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Area-Based Results for Mine Detection

Erol GelenbeFellow, IEEE,and Task Kocak Member, IEEE

Abstract—The cost and the closely related length of time spent humber of false alarms is bound to be significantly greater than
in searching for mines or unexploded ordnance (UXO) may well the number of mines found in a given area. Hence, the cost and
be largely determined by the number of false alarms. False alarms the closely related duration of the search for mines may well

can result in time consuming digging of soil or in additional multi- -
sensory tests in the minefield. In this paper, we consider two area- be largely determined by the large number of false alarms that

based methods for reducing false alarms. These are: a) the pre- Will lead to unnecessary and time consuming digging of soil in
viously known “declaration” technique [8], [10] and b) the new the minefield. Thus, all sensors and algorithms need to address
6 technique, which we introduce. We first derive expressions and these important metrics.

lower bounds for false-alarm probabilities as a function of declara- There have been several studies of mine detection using statis-

tion area and discuss their impact on receiver operation character- tical method dinvolvina diff t including [11-17
istic (ROC) curves. Second, we exploit characteristics of the statis- {iC8 methods and involving different sensors, including [1]-[7],

tical distribution of sensory energy in the immediate neighborhood [12], [14]-[19]. In the case of the direct point-by-point exhaus-
of targets and of false alarms from available calibrated data, to tive detection and search for mines, which is directly related

propose theé technique, which significantly improves discrimina- - to the present work, current detection techniques do not pro-
tion between targets and false alarms. The results are abundantly ;4 sufficiently high performance results, especially in cases
illustrated with statistical data and ROC curves using electromag- h h inefield is heavily cl d19 ! 101, Indeed. |
netic-induction sensor data made available through DARPA [g] Where the minefield is heavily cluttered [9], [10]. Indeed, it can
from measurements at various calibrated sites. be expected that clutter will be prevalent in many minefield en-

. . . vironments, since the same areas will have been used by troops
Index Terms—Area-based techniques for detection, declaration, . y P

§ technique, detection of unexploded ordinance (UXO), electro- in the field (littering th? area with cans or.spent Ca.rtridgesf),-or
magnetic induction sensors, mine detection. simply because the minefields of interest in remedial demining
may be located in populated areas. Similarly, areas that con-
tain a lot of unexploded ordnance, such as firing ranges on or
|. INTRODUCTION close to military bases, will contain a variety of metallic objects
UTOMATIC mine detection and the detection of unexor other clutter which results from long term human presence.
ploded ordnance have become a subject of great impdihus, most technologies in use or that have been proposed for
tance, and a variety of sensors and processing systems have lde¢ecting land mine and unexploded ordnance (UXO) will typi-
proposed recently for mine remediation. A number of novehlly lead to high false-alarm rates, even at relatively low prob-
technical approaches to this major problem have emerged bagkitities of correct detection [8], [10]. Thus, the objective of this
on a variety of sensor technologies [9], [11]-[15], and the fielsearch is to develop technologies that provide accurate detec-
is now on the verge of significant scientific and technical develion of mines in cluttered environments, with acceptably low
opment. All approaches are based on the on-line or off-line &lse-alarm rates.
gorithmic processing of data from single or multiple sensors andin order to summarize the basic concepts related to mine de-
on data-fusion techniques that can take advantage of the compgstion, it may be helpful to consider the summary representa-
mentary characteristics of different sensors. In this framewottign of Table I. We see that if a mine exists at some location,
availability of multisensory data [8] from calibrated minefield¢he detector that visits that location will either correctly detect
(and from minefields that offer significant challenge to detedt or will miss it. On the other hand, if a mine does not exist at
tion algorithms) are particularly useful. the location being examined, either the detector will incorrectly
In remedial mine detection, which is primarily directed todetect a mine yielding a false alarm, or it will correctly indicate
ward an exhaustive removal of mines for humanitarian purpos#t it does not exist.
both the probability of correct detection of a mine and the prob- The minefield data we will use in this study is based on
ability of false alarm, are important performance metrics for anpeasurements provided by DARPA [8], with two different elec-
sensor or processing algorithm. The probability of detection imagnetic-induction sensor systems at a variety of geographic
important for obvious reasons. However, the probability of faldecations. This data has been collected in a series of systematic
alarm is also of major importance for simple reasons of cost. Thénefield-sensing experiments, which have been conducted at
multiple locations with a variety of sensors and implanted with
decoy mines and mine-like objects. The first sensing system
Manuscript received August 26, 1997; revised July 13, 1998. This work wag)nsidered is a Geonics EM61-3D three-component, time-do-
supported in part by the MURI on Demining, under U.S. Army Research Office _. . . . .
Grant DAAH04-96-1-0448. fmain sensor. It consists of a multichannel pulsed-induction
E. Gelenbe is with the School of Electrical Engineering and Computer S@ystem, having a 1-m square transmitter coil and three orthog-
ence, University of Central Florida, Orlando, FL 32816 USA (erol@cs.ucf.ediyng| 0.5-m receiver coils, which are positioned approximately

T. Kogak is with Mitsubishi Semiconductor America, Durham, NC 2770 .
USA (e-mail: tkocak@ee.duke.edu). 03m above the ground. The second system consists of a 0.5
Publisher Item Identifier S 0196-2892(00)00003-6. m Geonics EM61 pulsed-induction sensor equipped with two
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TABLE |
DIFFERENT EVENTS RELATED TO MINE DETECTION

Buried Mine Detected? Result
EXISTS YES CORRECT DETECTION
EXISTS NO MISSED TARGET
DOES NOT EXIST YES FALSE ALARM
DOES NOT EXIST NO CORRECT NON-DETECTION Ty

0.5

coplanar 0.5-m coils with a vertical spacing of 0.4 m. Th 0
sensor height above ground level is again approximately 0. 3"
Specifically, the data we will use represents the measureme
collected in a roughly 10« 100 square-meter area for four
different regions. In order to be consistent with data descriptio
we will use the following names for these regions, which wil
prove to have significantly different clutter characteristics, ¢
well as different target (decoy mine) locations. They will refer
to them as firing point (FP) 20, firing point (FP) 22, Seabe€jg. 1. Relative energy values measured at FP 20 site at 1 m resolution from the
and Turkey Creek. An example of EMI energy data is Shovifoilofthe Geonics EM61-3D sensor. Vertical lines show some mine positions,
on Fig. 1 for 1-m Z-Coil measurements obtained by DARP, ustrating the difficulty of detecting mines directly from measured energy.

[8]. The vertical lines simply indicate target locations and do

not represent energy values. The area that appears to have kmation of the sensor being used as data was registered. This
energy is simply an area for which we do not have any datdue to a variety of instrumentation and data-collection ef-
(e.g., it may not have been surveyed). Inspection of the figuiects, leading to errors in registering the sensor’s position as it
shows the significant amount of clutter in various areas and thiavels continuously across the minefield. Hence, we have fol-

relatively low energy levels at target locations. lowed a commonly accepted procedure suggested for using this
The EMI energy level we use is a derived quantity frordata, which is to register the mine locations by analyzing the
DARPA's raw data. energy levels near the approximate known mine locations. We

1) For 1-m data, the Geonics EM61-3D sensor data was c8fsume that if there is a mine at a particular point, then its im-
lected along survey lines spaced 1 m apart in the east Biediate neighbors should have lower energies. To give an idea
rection and at a rate of three samples per second, orchthis effect, two of the 5 mx 5 m regions that we examine are
approximately 0.4-m intervals in the north direction. Fophown in Fig. 2.
each measurement point, the instrument’s output is mea-
sured and recorded at 20 geometrically spaced time gates |[I. EFFECT OF"DECLARATION" ON FALSE ALARMS
covering a time range from 32@s to 32 ms. The energy AND ROC

level we use for each point is derived as follows: An established practice [8], [10] in processing minefield data

is the so-called process of “declaration,” which is based on the
E = Z X2(i) (1) simple remark that whenever a false alarm or a mine is de-
tected (i.e., whenever the sensor and detection algorithm says
“alarm”), anarea at and aroundhe position at which the signal
whereX (i) is the EM61-3D sensor output for tih time  was detected is thoroughly searched. This search will typically
interval. involve visual inspection and perhaps digging with specialized

2) The 0.5-m data was collected along survey lines spacgsls and probes, but also will often entail the use of other sen-
at 0.5-mintervals in the east direction and 0.2-m interva&grs. Thus, when an alarm occurs, an area that includes that point
in the north direction. For this data, the received signalis thoroughly checked out and all mines are found or no mines
absolute value from the Geonics EM61 is integrated frogye found (i.e., it was a false alarm). It is convenient to simplify
0.18 to 0.87 ms after each transmit pulse, resulting intRe area explored as being &arx h area centered at the point at
single data point” for each location. The energy levelwhich the detection occurred, whekds in an appropriate unit
for each point is then simply obtained As= Y. (e.g., in meters).

3) Because of the relative inaccuracy of the position mea-}, js taken to be an odd integer, so that the center point of
surements, the minefields considered are artificiallihe area is the location of detection. Because of the important
gridded on the basis of 1 nx 1 m blocks. All the effect declaration has on false-alarm rates, in this section, we
energy data is then mapped by averaging it onto this grigerive some bounds on false-alarm probabilities with declara-
Specifically, for both the 1-m and 0.5-m data, the energibn as compared to false-alarm probabilities obtained without
values are averaged on the 1 11 m block, which declaration.
contains the points where the values are measured. In practice, the choice of will depend on the search pro-

As mentioned earlier, a source of inaccuracy in the practica¢dure being followed in the field. Thus, several authors [10],

use of the data we employ in this study is related to the exd&2] present ROC curves for different sensors and processing
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Fig. 2. Energy profiles at two mine locations in the FP 20 site (left) and the Turkey Creek site (right).-@kis shows the measured Z-coil energy values.

algorithms for a range of values éfvarying betweerh = 1 Py, P,). Typically, we will have| N| >> |T| (i.e., we may have
(when the declaration procedure is simply not being used) tttousands of honmine points in a minefield, with perhaps 10
h =3, 5, 7. Notice that a 49-tharea may be considered to beor 20 mines). Ratios may be somewhat different if the targets
excessively large for a search around a presumed mine whendbeght are unexploded ordnance (UXO), but thg would
unitis in meters. However, when we are dealing with half-metstill be much larger tharl’|. The following results are only
grids for the minefield, an approximately 12%gearch area cor- valid for sensors or detectors that use point data and base their
responding td: = 7 might be a reasonable value to consider. decisions concerning the presence or absence of a mine or of
Whenever a mine or a false alarm is located at some pointa false alarm at a given poipton sensor output [call iE/(p)]
theh x h set of points4,,(p) centered ap will be considered to at that single poinp, rather than at its surroundings or in other
have been explored and will be removed from further considerreas. This differs from some of the algorithms that will be
ation concerning false-alarm rates. By “poipt'we mean some discussed later in this paper. Note that the following results
locationp = (z, y) in the minefield, assuming that the wholerefer to any given run of a detection algorithm on measured data
field has been discretized inx 1 unit squares, so that pointon a specific minefield. Thus, the probabiliti€$, (%), Pu (h)
(0, 0) would in fact refer to the square contained in the verticese simply the ratio of measured numbers
0, 0), (0, 1), (1, 0), (1, 1). Note that if some pointe A (p) Fh)

has been included previously in the declaration area of some P (h) = —=2, 2)
other pointy’ where a mine or false alarm has previously been |V
detected, theg should not be eliminated twice from the areas Pa(h) = % 3)
being scanned. In general though, it is of interest to have a the- ||

oretical understanding of how the procedure of declaration af- . .
fects ROC curves. However, the precise effech oih the ROC where F(h) is the number of false alarms, adi(h) is the

curves is particularly difficult to determine theoretically, sinciumber of correct detections counted with a declaration area of

it depends on the distribution of mines and of false alarms in t g h. All the following resuits concerning declaration (Propo-

field, and especially on their proximity to each other. An exa tions 1-3) assume tha_‘t th_e false-glar_m Benith 7 — Lis
computation of the effect df would have to make assumption omogeneous for all poingsin the minefield data. Our first re-
about the spatial statistics of targets and false alarms, and Wo?h'é‘) IS ition 1: Consid detector that onl dat
therefore be poor estimates of the results obtained with real data. roposcli |otn ’ .OtntS' erli\ g ectortha bon }[/tl:]setzs sensorc ata
Therefore, in this section we derive robust bounds, which do asured at a poiptto make decisions about that same point.

depend on statistical assumptions or on the nature of a partic 8} Py (h) be the false-alarm rate with dnx h declaration

minefield, for the impact that will have on the probability of area. Then a lower bound fdt;, (k) for any (odd-valued}: is

false alarm and the probability of correct detection. given by
Let us first develop some notation. Consider a minefield in |T| )
which the mine locations are denoted by the Betvhile the Py — W Pu(h)(R* =1)
nonmine points where the detector may declare a false alarm P (h) > 11 P2 = 1) . 4

(i.e., those points where the energy response to a sensor is

nonzero) are denoted by the $ét We write S = 7°U N and Comment: The total number of false alarms in the detection

|7, | V], | S| will be the sizes of the sets. L& (h), P (h) procedure id’(h) = Pri(h).|N|, and forh = 1, we write F’ =

be the probability of false alarm and the probability of corred®;.|NV|. P1(h) can be empirically determined as the number
detection, respectively, when a declaration area of/sizgeh is  of 1 m x 1 m grid points where false alarms are detected in the
used. Foh = 1 (i.e., with no declaration, these will be denotedvhole minefield, divided by the total area size of the mine field,
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when a declaration area of sizds used. Note that the number
of false alarms with declaration cannot exceed the number
false alarms witth = 1. Also, the maximum possible number
of false alarms in a declaration areg g — 1).

Proof of Proposition 1: The expected number of false
alarms in a declaration area i®i(h)(h? — 1), while
the expected number of targets detected in that area
Py1(R)(h? — 1). For each of thgN|P;(h) false alarms, on
the averageP;(h% — 1) are eliminated by the effect of the
declaration, since they would have been counted as false alar
with » = 1. However, they are not counted with anx h
declaration area. Therefore

0.9

0.8

e
~

o
»

o
P

Probability of Detection
o
o

|N|Pyi(h) = Pr|N| = |N|Pp(h).Pr(h* — 1) 03 A:h 1(é : Tr;e)
B Xp—
— |T| Py (R).Pr(h? — 1 5 B h=3 (Ex
| T Par(h).Pr( ) (5) oz Chzngxg))
where the second term on the right-hand side is the avera ok i ,?j;:{ﬂ(,’i’)‘p)
number of false alarms that are eliminated from the false alarr Efg qne)
with declaration, while the third term is the average number ¢ - (The)

false alarms that are eliminated by the targets detected with d¢ ¢ 001 o002 003 Prgl;g‘l‘)“ity%?ﬁalsgﬁgrm 007 008 003 01
laration. Dividing all terms in (5) byV|, we remain with

Fig. 3. Effect of declaration.
Ppi(h) = Py — Pr.Pp(h)(h* = 1)

7]

— Py (R).Pp(h* — 1) TN (6) false-alarm rates by making use of neighborhood or area
or [N information around each point visited during the search.
Consider again the energy measurements around two mine
7|
Py |1 = Py (R).(h* = 1) W locations shown in Fig. 2, where we see that the energy at the
Pri(h) > X702 = 1) . (7) mine location is higher than that at neighboring points. If this is
¢ (h? —

generally true of most mine locations, and if this property were
Q.E.D. Mmuch less frequent in nontarget areas, we would hold a very
BecausdN| > |T7, the simpler approximate inequality ~ 90od lead into a manner of reducing false alarms. In order to
see whether such an idea can be fruitfully pursued, we examine

P . . . _ .
Pu(h) > ! @) the following statistic of the Z-coil data from all of the measured

T 14 Pr(R?-1) sites with the electromagnetic induction (EMI) sensors
can be used, which has the added advantage of not requiring E(p) — E(p,)
knowledge ofPy (h). Dn(p) = — E@) (10)

In Fig. 3, we compare the lower bound provided by (8) with
empirical false alarm probabilities obtained with various valuegherep is any point in the minefield£(p) is the EMI energy
of k for a specific set of data from [8] on the FP 20 Site. We ollevel measured by the Z-coil at poipt and F(p,,) is the en-
serve that the resulting ROC curves which use the lower bouretgy level of an immediate neighbor (there are eight of them) of
of Py (h) are, as one would expect, optimistic with respect tthe pointp. D,,(p) in (10) is relative to the center-point energy
real data. An upper bound to the false alarm probabilities witi(p), so as to generate relative rather than absolute values. We
declaration would also be quite useful. call D,, the “local relative energ.” Notice thd®,,(p) < 1, but
Notice that if the false-alarm probability in the vicinity of athat it can take unbounded negative values. We notel?hép)
false alarm that has been discovered is different figniike a is a quantity related to some specific neighlbaof point p, so
valueP; that may occur when false alarms are highly correlatebat no averaging over the eight neighborspas implied in
spatially, then the lower-bound formula (8) becomes (10). The local relative energy is a derived statistic we intro-
duce, while the energy measurements themselves are available
Ppi(h) > L (9) inthe data from the DARPA clutter experiment. Note that each
1+ Pr.(h? = 1) pointp gives rise to eight distinct values that appear in these his-
tograms.
Measured histograms d?,,(p) for all p that are mine and
nonmine locations for all available data are shown in Figs. 4-7.
False alarms are the major source of needless time expAfso, these histograms all relate to the same set of mines that are
diture in the search for mines. Thus, significant reductiorsstificially planted in them in the same relative positions and at
of false-alarm rates are very valuable. In this section, vamproximately the same depth. Thus, the differences in the en-
will propose and evaluate a method that significantly reducegyy statistics of different sites are a result of the clutter and soil

IIl. AN AREA-BASED DETECTOR THE é TECHNIQUE
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FP20 Zcoil Relative Histogram for Mines FP 20 Zcoil Relative Histogram for Nen-Mines
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Fig. 4. Relative histogranmyfaxis is the probability) of local relative energy of all mine (left) and nonmine (right) locations for FP 20.
FP 22 Zcoil Relative Histogram for Mines FP 22 Zcoil Relative Histogram for Non-Mines
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Fig. 5. Relative histogranmyfaxis is the probability) of local relative energy of all mine (left) and nonmine (right) locations for FP 22.

characteristics. The clutter is a result of naturally occurring ef- 2) Select a numberm = 1, ---,

fects, as well as of various objects that may be present in the

minefield without anyone’s explicit knowledge. For instance,

8. For eachp in H(6),

count the number of immediate neighbdts whose en-
ergy value is strictly less thali(p), and call itM (p). No-

each of these areas has been actively used in the past as firing tice thatd (p) < 8. If M(p) > m, classifyp as a mine.
ranges, training areas, etc. Therefore, the areas will contain de-

Otherwise, treat it as a nonmine.

Clearly, mary thus

classified as mines will turn out to be false alarms.

bris from previous usage, which will contribute in some random
fashion to the clutter.

From these histograms, we always notice an accumulation
point close to the valu®,,(p) = 1, which corresponds to the because of the very significant clutter-rejection capabili-
case inwhich the neighboring points to pgireixhibit very small ties of these parameter settings, as shown in Fig. 8.
relative energy. Otherthanthat, we notice avery markeddifferencerhe effect of thes technique on false alarms is illustrated in
between histograms at mine locations compared to histogramgigf. 8 as a function of the energy threshélaf the detector.
other points. At mine locations, most of the neighboring energys the actual value of increases, the percentage of false
values are smaller thangtso thatD, (p) is positive most of the alarms rejected will vary from a low value of 10% to a
time. However, at nonmine locations, the distribution of energi@sgh value of 85%. Thus, thé technique will significantly
isquasi-equal oneitherside ofthe energy valyge at impact the ROC curves of an energy detector by reducing

These observations provide us with a simple but very usetie false-alarm rates. Fig. 9 shows the ratio of false-alarm
improvement on the energy detector, which we shall calhﬁtheprobab"mespé( )/Ps1(h) for the two extreme casds= 1
technique, wheré is used to denote “difference,” (no declaratlon) anfl = 7 atthe FP 20 Site, as a function of the

1) For any selected threshold energy leieselect all data energy threshold). The significant reduction in false-alarm

pointsp where the Z-coil EMI energg(p) > 6. Call this probabilities is present even with a very large declaration
setH(9). area. We observe the same effect on all the other sites but

3) We will say thatt = m /8 (and in practice for many of our
numerical examples we have selectee: 7/8 or 8/8),
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Seabee Zcoil Relative Histogram for Mines Seabee Z coil Relative Histogram for Non-Mines
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Fig. 6. Relative histogramyfaxis is the probability) of local relative energy of all mine (left) and nonmine (right) locations for Seabee.

Turkey Creek Z coil Relative Histogram for Mines Turkey Creek Z coil Relative Histogram for Non-Mines
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Fig. 7. Relative histogramyfaxis is the probability) of local relative energy of all mine (left) and nonmine (right) locations for Turkey Creek.

do not report all of the curves in this paper because of spameergy threshold, with and without theS-technique, respec-

limitations. tively
The ROC curves in Figs. 10 and 11 summarize the effect of s P3(h,6)
theé technique withY = 8/8 as compared to the simple energy o(h) = m (12)
detector for 1-m and 0.5-m Z-Coil data from the FP 20 Site. In A
these figures, the indicator “Theta” is used for the pure-energy Py(h,0)
detector. Very significant performance improvements are evi- Re(h) = W (13)

dept ,WithOUt declaration. A5 .incregses-tdclz 3 h =5 (the, In order to illustrate the kind of improvement to be expected,
gain introduced by thé_ technique) is still significant, but it is on Fig. 15 we plot the ratio&s () andR3 (1) for the FP 20 1-m
reduced, as seen in Figs. ,12_14' ) 7-coil data without declaration, as a function of the energy de-
_ Further detailed evaluations of thigechnique are presentedig or's threshold. This clearly shows the improvement offered
in Figs. 17-20, where, rather than tracing ROC curves for €360 s technique. On the other hand, the plot in Fig. 16 for 7
different value ofk, we have plotted the relative quality of the " yac1aration (i.er = 7) for the same data shows that the gain

technlque with respect t? the energy detgc,t'or. The measure g expected from th&technique is significantly reduced for
use in these plots is thé improvement ratio this large value of.

s In Figs. 17-20, we present in a compact form the
Re(h)_ (11) dimprovement ratioQ;(h) for all the available 1-m Z-coil
Ry(h) data from all sites (FP 20, FP 22, Seabee, and Turkey Creek,

respectively) as a function of the threshold of the energy
Here,RS,.,,(h) and Ry, (h) are the ratios of detection to thedetectoré and of the declaratioh. Only threshold values for
false-alarm probability, with declaratidnas a function of the which the probability of correct detection exceeds 0.8 are con-

Qp(h) =



18 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 1, JANUARY 2000

FP 20 Z coil w/o declaration

100
90 -
80 Delta=8/8 e
Delta=7/8

70 Delta=6/8 i
g Delta=5/8
g Delta=4/8
2 50 .
1 : ; Delta=3/8
2 : ; I § : ———  Delta=2/8
g 50k - R Lo LA :-'.5 .......... L PR OA——A Delta=1/8 -
PN . "l . .
@ . : LA . , . . .
T . : L : . ‘ . , ;
.‘LI: 40_ ........ ......... .......... .......... .......... .......... .......... .......... AAAAAAAA =
R

0
0 100 200 300 400 500 600 700 800 900 1000
Theta / 10000

Fig. 8. Percentage of false alarms rejected, to total false alarms, with the delta technique, for values of delta running from 1/8 to 8/8. Thiw idftarinaan
FP 20 with Z-Coil 1-m measurements with= 1. For this data, Theta values less than 450 correspond to a probability of correct detection higher than 0.8.
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Fig. 9. Ratio of false alarm probability with tiietechnique to FA with only the energy detector for FP 20 using 1-m Z coil ivith 1 (left) andh = 7.

sidered to avoid presenting irrelevant data. We see that eventfat decisions concerning a point are based only on the
declaration areas of 7 m 7 m, improvements are significant.statistics at that point. However, we have just described a
For smaller values ok (1, 3, 5 m), the improvements obtainechew detection algorithm that makes use of the shape of the

by theé technique are indeed very significant. energy curve at each point and in an area surrounding that
_ . point. Therefore, it is of interest to evaluate the impact of
A. Effect of Declaration on thé Technique declaration in this case

The bounds and approximations we previously derived, Consider an algorithm that bases its decisions concerning
which describe the effect that declaration of @anx i target detection at some poiptbased on the fact that the en-
area will have on the receiver-operating curves, assur@kgy levelsintheA x A square centered atare strictly lower
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Fig. 10. ROC curves for FP 20 using the measurements of 1-m Z coil without declaration in linear and logarithmic scale.
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Fig. 11. ROC curves for FP 20 using the measurements of 0.5-m Z1 coil without declaration in linear and logarithmic scale.
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Fig. 12. ROC curves for FP 20 using the measurements of both 1-m (left) and 0.5-m (right) Z coil wighd&claration in logarithmic scale.

than the energy level at Clearly, A in general needsto be an Leth > A, sinceh < A is of no practical interest. Again,

odd integer. In the results presented above forétbechnique, proceeding by means of the total number of false alarms with
we have used\ = 3. declaration, assuming that false-alarm rates are uniformly the
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Fig. 13. ROC curves for FP 20 using the measurements of both 1-m (left) and 0.5-m (right) Z coil wihdgclaration in logarithmic scale.
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Fig. 14. ROC curves for FP 20 using the measurements of both 1-m (left) and 0.5-m (right) Z coil withdéclaration in logarithmic scale.

same across the minefield (including around any detected falséroposition 2: A lower bound for the effect of declaration

alarm), and using thé technique, we have on the false-alarm probability for thietechnique is given by
N| Pe
PIWIN > PfIN| = PRIN| i) [n2 = a2) Y] Py > ] 15
f NI PP 1 = & g P02 e sy 9
_ Pg(h)|T|(h2 _ A2)m (14) If false-alarm rates around detected false alarms are different
|5 (e.g., because of area-based correlations) from the average false-

wherePJ‘?(h) is the probability of false alarm of thetechnique alarm rate across the minefield, then we can use the following
with declaration,PJ? is the corresponding probability withoutinequality:

declaration, and the inequality expresses the fact that since each s
of the points in theA x A-sized area around each false alarm Po(R) > i Iy (16)
at pointp have lower energy thap, they will not in any case Y=g PJ‘E(h2 — A?)

(with or without declaration) be considered candidates for false X
alarm. Thus, the saving of the number of false alarms aroumMerePJ‘? is the false-alarm rate in the immediate vicinity of a

each point cannot exceeth? — A?). This immediately leads false alarm that has been discovered with the area-based detec-
to what is described in the following section. tion technique.
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Fig. 15. Ratio of detection to false alarm probabilities for FP 20 as a function of energy detector threshold without declaration.
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Fig. 16. Ratio of detection to false alarm probabilities for FP 20 as a function of energy detector threshold with (very large) 7-m declaration.

I[V. CONCLUSIONS mines. This method can also be useful in the search for

unexploded ordnance. It is based on the use of measured

In this paper, we have introduced a method called &heelectromagnetic-induction energy response at and around
technique, for reducing false-alarm rates in the detection tafrgets.
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Fig. 17. Delta improvement ratio as a function of energy threshold and declaration at FP 20 Site with 1-m Z coil data.
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Fig. 18. Delta improvement ratio as a function of energy threshold and declaration at FP 22 Site with 1-m Z coil data.

We have also considered the effects of “declaration,” whidxamined in the process of search. A declaration area is consid-
is used to take into account that immediate neighborhoodseréd to be ah x h-unit area centered around the location of the
false alarms or of detected targets should not be consideredaaget or of the false alarm [8], [10]. We derive a lower bound
contributing further false alarms, since they will be thoroughlior false-alarm probabilities as a function /of
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Fig. 19. Delta improvement ratio as a function of energy threshold and declaration at Seabee Site with 1-m Z coil data.
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Fig. 20. Delta improvement ratio as a function of energy threshold and declaration at Turkey Creek Site with 1-m Z coil data.

We have studied the statistical distribution of energy in trederably reduces the false-alarm rate by filtering out potential
immediate neighborhood of targets and of false alarms from cédise-alarm locations whose neighbors’ measured-energy levels
ibrated data. The observation of specific characteristics of tHe not have the characteristics of target neighborhoods. The
difference in energy levels in the neighborhood of the two popeduction obtained in false-alarm rates, and the improvements
ulations has led us to th&technique. This new method con-in ROC curves with the technique, are illustrated with nu-
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merous empirical results using data which has been made avaiji-4]
able through DARPA [8].

Future work will use an adaptive neural network to determing, 5;
a matched filter that refines upon theéechnique. We will also
fuse the approaches examined in this paper with other sensor
data such as ground penetrating radar (GPR), infrared (IR), ar{1 ]
techniques using statistical decision theory [12]. It will also be
of interest to see how thé& technique can perform with other
sensory data such as GPR and IR. We will also make use of tI%ﬂ
statistical data and ROC curves obtained in this paper to design
efficient robotic search strategies [14]. (18]
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