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Area-Based Results for Mine Detection
Erol Gelenbe, Fellow, IEEE,and Tas¸ak Koçak, Member, IEEE

Abstract—The cost and the closely related length of time spent
in searching for mines or unexploded ordnance (UXO) may well
be largely determined by the number of false alarms. False alarms
can result in time consuming digging of soil or in additional multi-
sensory tests in the minefield. In this paper, we consider two area-
based methods for reducing false alarms. These are: a) the pre-
viously known “declaration” technique [8], [10] and b) the new

technique, which we introduce. We first derive expressions and
lower bounds for false-alarm probabilities as a function of declara-
tion area and discuss their impact on receiver operation character-
istic (ROC) curves. Second, we exploit characteristics of the statis-
tical distribution of sensory energy in the immediate neighborhood
of targets and of false alarms from available calibrated data, to
propose the technique, which significantly improves discrimina-
tion between targets and false alarms. The results are abundantly
illustrated with statistical data and ROC curves using electromag-
netic-induction sensor data made available through DARPA [8]
from measurements at various calibrated sites.

Index Terms—Area-based techniques for detection, declaration,
technique, detection of unexploded ordinance (UXO), electro-

magnetic induction sensors, mine detection.

I. INTRODUCTION

A UTOMATIC mine detection and the detection of unex-
ploded ordnance have become a subject of great impor-

tance, and a variety of sensors and processing systems have been
proposed recently for mine remediation. A number of novel
technical approaches to this major problem have emerged based
on a variety of sensor technologies [9], [11]–[15], and the field
is now on the verge of significant scientific and technical devel-
opment. All approaches are based on the on-line or off-line al-
gorithmic processing of data from single or multiple sensors and
on data-fusion techniques that can take advantage of the comple-
mentary characteristics of different sensors. In this framework,
availability of multisensory data [8] from calibrated minefields
(and from minefields that offer significant challenge to detec-
tion algorithms) are particularly useful.

In remedial mine detection, which is primarily directed to-
ward an exhaustive removal of mines for humanitarian purposes,
both the probability of correct detection of a mine and the prob-
ability of false alarm, are important performance metrics for any
sensor or processing algorithm. The probability of detection is
important for obvious reasons. However, the probability of false
alarm is also of major importance for simple reasons of cost. The
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number of false alarms is bound to be significantly greater than
the number of mines found in a given area. Hence, the cost and
the closely related duration of the search for mines may well
be largely determined by the large number of false alarms that
will lead to unnecessary and time consuming digging of soil in
the minefield. Thus, all sensors and algorithms need to address
these important metrics.

There have been several studies of mine detection using statis-
tical methods and involving different sensors, including [1]–[7],
[12], [14]–[19]. In the case of the direct point-by-point exhaus-
tive detection and search for mines, which is directly related
to the present work, current detection techniques do not pro-
vide sufficiently high performance results, especially in cases
where the minefield is heavily cluttered [9], [10]. Indeed, it can
be expected that clutter will be prevalent in many minefield en-
vironments, since the same areas will have been used by troops
in the field (littering the area with cans or spent cartridges), or
simply because the minefields of interest in remedial demining
may be located in populated areas. Similarly, areas that con-
tain a lot of unexploded ordnance, such as firing ranges on or
close to military bases, will contain a variety of metallic objects
or other clutter which results from long term human presence.
Thus, most technologies in use or that have been proposed for
detecting land mine and unexploded ordnance (UXO) will typi-
cally lead to high false-alarm rates, even at relatively low prob-
abilities of correct detection [8], [10]. Thus, the objective of this
research is to develop technologies that provide accurate detec-
tion of mines in cluttered environments, with acceptably low
false-alarm rates.

In order to summarize the basic concepts related to mine de-
tection, it may be helpful to consider the summary representa-
tion of Table I. We see that if a mine exists at some location,
the detector that visits that location will either correctly detect
it or will miss it. On the other hand, if a mine does not exist at
the location being examined, either the detector will incorrectly
detect a mine yielding a false alarm, or it will correctly indicate
that it does not exist.

The minefield data we will use in this study is based on
measurements provided by DARPA [8], with two different elec-
tromagnetic-induction sensor systems at a variety of geographic
locations. This data has been collected in a series of systematic
minefield-sensing experiments, which have been conducted at
multiple locations with a variety of sensors and implanted with
decoy mines and mine-like objects. The first sensing system
considered is a Geonics EM61-3D three-component, time-do-
main sensor. It consists of a multichannel pulsed-induction
system, having a 1-m square transmitter coil and three orthog-
onal 0.5-m receiver coils, which are positioned approximately
0.3 m above the ground. The second system consists of a 0.5
m Geonics EM61 pulsed-induction sensor equipped with two

0196–2892/00$10.00 © 2000 IEEE
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TABLE I
DIFFERENTEVENTS RELATED TO MINE DETECTION

coplanar 0.5-m coils with a vertical spacing of 0.4 m. The
sensor height above ground level is again approximately 0.3 m.
Specifically, the data we will use represents the measurements
collected in a roughly 100 100 square-meter area for four
different regions. In order to be consistent with data description,
we will use the following names for these regions, which will
prove to have significantly different clutter characteristics, as
well as different target (decoy mine) locations. They will refer
to them as firing point (FP) 20, firing point (FP) 22, Seabee,
and Turkey Creek. An example of EMI energy data is shown
on Fig. 1 for 1-m Z-Coil measurements obtained by DARPA
[8]. The vertical lines simply indicate target locations and do
not represent energy values. The area that appears to have zero
energy is simply an area for which we do not have any data
(e.g., it may not have been surveyed). Inspection of the figure
shows the significant amount of clutter in various areas and the
relatively low energy levels at target locations.

The EMI energy level we use is a derived quantity from
DARPA’s raw data.

1) For 1-m data, the Geonics EM61-3D sensor data was col-
lected along survey lines spaced 1 m apart in the east di-
rection and at a rate of three samples per second, or at
approximately 0.4-m intervals in the north direction. For
each measurement point, the instrument’s output is mea-
sured and recorded at 20 geometrically spaced time gates
covering a time range from 320s to 32 ms. The energy
level we use for each point is derived as follows:

(1)

where is the EM61-3D sensor output for theth time
interval.

2) The 0.5-m data was collected along survey lines spaced
at 0.5-m intervals in the east direction and 0.2-m intervals
in the north direction. For this data, the received signal’s
absolute value from the Geonics EM61 is integrated from
0.18 to 0.87 ms after each transmit pulse, resulting in a
single data point for each location. The energy level
for each point is then simply obtained as .

3) Because of the relative inaccuracy of the position mea-
surements, the minefields considered are artificially
gridded on the basis of 1 m 1 m blocks. All the
energy data is then mapped by averaging it onto this grid.
Specifically, for both the 1-m and 0.5-m data, the energy
values are averaged on the 1 m 1 m block, which
contains the points where the values are measured.

As mentioned earlier, a source of inaccuracy in the practical
use of the data we employ in this study is related to the exact

Fig. 1. Relative energy values measured at FP 20 site at 1 m resolution from the
Z coil of the Geonics EM61-3D sensor. Vertical lines show some mine positions,
illustrating the difficulty of detecting mines directly from measured energy.

location of the sensor being used as data was registered. This
is due to a variety of instrumentation and data-collection ef-
fects, leading to errors in registering the sensor’s position as it
travels continuously across the minefield. Hence, we have fol-
lowed a commonly accepted procedure suggested for using this
data, which is to register the mine locations by analyzing the
energy levels near the approximate known mine locations. We
assume that if there is a mine at a particular point, then its im-
mediate neighbors should have lower energies. To give an idea
of this effect, two of the 5 m 5 m regions that we examine are
shown in Fig. 2.

II. EFFECT OF"DECLARATION" ON FALSE ALARMS

AND ROC

An established practice [8], [10] in processing minefield data
is the so-called process of “declaration,” which is based on the
simple remark that whenever a false alarm or a mine is de-
tected (i.e., whenever the sensor and detection algorithm says
“alarm”), anarea at and aroundthe position at which the signal
was detected is thoroughly searched. This search will typically
involve visual inspection and perhaps digging with specialized
tools and probes, but also will often entail the use of other sen-
sors. Thus, when an alarm occurs, an area that includes that point
is thoroughly checked out and all mines are found or no mines
are found (i.e., it was a false alarm). It is convenient to simplify
the area explored as being an area centered at the point at
which the detection occurred, whereis in an appropriate unit
(e.g., in meters).

is taken to be an odd integer, so that the center point of
the area is the location of detection. Because of the important
effect declaration has on false-alarm rates, in this section, we
derive some bounds on false-alarm probabilities with declara-
tion as compared to false-alarm probabilities obtained without
declaration.

In practice, the choice of will depend on the search pro-
cedure being followed in the field. Thus, several authors [10],
[12] present ROC curves for different sensors and processing



14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 1, JANUARY 2000

Fig. 2. Energy profiles at two mine locations in the FP 20 site (left) and the Turkey Creek site (right). TheY -axis shows the measured Z-coil energy values.

algorithms for a range of values ofvarying between
(when the declaration procedure is simply not being used) to

. Notice that a 49-marea may be considered to be
excessively large for a search around a presumed mine when the
unit is in meters. However, when we are dealing with half-meter
grids for the minefield, an approximately 12-msearch area cor-
responding to might be a reasonable value to consider.

Whenever a mine or a false alarm is located at some point,
the set of points centered at will be considered to
have been explored and will be removed from further consider-
ation concerning false-alarm rates. By “point”, we mean some
location in the minefield, assuming that the whole
field has been discretized in 1 1 unit squares, so that point
(0, 0) would in fact refer to the square contained in the vertices
(0, 0), (0, 1), (1, 0), (1, 1). Note that if some point
has been included previously in the declaration area of some
other point where a mine or false alarm has previously been
detected, then should not be eliminated twice from the areas
being scanned. In general though, it is of interest to have a the-
oretical understanding of how the procedure of declaration af-
fects ROC curves. However, the precise effect ofon the ROC
curves is particularly difficult to determine theoretically, since
it depends on the distribution of mines and of false alarms in the
field, and especially on their proximity to each other. An exact
computation of the effect of would have to make assumptions
about the spatial statistics of targets and false alarms, and would
therefore be poor estimates of the results obtained with real data.
Therefore, in this section we derive robust bounds, which do not
depend on statistical assumptions or on the nature of a particular
minefield, for the impact that will have on the probability of
false alarm and the probability of correct detection.

Let us first develop some notation. Consider a minefield in
which the mine locations are denoted by the set, while the
nonmine points where the detector may declare a false alarm
(i.e., those points where the energy response to a sensor is
nonzero) are denoted by the set. We write and

will be the sizes of the sets. Let
be the probability of false alarm and the probability of correct
detection, respectively, when a declaration area of size is
used. For (i.e., with no declaration, these will be denoted

). Typically, we will have (i.e., we may have
thousands of nonmine points in a minefield, with perhaps 10
or 20 mines). Ratios may be somewhat different if the targets
sought are unexploded ordnance (UXO), but the would
still be much larger than . The following results are only
valid for sensors or detectors that use point data and base their
decisions concerning the presence or absence of a mine or of
a false alarm at a given pointon sensor output [call it ]
at that single point , rather than at its surroundings or in other
areas. This differs from some of the algorithms that will be
discussed later in this paper. Note that the following results
refer to any given run of a detection algorithm on measured data
on a specific minefield. Thus, the probabilities
are simply the ratio of measured numbers

(2)

(3)

where is the number of false alarms, and is the
number of correct detections counted with a declaration area of

. All the following results concerning declaration (Propo-
sitions 1–3) assume that the false-alarm ratewith is
homogeneous for all pointsin the minefield data. Our first re-
sult is

Proposition 1: Consider a detector that only uses sensor data
measured at a pointto make decisions about that same point.
Let be the false-alarm rate with an declaration
area. Then a lower bound for for any (odd-valued) is
given by

(4)

Comment: The total number of false alarms in the detection
procedure is , and for , we write

. can be empirically determined as the number
of 1 m 1 m grid points where false alarms are detected in the
whole minefield, divided by the total area size of the mine field,
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when a declaration area of sizeis used. Note that the number
of false alarms with declaration cannot exceed the number of
false alarms with . Also, the maximum possible number
of false alarms in a declaration area is .

Proof of Proposition 1: The expected number of false
alarms in a declaration area is , while
the expected number of targets detected in that area is

. For each of the false alarms, on
the average, are eliminated by the effect of the
declaration, since they would have been counted as false alarms
with . However, they are not counted with an
declaration area. Therefore

(5)

where the second term on the right-hand side is the average
number of false alarms that are eliminated from the false alarms
with declaration, while the third term is the average number of
false alarms that are eliminated by the targets detected with dec-
laration. Dividing all terms in (5) by , we remain with

(6)

or

(7)

Q.E.D.
Because , the simpler approximate inequality

(8)

can be used, which has the added advantage of not requiring
knowledge of .

In Fig. 3, we compare the lower bound provided by (8) with
empirical false alarm probabilities obtained with various values
of for a specific set of data from [8] on the FP 20 Site. We ob-
serve that the resulting ROC curves which use the lower bounds
of are, as one would expect, optimistic with respect to
real data. An upper bound to the false alarm probabilities with
declaration would also be quite useful.

Notice that if the false-alarm probability in the vicinity of a
false alarm that has been discovered is different fromlike a
value that may occur when false alarms are highly correlated
spatially, then the lower-bound formula (8) becomes

(9)

III. A N AREA-BASED DETECTOR: THE TECHNIQUE

False alarms are the major source of needless time expen-
diture in the search for mines. Thus, significant reductions
of false-alarm rates are very valuable. In this section, we
will propose and evaluate a method that significantly reduces

Fig. 3. Effect of declaration.

false-alarm rates by making use of neighborhood or area
information around each point visited during the search.

Consider again the energy measurements around two mine
locations shown in Fig. 2, where we see that the energy at the
mine location is higher than that at neighboring points. If this is
generally true of most mine locations, and if this property were
much less frequent in nontarget areas, we would hold a very
good lead into a manner of reducing false alarms. In order to
see whether such an idea can be fruitfully pursued, we examine
the following statistic of the Z-coil data from all of the measured
sites with the electromagnetic induction (EMI) sensors

(10)

where is any point in the minefield, is the EMI energy
level measured by the Z-coil at point, and is the en-
ergy level of an immediate neighbor (there are eight of them) of
the point . in (10) is relative to the center-point energy

, so as to generate relative rather than absolute values. We
call the “local relative energ.” Notice that , but
that it can take unbounded negative values. We note that
is a quantity related to some specific neighborof point , so
that no averaging over the eight neighbors ofis implied in
(10). The local relative energy is a derived statistic we intro-
duce, while the energy measurements themselves are available
in the data from the DARPA clutter experiment. Note that each
point gives rise to eight distinct values that appear in these his-
tograms.

Measured histograms of for all that are mine and
nonmine locations for all available data are shown in Figs. 4–7.
Also, these histograms all relate to the same set of mines that are
artificially planted in them in the same relative positions and at
approximately the same depth. Thus, the differences in the en-
ergy statistics of different sites are a result of the clutter and soil
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Fig. 4. Relative histogram (y-axis is the probability) of local relative energy of all mine (left) and nonmine (right) locations for FP 20.

Fig. 5. Relative histogram (y-axis is the probability) of local relative energy of all mine (left) and nonmine (right) locations for FP 22.

characteristics. The clutter is a result of naturally occurring ef-
fects, as well as of various objects that may be present in the
minefield without anyone’s explicit knowledge. For instance,
each of these areas has been actively used in the past as firing
ranges, training areas, etc. Therefore, the areas will contain de-
bris from previous usage, which will contribute in some random
fashion to the clutter.

From these histograms, we always notice an accumulation
point close to the value , which corresponds to the
case in which the neighboring points to pointexhibit very small
relativeenergy.Otherthanthat,wenoticeaverymarkeddifference
between histograms at mine locations compared to histograms at
other points. At mine locations, most of the neighboring energy
values are smaller than at, so that is positive most of the
time. However, at nonmine locations, the distribution of energies
isquasi-equaloneithersideof theenergyvalueat.

These observations provide us with a simple but very useful
improvement on the energy detector, which we shall call the
technique, where is used to denote “difference,”

1) For any selected threshold energy level, select all data
points where the Z-coil EMI energy . Call this
set .

2) Select a number . For each in ,
count the number of immediate neighbors whose en-
ergy value is strictly less than , and call it . No-
tice that . If , classify as a mine.
Otherwise, treat it as a nonmine. Clearly, many’s thus
classified as mines will turn out to be false alarms.

3) We will say that (and in practice for many of our
numerical examples we have selected or ),
because of the very significant clutter-rejection capabili-
ties of these parameter settings, as shown in Fig. 8.

The effect of the technique on false alarms is illustrated in
Fig. 8 as a function of the energy thresholdof the detector.
As the actual value of increases, the percentage of false
alarms rejected will vary from a low value of 10% to a
high value of 85%. Thus, the technique will significantly
impact the ROC curves of an energy detector by reducing
the false-alarm rates. Fig. 9 shows the ratio of false-alarm
probabilities for the two extreme cases
(no declaration) and at the FP 20 Site, as a function of the
energy threshold . The significant reduction in false-alarm
probabilities is present even with a very large declaration
area. We observe the same effect on all the other sites but
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Fig. 6. Relative histogram (y-axis is the probability) of local relative energy of all mine (left) and nonmine (right) locations for Seabee.

Fig. 7. Relative histogram (y-axis is the probability) of local relative energy of all mine (left) and nonmine (right) locations for Turkey Creek.

do not report all of the curves in this paper because of space
limitations.

The ROC curves in Figs. 10 and 11 summarize the effect of
the technique with as compared to the simple energy
detector for 1-m and 0.5-m Z-Coil data from the FP 20 Site. In
these figures, the indicator “Theta” is used for the pure-energy
detector. Very significant performance improvements are evi-
dent without declaration. As increases to , (the
gain introduced by the technique) is still significant, but it is
reduced, as seen in Figs. 12–14.

Further detailed evaluations of thetechnique are presented
in Figs. 17–20, where, rather than tracing ROC curves for each
different value of , we have plotted the relative quality of the
technique with respect to the energy detector. The measure we
use in these plots is the “improvement ratio”

(11)

Here, and are the ratios of detection to the
false-alarm probability, with declarationas a function of the

energy threshold , with and without the -technique, respec-
tively

(12)

(13)

In order to illustrate the kind of improvement to be expected,
on Fig. 15 we plot the ratios and for the FP 20 1-m
Z-coil data without declaration, as a function of the energy de-
tector’s threshold. This clearly shows the improvement offered
by the technique. On the other hand, the plot in Fig. 16 for 7
7 declaration (i.e., ) for the same data shows that the gain
to be expected from thetechnique is significantly reduced for
this large value of .

In Figs. 17–20, we present in a compact form the
improvement ratio for all the available 1-m Z-coil

data from all sites (FP 20, FP 22, Seabee, and Turkey Creek,
respectively) as a function of the threshold of the energy
detector and of the declaration. Only threshold values for
which the probability of correct detection exceeds 0.8 are con-
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Fig. 8. Percentage of false alarms rejected, to total false alarms, with the delta technique, for values of delta running from 1/8 to 8/8. This is from raw data from
FP 20 with Z-Coil 1-m measurements withh = 1. For this data, Theta values less than 450 correspond to a probability of correct detection higher than 0.8.

Fig. 9. Ratio of false alarm probability with the�-technique to FA with only the energy detector for FP 20 using 1-m Z coil withh = 1 (left) andh = 7.

sidered to avoid presenting irrelevant data. We see that even for
declaration areas of 7 m 7 m, improvements are significant.
For smaller values of (1, 3, 5 m), the improvements obtained
by the technique are indeed very significant.

A. Effect of Declaration on the Technique

The bounds and approximations we previously derived,
which describe the effect that declaration of an
area will have on the receiver-operating curves, assume

that decisions concerning a point are based only on the
statistics at that point. However, we have just described a
new detection algorithm that makes use of the shape of the
energy curve at each point and in an area surrounding that
point. Therefore, it is of interest to evaluate the impact of
declaration in this case

Consider an algorithm that bases its decisions concerning
target detection at some pointbased on the fact that the en-
ergy levels in the square centered atare strictly lower



GELENBE AND KOÇAK: AREA-BASED RESULTS FOR MINE DETECTION 19

Fig. 10. ROC curves for FP 20 using the measurements of 1-m Z coil without declaration in linear and logarithmic scale.

Fig. 11. ROC curves for FP 20 using the measurements of 0.5-m Z1 coil without declaration in linear and logarithmic scale.

Fig. 12. ROC curves for FP 20 using the measurements of both 1-m (left) and 0.5-m (right) Z coil with 3� 3 declaration in logarithmic scale.

than the energy level at. Clearly, in general needs to be an
odd integer. In the results presented above for thetechnique,
we have used .

Let , since is of no practical interest. Again,
proceeding by means of the total number of false alarms with
declaration, assuming that false-alarm rates are uniformly the
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Fig. 13. ROC curves for FP 20 using the measurements of both 1-m (left) and 0.5-m (right) Z coil with 5� 5 declaration in logarithmic scale.

Fig. 14. ROC curves for FP 20 using the measurements of both 1-m (left) and 0.5-m (right) Z coil with 7� 7 declaration in logarithmic scale.

same across the minefield (including around any detected false
alarm), and using the technique, we have

(14)

where is the probability of false alarm of thetechnique
with declaration, is the corresponding probability without
declaration, and the inequality expresses the fact that since each
of the points in the -sized area around each false alarm
at point have lower energy than, they will not in any case
(with or without declaration) be considered candidates for false
alarm. Thus, the saving of the number of false alarms around
each point cannot exceed . This immediately leads
to what is described in the following section.

Proposition 2: A lower bound for the effect of declaration
on the false-alarm probability for thetechnique is given by

(15)

If false-alarm rates around detected false alarms are different
(e.g., because of area-based correlations) from the average false-
alarm rate across the minefield, then we can use the following
inequality:

(16)

where is the false-alarm rate in the immediate vicinity of a
false alarm that has been discovered with the area-based detec-
tion technique.
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Fig. 15. Ratio of detection to false alarm probabilities for FP 20 as a function of energy detector threshold without declaration.

Fig. 16. Ratio of detection to false alarm probabilities for FP 20 as a function of energy detector threshold with (very large) 7-m declaration.

IV. CONCLUSIONS

In this paper, we have introduced a method called the
technique, for reducing false-alarm rates in the detection of

mines. This method can also be useful in the search for
unexploded ordnance. It is based on the use of measured
electromagnetic-induction energy response at and around
targets.
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Fig. 17. Delta improvement ratio as a function of energy threshold and declaration at FP 20 Site with 1-m Z coil data.

Fig. 18. Delta improvement ratio as a function of energy threshold and declaration at FP 22 Site with 1-m Z coil data.

We have also considered the effects of “declaration,” which
is used to take into account that immediate neighborhoods of
false alarms or of detected targets should not be considered as
contributing further false alarms, since they will be thoroughly

examined in the process of search. A declaration area is consid-
ered to be an -unit area centered around the location of the
target or of the false alarm [8], [10]. We derive a lower bound
for false-alarm probabilities as a function of.
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Fig. 19. Delta improvement ratio as a function of energy threshold and declaration at Seabee Site with 1-m Z coil data.

Fig. 20. Delta improvement ratio as a function of energy threshold and declaration at Turkey Creek Site with 1-m Z coil data.

We have studied the statistical distribution of energy in the
immediate neighborhood of targets and of false alarms from cal-
ibrated data. The observation of specific characteristics of the
difference in energy levels in the neighborhood of the two pop-
ulations has led us to thetechnique. This new method con-

siderably reduces the false-alarm rate by filtering out potential
false-alarm locations whose neighbors’ measured-energy levels
do not have the characteristics of target neighborhoods. The
reduction obtained in false-alarm rates, and the improvements
in ROC curves with the technique, are illustrated with nu-
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merous empirical results using data which has been made avail-
able through DARPA [8].

Future work will use an adaptive neural network to determine
a matched filter that refines upon thetechnique. We will also
fuse the approaches examined in this paper with other sensor
data such as ground penetrating radar (GPR), infrared (IR), and
techniques using statistical decision theory [12]. It will also be
of interest to see how the technique can perform with other
sensory data such as GPR and IR. We will also make use of the
statistical data and ROC curves obtained in this paper to design
efficient robotic search strategies [14].
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