally appears in the form
of a Bloom filter [3]. Bloom filters have been used for many
network applications like resource routing [6], string match-
ing [1, 7], and packet filtering [2]. They are also used to
improve lookup operations in hash tables [8]. A hardware
system, consisting of Bloom filters to detect malignant con-
tent, is described in [7]. A detailed survey of Bloom filters
for networking applications can be found in [4].

Although Bloom filters have found wide spread usage in

networking applications, they are not conservative in terms
of power. A network intrusion detection system (NIDS)
consists of 4 Bloom filter engines can dissipate up to 5 W.To
decrease the power consumption of Bloom filters, we pro-
pose a new lookup technique which basically makes use of
less number of hash function computations to determine the
maliciousness of the network stream. The architecture to
implement this new lookup technique in Bloom filters is
presented in this paper. Furthermore, a comparative power
analysis of the Bloom filter architecture which realizes the
new lookup operation is given. A mathematical analysis
carried out in this paper clearly states the efficiency of the
new lookup technique in terms of power.

In spite of the importance of the hashing techniques in
Bloom filters, hashing analysis of the Bloom filters is some-
what overlooked sofar. This paper also presents hardware
architectures for implementation of the different classes of
the hash functions utilized in programming and lookup op-
erations of Bloom filters. The simulation results with the
different hashing functions in varying configurations of the
Bloom filters is also discussed.

2 Low power lookup technique

Before describing the low power lookup technique for
multi-hashing schemes, it is important to consider what a
multi-hashing scheme stands for. In this paper, we use a
Bloom filter as a multi-hashing scheme for network appli-
cations. A Bloom filter is a data structure that stores a given
set of signatures, by first computing multiple hash functions
on each of the members of the set, and then it queries the
database for a given input string, by again computing many
hash functions of the input. The first operation is called pro-
gramming of the Bloom filter, and the second operation is
lookup. A block diagram of a typical Bloom filter is illus-
trated in Fig. 1. Given a string X, which is a member of the
signature set, a Bloom filter computes k many hash values
on the input X by using k different hash functions. Then
it uses these hash values as index to the m-bit long lookup
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Figure 1. Block diagram of a typical Bloom
filter

vector. It sets the bits corresponding to the index given by
the hash values computed. It repeats this procedure for each
member of the signature set.

For an input string Y, Bloom filter computes k many hash
values by utilizing the same hash functions used in pro-
gramming of the bloom filter. Bloom filter looks up the
bit values located on the offsets (computed hash values) on
the bit vector. if it finds any bit unset at those addresses, it
declares the input string to be a nonmember of the signature
set, which is called a mismatch. Otherwise, it finds all the
bits are set, it concludes that input string may be a member
of the signature set with a certain probability (false positive
probability), which is called a match.

A Bloom filter never produces false negatives, which
means if it decides that an input is a nonmember, input cer-
tainly does not belong to the signature set. However, it may
produce false positives. It may conclude that the input is
a member of the signature set, although in reality the input
may not be a member of the set. Following the analysis of
[7], the false positive probability f is calculated by,

f =
(
1 − e

−nk
m

)k

(1)

where n is the number of signatures programmed into the
bloom filter, m is the length of the lookup vector, and k
is the number of the hash functions used to implement the
Bloom filter. In order to minimize the false positive prob-
ability, the value of m must be quite larger than n. For a
fixed value of m

n , k must be large enough such that f gets
minimized. Since the number of hash functions in Bloom
filters is large to reduce the false positive probability, it is
intuitive that their total power consumptions are large. Dur-
ing the programming phase of the Bloom filter, not much
can be done to reduce the power consumption, otherwise
Bloom filter will produce many false positives. However,
while performing lookups over the Bloom filter, the num-

ber of hash functions used to produce a decision can be
reduced significantly. This is because Bloom filter never
makes false negatives, and it is enough to find a zero on
the m-bit long lookup vector to conclude that there is a mis-
match. We call this type of lookup operation as low power
lookup technique. The architecture to support such a lookup
operation for a multi-hashing scheme is illustrated in Fig. 2.

Figure 2. Block diagram of a two stage Bloom
filter supporting low power lookup

At the core of the proposed architecture supporting low
power lookup technique lies the division of the hash func-
tions into two groups. These two groups are clearly identi-
fiable on the Fig. 2. The first stage of hash functions always
computes the hash values. By contrast, the second stage
of hash functions only compute the hash values if in the
first stage there is a match between the input and the sig-
nature sought. The result produced at the end of the first
stage will be used as a select signal to start computing the
second stage of hash functions. In the worst case, the new
lookup operation will make use of all the hash functions in
both groups, nonetheless most of the time the first group of
hash functions will be enough to make a decision, which is
a mismatch, claiming input is free of malicious content. In-
stead of computing k many hash functions, now it is enough
to compute r many indices. This results in computational
power savings.

3 A comparative power analysis

In this section, a theoretical approach is followed to an-
alyze and compare the power consumptions of the different
lookup operations available through two Bloom filter archi-
tectures presented in Fig. 1, and Fig. 2 respectively. A
single Bloom filter shown in Fig. 1 uses k many hash func-
tions in order to make a decision on the input given. Hence,
the power consumption of a Bloom filter when performing a
regular lookup operation is a summation of the power con-
sumptions of each of the hash function computations, PHi ,
plus the power consumed accessing the memory for each
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hash value computed, PQ, plus the power consumed by an
AND gate.

PBFregular
=

k∑
i=1

(PHi + PQ) + PAND (2)

Power consumption of an AND gate is ignored hereafter,
since it is minimal compared to the power used by the hash
functions. We assume that the power required to query m-
bit vector is approximately constant for each index calcu-
lated by any of the hash functions. The power consump-
tion equation for a single Bloom filter simply becomes the
total power used up by the hash functions and the power
consumed by querying the m-bit vector for each hash value
calculated.

PBFregular
=

k∑
i=1

(PHi + PQ) (3)

In order to compare the power consumption of a regular
lookup operation to that of the low power lookup proposed,
we use 16-bit implementation of hash functions. For com-
parison reasons, we do not consider different class of hash
function implementations till the next section. We assume
all of the hash functions implemented are from the univer-
sal class of hash functions called H3 [5]. Hence, all of the
k many hash functions are of type 16-bit H3 class of hash
functions, so Equ. 3 becomes

PBFregular
=

k∑
i=1

(PHi(H16) + PQ) = k.(PH16 +PQ) (4)

To derive the power consumption of the new lookup op-
eration proposed, we follow an mathematical analysis sim-
ilar to the analysis done in [9].Let us first derive the proba-
bility of match in the first stage. The probability that a bit is
still unset after all the signatures are programmed into the
the Bloom filter by using k-many independent hash func-
tions is α.

α =
(

1 − 1
m

)kn

≈ e
−kn

m (for large m) (5)

where 1
m represents any one of the m bits set by a sin-

gle hash function operating on a single signature. Then(
1 − 1

m

)
is the probability that the bit is unset after a single

hash value computation with a single signature. For it to
remain unset, it should not be set by any of the k-many hash
functions each operating on all of the n-many signatures in
the signature set. Consequently, the probability that any one
of the bits is set is

(1 − α) ≈ 1 − e
−kn

m (6)

In order for the first stage to produce a match, the bits
indexed by all r of the independent random hash functions
should be set. So the match probability of the first stage is,
represented as p,

p =
r∏

i=1

(1 − α) =(1 − α)r ≈ (1 − e
−kn

m )r (7)

The mismatch probability of the first stage is simply 1-p,

1 − (1 − e
−kn

m )r (8)

With a probability of (1-p) the first stage of the hash
functions in the Bloom filter will produce a mismatch when
performing a lookup operation. Otherwise, the first stage
produces a match, then the second stage is used to compare
the input with the signature sought as it is suggested by the
architecture proposed. Therefore the power consumption of
a Bloom filter shown in Fig. 2 is given by

PBFlowpower
= P1st−stage + P{match} × P2nd−stage

PBFlowpower
=

r∑
i=1

(PHi + PQ) + p ×
k∑

j=r+1

(PHj + PQ)

+PAND (9)

As we stated previously, for comparison purposes, PHi,j

are of type 16-bit H3 class of universal hash functions. By
substituting Equ. 7 into Equ. 9 power consumption of a
Bloom filter shown on Fig. 2 becomes

PBFlowpower
=

r∑
i=1

(PHi(H16) + PQ)

+(1 − e
−kn

m )r ×
k∑

j=r+1

(PHj(H16) + PQ)

= r.(PH16 + PQ) +

(1 − e
−kn

m )r(k − r)(PH16 + PQ) (10)

The power saving ratio, PSR, in a single Bloom filter im-
plemented based on the architectures presented functioning
on two different lookup techniques can be calculated as

PSR =

(
PBFregular

− PBFlowpower

)
PBFregular

(11)

By substituting Equ. 4 and Equ. 10 into Equ. 11, the aver-
age power saving ratio, PSR, is found out to be

PSR =
k − r + (r − k) (1 − e

−kn
m )r

k
(12)
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Figure 3. Power saving ratio w.r.t. number of
hash functions in the first stage

For different values of the number of bits allocated to
per signature, m

n , power savings over the number of hash
functions utilized in the first stage are illustrated in Fig. 3.

As it is seen in the Fig. 3, the number of bits per sig-
nature, m

n , increases, the amount of power conserved in the
system increases. In other words, the power saving ratio
becomes larger as m

n increases. This is because, as m
n in-

creases, although probability of mismatch in the first stage
stays the same for all configurations for a fixed value of r
(See Equ. 8), the number of hash functions deployed in
the first stage becomes a smaller portion of the overall hash
functions deployed in each configuration. For a fixed value
of r, r

k decreases. This explains the reduction in power con-
sumption. The less are the number of hash functions uti-
lized through low power lookup technique, the more the
power is saved. Another observation from Fig. 3 is that
as the number of hash functions utilized through low power
lookup technique increases, the power saving ratio, PSR,
first increases to an optimum PSR value, thereafter it drops
gradually.

4 Practical hashing functions utilized in
Bloom filters

In this section, we will analyze the effects of utilizing
different hashing functions in Bloom filters. Performance of
different hash functions in hardware are investigated in [10].
We utilized three different types of hash functions in Bloom
filters to examine the effects of them on the performance of
low power lookup technique and possible power savings on
multi-hashing schemes.

4.1 H3 class of universal hash functions

Universal class of hash functions are first introduced by
Carter et al. [5]. They defined a special class of hash
functions and called them as class H3. The definition is
as follows. Given any string X, consisting of b bits, X =
<x1, x2, x3, . . . , xb>

ith hash function over the string X is defined as

hi(x) = di1 • x1 ⊕ di2 • x2 ⊕ di3 • x3 ⊕ ...dib • xb (13)

where dij ’s are random coefficients uniformly distributed
between 1 to size of the lookup vector, m, and xk is the
kth bit of the input string. • is a bit by bit AND operation,
and ⊕ is a logical exclusive OR (XOR) operation. A block
diagram of the H3 class of hash functions implemented is
given in Fig. 4.

Figure 4. A block diagram of a H3 class of uni-
versal hash function

Input is shifted one bit left till 16 bits are handled. Each
bit is logically AND-ed with the random number. At the
end, all AND results XOR-ed together to get a hash value.
This type of hash functions are linear transformations, as
a result they distribute the index values randomly. Imple-
mentation of these type of hash function requires 16 2-input
AND gates and a single 16-input XOR gate for a 16 bit sig-
nature. They produce key values as the same size of the
input. Pseudocode to implement H3 class of hash functions
is given below.

Pseudocode 1 A H3 class of universal hash function
for each signature:

- generate as many random numbers
as the bits in the signature
- left shift the signature to
get to the specified bit
- AND each shifted signature
with the random number
- XOR all the results of AND’s

4.2 Bit extraction hashing functions

These type of hashing functions consists of selecting j
bits out of b bits of the signature. Depending on the se-
lection fashion of these bits out of input signature, they
are classified as regular and randomized bit extraction hash
functions. Since regular bit extraction hashing functions
are constrained in number by the input length, we have
used randomized bit extraction hash functions. Defini-
tion of a randomized bit extraction hashing function is as
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follows. Given any string X, consisting of b bits, X =
<x1, x2, x3, . . . , xb>

ith hash function over the string X is defined as

hi(x) = <xl1 , xl2 , xl3 , . . . , xlj > (14)

where lj’s are random bit positions uniformly distributed
between one to size of the input signature in bits, b, and xlj

is the input bit located at lj . A block diagram of random-
ized bit extraction hash functions implemented is illustrated
in Fig. 5.

Figure 5. A block diagram of a bit extraction
hash function

Implementation of these types of hash functions requires
8 2-input AND gates and a single 8-input XOR gate for a
16 bit signature. Shifter is necessary to left shift the bits in
input as specified by random number, lj . These type of hash
functions produce key values shorter in bits than the size
of the signature. They distribute keys randomly since the
bit positions to extract the bits based on random numbers.
Pseudocode to simulate this hash function is given below.

Pseudocode 2 A bit extraction hash function
for each signature:

- generate as many random numbers
as the bits in the indices
- right shift the signature to
get to random bit position
-adjust the bit at random position to
the correct position at index
by left or right shifting
- XOR all the results of shifting

4.3 Hashing functions from exclusive OR
method

These types of hash functions partition the b bit long
input signature into j bits of segments. The segments are
XOR-ed to get the hash value. The segments can be formed
either in a regular manner or randomly like bit extraction

hash functions. Since we want to have random indices, we
have used random segment forming hash functions. The
definition of the hashing functions from XOR method is
as follows. Given any string X, consisting of b bits, X =
<x1, x2, x3, . . . , xb>

ith hash function over the string X is defined as

hi(x) = (xs1 ⊕ xs2 )(xs3 ⊕ xs4) . . . , (xsj−1 ⊕ xsj ) (15)

where sj’s are the uniformly distributed random bit posi-
tions in input string. xsj are the bits at the position spefi-
cified by sj . There are two segments of length j-bits are
formed and XOR-ed. Fig. 6 illustrates a block diagram of a
hash function from XOR method.

Figure 6. A block diagram of a hash function
using the XOR method

Implementation of these types of hash functions requires
a shifter to get to the bit at the random position, plus 8 2-
input XOR gates, and a 8-input XOR gate. The length of the
resulting hash value is smaller in bits than the input. How-
ever they map the inputs to the hash values in a completely
random manner due to the random selection of bits from in-
put. Following is a pseudocode to implement these type of
hash functions.

Pseudocode 3 A hash function using the XOR method
for each signature:

- generate twice as many random numbers
as the bits in the indices
- right shift the signature to get the
random bit positions for two segments
- XOR the bits at each segment
- right shift the XOR result to get
correct position

5 Simulations

We have simulated the low power lookup technique pre-
sented in Fig. 2 with three different hash functions de-
scribed in the previous section by using our custom-written
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C program. In the simulation, parameters such as the size of
the signature set, the type of signatures, m-bit long lookup
vector size are varied to observe the power saving ratio. The
length of the signatures are 16 bits. Indices, however, de-
pend on the type of hash function utilized since both bit ex-
traction and hash functions using the XOR method produce
8 bit hash values when the signature length is 16 bits. Ta-
ble 1 depicts the results of the simulations illustrating large
power gains through low power lookup operation.

Table 1. Power Savings through low power
lookup operation for different hash functions
Simulation
number

hash func-
tion type

number of
signatures

lookup vec-
tor length

Power Sav-
ing (%)

Simul. 1 H3 101 65536 97
Simul. 2 H3 1000 65536 82
Simul. 3 EXT 6 256 88
Simul. 4 HXOR 6 256 85
Simul. 5 EXT 10 256 71
Simul. 6 EXT 20 256 60

The most important observation from the simulation re-
sults presented on Table 1 is that the low power lookup op-
eration indeed provides significant power savings. The type
of hash functions does not effect the power savings ratio
as long as the bits allocated to the per signature, m

n , stays
constant. However the type of the hash function affects the
number of signatures that can be programmed, n, and size
of the lookup vector, m. This is an expected result, since
bit extraction and hash functions from XOR method pro-
duces 8-bit long indices whilst H3 type of universal hash
functions produce 16-bit indices. Consequently, the size of
the lookup vector is limited by 256 or 65536 respectively.
Hence, the type of the hash functions determines the size
of the lookup vector m. As the number of signatures pro-
grammed in Bloom filter, n, increases, the number of hash
function computations required to generate a decision on
the maliciousness of the input rises. As a result, the power
gain that is achieved in the Bloom filter through new lookup
technique drops.

6 Conclusions

In this paper, we have proposed a low power lookup tech-
nique for multi-hashing schemes. Furthermore, an architec-
ture supporting this new low power lookup technique for
Bloom filters is described. Mathematical power analysis as
well as simulations are carried out to show the effectiveness
of the proposed method. In addition to that, three different
types of hash functions are examined to observe the effects
on the power savings and the operation of the multi-hashing
scheme. The simulations performed revealed that the new
lookup technique drastically decreases the power consump-
tion of the Bloom filter. Simulations have also shown that

the type of the hash function utilized in Bloom filter does
not largely affect the power savings by low power lookup
technique. However the type of the hash functions deter-
mines the size of the lookup vector, which in turn affects
the number of allowed signatures programmed in to Bloom
filter.
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