
 Kocak, T., Seeber, J., & Terzioglu, H. (2003). Design and implementation of
a random neural network routing engine. IEEE Transactions on Neural
Networks, 14(5), 1128 - 1143. 10.1109/TNN.2003.816366

Link to published version (if available):
10.1109/TNN.2003.816366

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TNN.2003.816366
http://research-information.bristol.ac.uk/en/publications/design-and-implementation-of-a-random-neural-network-routing-engine(55618a7e-ebee-4465-b6ce-77269f966342).html
http://research-information.bristol.ac.uk/en/publications/design-and-implementation-of-a-random-neural-network-routing-engine(55618a7e-ebee-4465-b6ce-77269f966342).html

1128 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Design and Implementation of a Random Neural
Network Routing Engine

Taskin Kocak, Jude Seeber, and Hakan Terzioglu

Abstract—Random neural network (RNN) is an analytically
tractable spiked neural network model that has been implemented
in software for a wide range of applications for over a decade.
This paper presents the hardware implementation of the RNN
model. Recently, cognitive packet networks (CPN) is proposed
as an alternative packet network architecture where there is
no routing table, instead RNN based reinforcement learning is
used to route packets. Particularly, we describe implementation
details for the RNN based routing engine of a CPN network
processor chip: the smart packet processor (SPP). The SPP is a
dual port device that stores, modifies, and interprets the defining
characteristics of multiple RNN models. In addition to hardware
design improvements over the software implementation such as
dual access memory, output calculation step, reduced output
calculation module, this paper introduces a major modification
to the reinforcement learning algorithm used in the original CPN
specification such that the number of weight terms are reduced
from 2

2 to 2 . This not only yields significant memory savings,
but it also simplifies the calculations for the steady state probabil-
ities (neuron outputs in RNN). Simulations have been conducted
to confirm the proper functionality for the isolated SPP design as
well as for the multiple SPP’s in a networked environment.

Index Terms—Network processors, neural network, packet
switched networks, random neural networks.

I. INTRODUCTION

A S the Internet continues to expand in number of users,
servers, IP addresses, and routers, the IP based network

must evolve and change. There is a strong demand for novel
routing architectures that can provide more efficient and robust
service to the Internet constituents. Thecognitivepacketnetwork
(CPN) was proposed as an alternative to the IP based network
architectures [1], [2]. CPN attempts to solve some of the
problems associated with the legacy IP networks, such as QoS,
the never-ending expansion of routing tables and their related
maintenance issues.The rapidexpansionofnetworkapplications
and data traffic is also leading to new specialized processor
designs that would keep up with the growing field of networking
andcommunications.Network componentdesignbecomesmore
challenging as the performance and usage of communication
networks increase. To meet the rapidly changing requirements
such as performance, cost, flexibility, and interoperability; the
networking industry has opted to build products around network
processors (NPs) [9], [10]. The NP market grows rapidly as
the driving force for faster, more powerful network products

Manuscript received September 13, 2002; revised March 14, 2003 and April
30, 2003.

The authors are with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL 32816 USA (e-mail:
tkocak@cs.ucf.edu).

Digital Object Identifier 10.1109/TNN.2003.816366

increase. This year the NP market is to reach $231 million
but in four years it is estimated to reach $7.2 billion [3]. This
is probably the reason that network processing is the fastest
growing field in the networking industry.

The applicability of the CPN concept has been demon-
strated through several software implementations [1], [2], [11].
However, higher data traffic and increasing packet processing
demands require the imlementation of this new network archi-
tecture in hardware. The primary motivation for this study is
the design and implementation of a prototype CPN router. The
research presented within this paper is the initial work toward
the realization of this goal. Specifically, this work identifies
key functionalities of the CPN router and the elements that will
implement them. The complete specifications for one com-
ponent, called the smart packet processor (SPP), are derived
and a design is implemented. The SPP is a dual port device
that stores, modifies, and interprets the defining characteris-
tics of multiple random neural network (RNN) models. RNN
has been proven to be successful in a variety of applications
[6] for more than a decade; however, it has not been imple-
mented in hardware before. In addition to reporting the first
RNN hardware implementation, this paper introduces a major
modification to the reinforcement learning algorithm used in
Gelenbeet al.’s paper [1] such that the number of weight terms
are reduced from to . This not only yields significant
memory savings, but it also simplifies the calculations for the
steady state probabilities (neuron outputs in RNN).

The rest of the paper is organized as follows: In the following
subsections, we review the cognitive packet network and the
random neural network. Section II introduces the initial design
approaches for the CPN network processor. Smart packet pro-
cessor design is presented in Section III. Circuit implementation
details are also given in this section. Section IV discusses the
system-level integration and verifies the operation of the SPP
in a networked environment. The paper ends with some conclu-
sions and directions for future work.

A. Cognitive Packet Network

The CPN is a store and forward architecture that achieves
intelligent QoS based routing by employing “smart or cogni-
tive” packets. The CPN uses three different types of packets:
smart packets, dumb packets, and acknowledgment packets. The
dumb packets carry payload (the user’s data) and are source
routed by applying routing information generated from the ex-
periences of the smart packets. Smart packets are sent out con-
tinuously to search for routes to a destination. Before a particular
flow of dumb packets can be transmitted, the route information
for the QoS class must be available at the source. If it is unavail-

1045-9227/03$17.00 © 2003 IEEE

KOCAK et al.: DESIGN AND IMPLEMENTATION OF AN RNN ROUTING ENGINE 1129

able, the source node will create and dispatch smart packets to
determine routes to the selected destination for the required QoS
class. As the smart packets propagate through the network, they
collect measurement data with regard to link quality. Acknowl-
edgment packets carry back this measurement data, depositing
it at the CPN routers as they travel the reverse route of the smart
packets. The original source node uses the data to establish a
route for the dumb packets. The CPN router acts as a buffer for
packets, as a storage area for mailboxes (MBs) where acknowl-
edgment packets deposit measurement data, and as a processor
for packets. It receives packets via a finite set of ports and stores
them in an input buffer, where sorting based upon QoS require-
ments may occur. It forward packets to other nodes via output
buffers, and runs the algorithm used to make routing decisions
concerning smart packets. Contrary to a conventional IP router,
a CPN router does not maintain a routing table. The routing de-
cisions in a CPN router rely upon a learning algorithm. Previous
attempts to incorporate learning algorithms and adaptation into
packet networks have been insufficiently researched due to the
lack of practical mechanisms. CPN routers execute a reinforce-
ment learning algorithm in order to select the output link for
smart packets. Dumb and acknowledgment packets are source
routed with their routes stored within the packets themselves.
The reinforcement learning algorithm that smart packets rely on
is based on a QoS “Goal”. The term “Goal” is used to indicate
that there is no QoS guarantee rather there is a best effort attempt
to satisfy the QoS objective. The smart packets act as network
explorers. They travel through the network, finding routes and
collecting data. The measurements and the path traveled by the
packet are stored in its Cognitive Map (CM). When the smart
packet arrives at its destination router, the router generates a
corresponding acknowledgment packet. The acknowledgment
packet inherits the smart packet’s source as its destination. In
addition, the smart packet’s CM is inverted and stored as the ac-
knowledgment’s CM. As the acknowledgment travels through
the network, routers will reference its CM to find out where to
send it next. Thus, the acknowledgment packet is source routed,
following the inverse route of the smart packet that initiated it.
Before the routers forward the acknowledgment to its next hop,
they will read the relevant measurement data from its CM. In
the reinforcement learning algorithm, the observed outcome of
a decision is used to “reward” or “punish” the routing algo-
rithm with respect to that decision. The “Goal” is the metric
that characterizes the success of the outcome, such as packet
travel time or transit delay. As an example, the QoSgoal (G)
that smart packets pursue may be formulated by as minimizing
transit delay(W), loss probability(L), jitter, or some weighted
combination, for instance

(1)

where and are constants selected by the application layer
which signify the relative importance of the delay and loss for
this particular application’s QoS. The reinforcement learning
algorithm for CPN routing uses a fully recurrent neural network
model to ensure that all decision variables are mutually related.
In order to ensure the convergence of the algorithm, the CPN

Fig. 1. Representation of a neuron in the RNN.

model employs the random neural network. The internal state
of the RNN is a unique solution for any set of weights and input
variables.

B. RNN Model

To establish intelligence based routing, the CPN employs the
RNN model by Gelenbe [4], [5], [7]. The RNN is an analyti-
cally tractable spiked neural network model that has been im-
plemented in a wide range of applications. The function of the
RNN in the CPN model is to capture the effect of the unpre-
dictable network parameters and convert it into a routing deci-
sion. In the random neural network model, signals in the form of
impulses which have unit amplitude travel among the neurons.
Positive signals represent excitation, whereas negative signals
represent inhibition to the receiving neuron. Thus, an excitatory
impulse is interpreted as a “ ” signal, while an inhibitory im-
pulse is interpreted as a “ ” signal. Each neuron has a state

, which is its potential at time, represented by a nonneg-
ative integer.

When the potential of neuronis positive, it is referred to as
being ‘excited’, and it can transmit impulses (fire). The impulses
will be sent out at a Poisson rate, with independent, identical
exponentially distributed interimpulse intervals. The impulses
transmitted will arrive at neuron as excitation signals with
probability , and as inhibitory signals with probability . A
neuron’s transmitted impulse may also leave the network with
probability , therefore, . To make
these probabilities easier to work with, let , and

; then firing rate of neuron , is .
The matrices can be viewed as being analogous to the synaptic
weights in connectionist models, though they specifically repre-
sent rates of excitatory and inhibitory impulse emission. Since

1130 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Fig. 2. CPN network processor architecture.

the matrices are formed through a product of rates and prob-
abilities, they are guaranteed to be nonnegative. Exogenous ex-
citatory and inhibitory signals, meaning those arriving to the
neuron from a source outside of the network, also arrive to
neuron at rates and , respectively. These are analogous to
the input received by the input neurons in a connectionist model;
again however, they represent rates.

Fig. 1 shows the representation of a neuron in the RNN using
the model parameters that have been defined above. In this
figure, only the transitions to and from a single neuronare
considered in a recurrent fashion. All the other neurons can be
interpreted as the replicates of neuron.

At this point, it is necessary to consider the dynamics of the
random neural network model by analyzing the possible state
transitions. Within a time interval of , several transitions can
occur which change a neuron’s state .

• The potential of a neuron will decrease by one when-
ever it fires, regardless of the type of the signal emitted (ex-
citation or inhibition). Also, when an exogenous inhibitory
signal arrives from outside the network to neuron, its po-
tential drops to at time . Moreover, neuron

might receive an inhibitory impulse from another neuron
, whose effect will again be to decrement the value of

at time by one.
• Arrival of an exogenous excitatory signal from outside,

or an excitatory impulse from another neuron within the
network will result in incrementing the neuron potential
by one, yielding .

• Needless to say, the value ofth neuron’s state remains un-
changed when none of the events described above occur.

In the case whenself-inhibition is allowed, the value of the
neuron’s state can drop by two units in a single time step,
however this case will not be considered in the following
expressions. Also in this model,self-excitationis not of in-
terest because in its presence, the potential of the neuron may
increase without bound which would lead to instability. There
are also some boundary conditions which prevent some of the
transitions from occurring. First of all, a neuron can fire only
when it has a positive potential as explained above. Second,
when the neuron has a potential of zero, the arrival of new
inhibitory signals does not decrease its value further. All of
these constraints will be unified in a single expression when
the state transitions are expressed in mathematical form.

Let be the vector of signal potentials
at time , and be a particular value of the vector,
and lets define the probability . The
behavior of the probability distribution of the network state can
be derived through the following equations. Since is
a continuous time Markov chain, it satisfies an infinite system
of Chapman-Kolmogorovequations.

(2)

KOCAK et al.: DESIGN AND IMPLEMENTATION OF AN RNN ROUTING ENGINE 1131

where

if x is true
otherwise

For steady state analysis, let denote the stationary proba-
bility distribution which is equal to if it
exists. Thus, in steady state, stationary probability distribution,

, must satisfy the global balance equations

(3)

The stationary probability distribution associated with the
model is the value which will be taken to be the output of the
network, and is given by

(4)

which reduces to the form

(5)

where the for satisfy the system of
nonlinear simultaneous equations

(6)

To put (5) into words, the steady state probability that the neuron
is excited is simply equal to the ratio of the sum of all the rates

of arriving excitatory signals to the sum of the rates of arriving
inhibitory signals together with the firing rate of that particular
neuron.

C. Reinforcement Learning for the RNN

There are different learning algorithms that may be applied
to the random neural network model. The gradient descent al-
gorithm has been used with feed-forward topologies in many
applications [6]. This algorithm has two distinct modes: offline
training and online execution. For the gradient descent algo-
rithm to be implemented, the RNN output vectors need to be
known a priori and provided during the training mode. This
requirement is not compatible with needs of the CPN, where
the dynamic network parameters will preclude offline predic-
tions. RNN-based Reinforcement Learning (RNNRL) applies
the methodology described below [8]. Given some goalthat
the SP has to achieve as a function to be minimized, we formu-
late a reward that is simply . Successive measured
values of the are denoted by . These are first
used to compute a decision threshold

(7)

where is some constant , typically close to 1.
Now consider a closed RNN with as many neurons as decision

outcomes. Let the neurons be numbered . Thus for any
decision , there is some neuron. Decisions in this reinforce-
ment learning algorithm are made by selecting the decision
for which the corresponding neuron is the most excited, i.e., the
one with the largest . Note that theth decision may not have
contributed directly to theth reward because of time delays
between cause and effect. Suppose that theth decision corre-
sponds to neuron, and that we have measured theth reward

. Let us denote by the firing rates of the neurons before
the update takes place. We first determine whether the most re-
cent value of the reward is larger than the previous “smoothed”
value of the reward that we call threshold . If that is the
case, then we increase very significantly the excitation weights
going into the neuron that was the previous winner (in order to
reward it for its new success), and make a small increase of the
inhibitory weights leading to other neurons. If the new reward
is not better than the previously observed smoothed reward (the
threshold), then we simply increase moderately all excitatory
weights leading to all neurons, except for the previous winner,
and increase significantly the inhibitory weights leading to the
previous winning neuron (in order to punish it for not being
very successful this time). This is detailed in the algorithm given
below. We compute and then update the network weights as
follows for all neurons:

If

(8)

else

(9)

Then we renormalize all the weights by carrying out the fol-
lowing operations, to avoid obtaining weights that indefinitely
increase in size. First for each, we compute

(10)

and then renormalize the weights with

(11)

Finally, the probabilities are computed using the nonlinear
iterations (5) and (6), leading to a new decision based on the
neuron with the highest probability of being excited.

II. CPN NETWORK PROCESSORDESIGN

All network processors require the ability to manage their
input and output packet flows. Specifically, the CPN router,
which houses the CPN network processor, will require the
ability to classify packets by their type so they may be for-
warded to their proper processing units (see Fig. 2). In addition,
the buffer management will need to implement priority sorting
based upon QoS requirements. Since dumb packets are source
routed, the controller associated with forwarding these packets
should be one of the simpler designs. The dumb packet switch

1132 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

will need to search the packet’s CM and find the local router’s
address. The next address in the CM will also be the next hop
for the dumb packet. With this information, the switch will then
assign the packet to the corresponding output port.

As previously stated, the mailbox is where acknowledgment
packets deposit the relevant data measurements they are car-
rying. In our hardware design, the mailbox is also responsible
for calculating the reward value from the measurement param-
eters. Next, it must forward the reward value to a component
that incorporates the RNN with reinforcement learning. In the
meantime, the acknowledgment packet needs to be transmitted
to its next hop in its path. Since the packet is source routed, the
mailbox can feature a design similar to the dumb packet switch
exclusively for use by the acknowledgment packets. The system
controller has many responsibilities such as

• configuration control of CPN components;
• determining/verifying port connections with adjacent

routers;
• classification of packets based upon type (i.e., smart,

dumb);
• forwarding packets to appropriate routing component.

A. Smart Packet Processor Design Considerations

The function of the Smart Packet Processor (SPP) is to deter-
mine the outgoing port for arriving smart packets based upon
its QoS, source and destination parameters (QSD). In accor-
dance with the CPN model, the SPP needs to employ the RNN
model with the reinforcement learning algorithm to make its de-
cisions. The reinforcement learning algorithm requires the re-
ward value calculated with the data from the acknowledgment
packets. Therefore, the SPP, shown in Fig. 3, is a convergence
point for the flow of both smart and acknowledgment packets.
To meet its requirements, the SPP needs to interface with two ex-
ternal structures: the acknowledgment mailbox and the system
controller. The ideal design allows simultaneous transactions
between these components. The system controller waits for the
SPP output to forward smart packets. On the other hand, the ac-
knowledgment mailbox is merely a receptacle for the data mea-
surements within the acknowledgment packets. Therefore, the
priority of the SPP design must be the servicing of the smart
packets.

B. Preliminary Router Configuration

A basic CPN router, shown in Fig. 4, has been implemented to
conduct preliminary system level simulations. The primary ob-
jective of the device is to enable the testing of the functionality
of the SPP on a system level. Furthermore, the design allows for
the future addition of other CPN router components. There are
several requirements and assumptions for the architecture.

• The design must be modular and flexible to allow for var-
ious network topologies to be implemented and tested.

• The characteristics of the links between the routers must
be configurable. There need to be methods for simulating
the effects of congestion and broken links.

• The propagation and processing of acknowledgment
packets is fundamental to analyzing and assessing the

Fig. 3. Interfacing the smart packet processor with other components.

Fig. 4. Router architecture for system level integration.

Fig. 5. Composition of the smart packet processor.

functionality of the SPP. Therefore, the design must
generate and transmit the acknowledgment packets.

• Simplified network communication schemes will suffice
for this initial testing phase. Since the link characteris-
tics will be manipulated by external control, the inter-
router communications are only required to be reliable and
practical.

• Input and output queue management issues will not be
tested or analyzed in this work.

• Dumb packet production and propagation will not be ad-
dressed during this initial testing evolution.

Several design options were considered to satisfy the
requirements. The solution that has been implemented uses
unidirectional data paths in its network communication scheme.

KOCAK et al.: DESIGN AND IMPLEMENTATION OF AN RNN ROUTING ENGINE 1133

Fig. 6. SP interface state machine.

Fig. 7. RL algorithm state machine.

Each router is equipped with both input and output port con-
trollers that enable duplex links to other routers. Each link
is capable of being disconnected and reconnected during the
simulation. During previous software simulations, link status
was primarily defined by packet transit times. As a smart
packet left router , router would place a timestamp in its
cognitive map. When the smart packet reached its destination,
the timestamp would be written into the cognitive map of
the corresponding acknowledgment packet. Finally, as the
acknowledgment returned through router, the timestamp
would be read and the packet transit time would be calculated.
This time would be converted into a reward value in order to be
submitted to the reinforcement learning algorithm. The block
diagram of the completed smart packet processor design is
shown in Fig. 5. It consists of four different components: the
smart packet interface, the reinforcement learning algorithm,
the neuron array, and the weight storage table. The SP interface
is externally connected to the system controller while the RL

algorithm receives control from the acknowledgment mailbox.
As seen in the figure, both components have data and control
paths to the weight storage table. The table is a complex dual
port memory structure that stores the RNN weights, thresholds,
outputs and QSD indexes. Lastly, the neurons are controlled
by the RL algorithm and are used to calculate the steady state
output of the RNN.

III. SMART PACKET PROCESSORDESIGN

A. Smart Packet Interface

When requested, the SP interface provides an output port
number to the system controller. A high level state diagram for
the SP interface is shown in Fig. 6. Following a reset, the SP
interface idles until it receives the start signal from the system
controller. At the same time, the system controller is providing
the QSD parameters to the weight storage table. The SP inter-
face directs the table to perform a search upon these parameters.

1134 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

TABLE I
WEIGHT MATRIX AFTER REWARD SCENARIO

TABLE II
WEIGHT MATRIX FOR RATE CALCULATION

If the table returns a hit, then the SP interface reads in the port
numbers that are being provided by the table. In the event of
a miss from the search, the SP interface randomly assigns the
port numbers. If the primary port number is either disconnected
or in the direction from which the smart packet came, then the
SP interface will select the secondary port number and so on. If
all other ports are disconnected, then the incoming port number
will be selected. Finally, the port number is output to the system
controller as the done signal is asserted.

B. Reinforcement Learning Algorithm Component

The high level state diagram depicted in Fig. 7 represents the
RL algorithm component. Similar to the SP interface, this com-
ponent waits for a start signal generated by the acknowledgment
mailbox. With it signals for a start, the MB also applies the QSD
parameters to the search index of the weight storage table. The
RL component initiates a search on the table and waits for a re-
sponse. If present, the table will return the weights and threshold
of the desired RNN model. If the RNN isn’t found, then the RL
algorithm will instantiate a new one with the default initializa-
tion values.

In accordance with Fig. 5, the MB also provides the RL
component with the incoming port number of the associated
acknowledgment and the reward value calculated from the
measurement data. The RL component compares the reward

value with the threshold to determine whether the previous
decision, identified by the incoming port number, will be
rewarded or punished. At this point, the new values for the RNN
weights and threshold can be calculated. Next, the weights are
delivered to the neurons, where the steady state probabilities are
calculated over several iterations. Once they are obtained, the
probabilities are sorted and the identification numbers (i.e., the
corresponding port numbers) of the neurons with the highest
probabilities are noted. Using the port number rather than the
actual value saves in both storage area and processing time for
the SP interface. The final step is to update the weight storage
table with the new weights, threshold, and output decisions.

C. Neurons

The original CPN model specifications required weight
terms for each RNN, whereis the number of output links/neu-
rons. So, in a 32-port CPN router, each RNN would need to
store and manipulate 2048 weight terms. Furthermore, multiple
RNN models are needed to represent the different QSD pairs
that are active in the router. The hardware design needs to be
flexible and easily scalable, therefore, ways to minimize the
number of weight terms are investigated. Consider a 4 neuron
fully connected implementation with neurons 1 through 4. Sup-
pose neuron 1 was the last decision made by the network. An ac-
knowledgment packet is returned and the neural network will be

KOCAK et al.: DESIGN AND IMPLEMENTATION OF AN RNN ROUTING ENGINE 1135

(a)

(b)

Fig. 8. (a) Neuroni. (b) Neuroni after weight term reduction.

rewarded for making a good decision. If the weights are grouped
together based upon destination (i.e., neuron 1) and type (ex-
citation or inhibition), then it can be seen that all the weights
of a group will have the same value. As shown by Table I, the
excitation weights leading to neuron 1 are all incremented by
the same amount, where . In addition, the inhi-
bition weights leading to all other neurons are incremented by

with equal to the number of neurons in the network.
The remaining weights are not modified during this stage.

The second part of the algorithm is the normalization process.
Table II is a rearrangement of the previous table to facilitate the
calculation of the interim rate of fire, . Summing up the weight
terms, it can be seen that the value ofis for each
neuron, where was the previous rate of fire.

(12)

Per the algorithm, the next step is to multiply each weight
by the normalization factor which can be rewritten as

. Finally, the new rate of fire can be calculated.
The substitutions shown below verify that the rate of fire for
each neuron is constant.

(13)

(14)

(15)

(16)

Realizing now that some of the weight terms are identical, the
equation for the steady state probability of the neuron can be

Fig. 9. Neuron array.

Fig. 10. Block diagram of weight storage table.

modified accordingly as shown below. The implication of this
analysis is a neural network with weight terms as opposed
to . Fig. 8 shows the effect of this analysis. Note that the
external inhibition signal, , is zero in accordance with the
CPN specifications and therefore not included in the figure.

(17)

An port router has an SPP withneurons. The neuron array
requires only weight terms and the summation of thevalues
as its inputs as seen in Fig. 9. Thevalues require a configurable
variable in the design.

D. Weight Storage Table

The weight storage table is a dual port memory structure
that maintains the characteristics of multiple RNN models.
The table’s dual port configuration allows for simultaneous
read/read and read/write operations. Port 1 is for read opera-
tions only and is dedicated to smart packet processing. Port 2
is capable of read and write operations as required by the pro-
cessing of the reinforcement learning algorithm. As illustrated
in Fig. 10, the inputs for port 1 consist of a start signal and the
QSD parameters. The outputs are a done and a hit signal as well
as the requested data, if available. In addition to the interface
incorporated by port 1, port 2 has a read/write signal and data
inputs. Both ports are synchronized to an external clock source.

1136 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Fig. 11. Weight storage table components.

Fig. 12. SPP simulation.

The table consists of three components: a table controller,
a content addressable memory, and a random access memory.
Fig. 11 depicts the internal composition of the table. In the cur-
rent implementation, the CAM size is 16 by 68 bits and the RAM
size is 320 bytes.

E. Simulations

An SPP for a four-port CPN router has been implemented
in VHDL. Simulated inputs from the system controller and
acknowledgment mailbox have been applied to the design.
Figs. 12 and 13 show some of the results from the sim-
ulations. In Fig. 12, the SPP has been initialized with no
network information. The first smart packet arrives through
port 0 inc and the system controller queries the
SPP for the next destination. The SP originated from node
4 with a destination of node 6 and a QoS requirement of 1
qsd . Since the SPP does not con-

tain a relevant RNN model within its table, the device responds
with a random outgoing port assignmentout . The
random value, in accordance with previous work, is cannot be
the same direction from where the packet came. In this case,
the packet is routed out through port 1. After the smart packet
arrives at node 6, the acknowledgment packet is generated with

a destination of node 4. When the ACK arrives at the interme-
diate router, it is processed in the acknowledgment mailbox and
then forwarded accordingly. The mailbox supplies the SPP with
the incoming port number of the ACK (inc —which
was the outgoing port number of the corresponding SP), the
QSD parameters of the corresponding SP (qsd—the ACK
actually would have the source and destination reversed) and
the calculated reward value. In this trial, the supplied reward
value is less than the initial threshold resulting in a situation
where the decision to use port 1 will be punished. Still in
Fig. 12, a second smart packet with the same QSD parameters
enters the router from port 0. In this instance, the SPP uses
the experience of the previous smart packet to change its
decision. This new smart packet is routed out through port 2.
The simulation results in Fig. 13 show the low level execution
of the reinforcement learning algorithm. Once the SPP receives
the start signalstart from the acknowledgment mailbox,
the RL component attempts to read the weights and threshold
related to the given QSD from the table. In this case, the table
responds with a miss. This resets the weight (and) and
threshold terms to their default values. For this implementation,
the weight, threshold and terms each have 15 bits to the
right of the ones position. Therefore, the hexadecimal value

KOCAK et al.: DESIGN AND IMPLEMENTATION OF AN RNN ROUTING ENGINE 1137

Fig. 13. Simulation results showing learning algorithm.

Fig. 14. Simulation showing punishment scenario.

08 000 is equivalent to 1.0000. In this examination, the exact
values are not as important as being able to identify the correct
trends in the simulation. After the terms are reset, the threshold
is compared to the reward value from the mailbox. Since the
reward value is greater, the RL component must now reward
the previous decision (inc represents the previous
decision). To increase the probability of assigning port 0
again, the excitation weight is increased. In addition,
the inhibition weights associated with the other ports are
incremented. This decreases the probability of one of the other
ports being selected. Next, the weight terms are normalized to
prevent them from growing unbounded. Once the weights are
determined, they are used by the neuron array to calculate the
steady state probabilities. As seen in the figure, this iterative
process enables the values to converge. Neuron 0 has the

highest at 4A0F (an actual probability of 0.578). After those
calculations are complete, the RL component determines which
two neurons had the highest. The final calculation performed
in this sequence is the adjustment of the threshold value. The
new threshold, 017B, is significant increase over the previous
value, 0100, due to the large reward that was received, 3FF9.
The final step is to store the necessary RNN characteristics into
the table. The threshold and weights terms are saved for future
use by the RL component. Additionally, the numbers of the two
neurons with the highest’s are stored. These numbers will be
used by the SP interface when subsequent smart packets with
the corresponding QSD need to be routed.

The simulation results for a punishment scenario are shown
in Fig. 14. This time the QSD parameters of the packet are
30000000800000009 and the previous decision was port 3.

1138 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Fig. 15. RTL schematic of the “weight storage table” component.

Once again, this is a situation where there is no matching RNN
model stored in the table. Therefore, the default weight and
threshold values are loaded. Since the reward value is less
than the threshold, the RL component must now punish the
earlier decision. To decrease the probability of assigning port
3 again, the inhibition weight is increased. In addition,
the excitation weights assigned with the other ports are
incremented. This will increase the chances of one of the other
ports being selected. After the weight terms are normalized,
they are used to calculate the new steady state probabilities
. This time neuron 3 has the lowestat 4A0F (an actual

probability of 0.4990) and the other neurons are 400A (0.5002).
A new threshold value is calculated and stored in the table
along with the weights and the port numbers 0 and 1. From
the simulations, it can be seen that the smart packet processor
only requires 6 clock cycles to service the smart packets. The
combination of the table access, reinforcement learning, and
steady state calculations need 55 clock cycles.

F. Circuit Implementation Details

The smart packet processor design is implemented in VHDL.
Presynthesis simulations (provided in the previous subsection)
are run to confirm the proper functionality for the design. The
behavioral model for our design is synthesized with Synopsys
tools using 0.6 m CMOS library cells to obtain hardware cir-
cuit implementation. In synthesizing the design, we set some op-
timization constraints, such as maximum area, maximum delay
and clock specifications. The operating frequency of the pro-
cessor is set at 50 Mhz. The design is implemented in a hi-
erarchical fashion and an example to this is shown in Fig. 15
for one of the major components in the design: “weight storage

Fig. 16. SPP macro layout for 0.6-�m process.

TABLE III
OVERALL PERFORMANCESUMMARY

table” component. Compared to the architectural block diagram
in Fig. 11, this RTL circuit depicts more implementation details
such as the separate table controllers for ACK and SP packets

KOCAK et al.: DESIGN AND IMPLEMENTATION OF AN RNN ROUTING ENGINE 1139

TABLE IV
COMPONENTSSUMMARY

which ensure the dual access operation of this module. The
gate-level netlist obtained after synthesis is imported to Cadence
Silicon Ensemble, for floorplanning, placing and routing of the
design. The layout for the design is shown in Fig. 16. The SPP
core occupies 6.46 mmin a 3-metal single-poly 0.6-m digital
CMOS process. Since this core is planned to be used as a macro
in our network processor chip, the I/O pads are not drawn.

The performance summary for the implementation is given
in Table III. The number of gates is noticably high, this is due
the fact that the routing algorithm consists of many if-then and
for-do statements and these statements map into a larger RTL
design. This is also reflected on the total core area as being
large. However, the area can be made further smaller by using a
smaller process than 0.6 micron CMOS. In comparison, an av-
erage core area for a RISC CPU based processing module in a
router is given as 5.2 mmin 0.18- m technology [12].

As far as the power consumption is concerned, the bulk
of the measure is in the “weight storage table” component
as shown in Table IV. Note that, this component includes
the CAM and RAM blocks which comparably have higher
switching activity than the rest of the design. Although, the
“reinforcement learning” component has more number of
gates, it consumes less power than the prior. However, this
component shows a sizable path delay; this is mainly due to
the loops used in the VHDL implementation of the learning
algorithm. Based on the delay information given in Table IV,
we can calculate rough estimates for the maximum number of
searches per second the CAM component (16 words of 68 bits
each) can provide: search ns M searches/s.
If compared to some of the few designs reported in this area,
this shows a performance in between the one reported in
[13] which has 9.4 M searches/s with a larger design: 128
words of 320 bits each, and the professional product reported
in [14] which has 100 M searches/s with 32 Kwords of 288
bits each. The maximum number of smart packets that can
be processed per second at one node by the SPP is given as
follows: packet ns ns M packets/s.
Here, it is assumed that smart packet routing involves only
the SP interface and the weight storage table; and also the
reinforcement learning algorihtm is run simultaneously. We
are aware that without completing the dumb packet processing
module and the rest of the CPN network processor, it would not
be fair to compare this packet rate with other reported network
processing hardware; however, an idea can be given such that
our performance (based on smart packets with approximately
700 bits each) corresponds to 50 Gb/s wire-speed processing.

This is better than the reported results given in the range of 2.4
to 10 Gb/s wire-speed processing rates [10], [15], [16].

IV. SYSTEM-LEVEL INTEGRATION

We have verified the operation of the smart packet processor
in an isolated environment where the arrival of smart and ac-
knowledgment packets is simulated. The next step is to create
a basic CPN router model and use it to build a network simula-
tion. This will provide us with the ability to test the interactions
between multiple SPPs and to later add more of the functional-
ities found in the CPN model.

A. System Controller

Aside from the SPP, the system controller is the most compli-
cated design of the CPN router. The system controller interacts
with all of the other components. It receives packets from the
input port controller (IPC) and dispatches them through the
output port controllers (OPC). The system controller activates
the SPP when it needs to route a smart packet and forward
the locally generated acknowledgment packets to the mailbox.
The state machine in Fig. 17 shows a high level representation
of the system controller. The IPC requests service from the
system controller upon the arrival of a smart packet. The system
controller responds to the request and receives the packet for
processing. The packet’s destination is examined and used to
determine which one of the three different routing strategies
will be employed.

If the smart packet has arrived at an intermediate node in its
path then the SPP will be referenced to determine the next hop.
The QSD parameters and the port that the smart packet arrived
through are applied to the smart packet interface of the SPP with
a signal to start processing. The system controller will remain
idle until the interface responds with an outgoing port number.
Next, the CM of the smart packet is updated with the address
of the next hop (determined by the outgoing port number) and
a reward value. In this implementation, the reward value is a
variable that can be controlled by the user throughout the simu-
lation. Finally, the smart packet is forwarded to the correct out-
going port. Service from the OPC is requested. After the OPC
responds, the system controller waits for the next IPC request.
Routers in the CPN know the addresses of their adjacent neigh-
bors. In the second case, if the smart packet has arrived at a
router connected to the destination router, then the system con-
troller will immediately attempt to forward the packet to its des-
tination. The user can control the status of the port connections.

1140 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Fig. 17. System controller state machine.

Fig. 18. Acknowledgment mailbox state machine.

Fig. 19. Simulation configuration.

If the port has been disconnected, then the system controller, as
above, will request service from the SPP to determine the out-
going port number. In the final case, if the smart packet has ar-
rived at its destination router, then it has successfully completed
its journey. An acknowledgment packet must now be generated
to return the measurement data that has been collected. First,
switching the source and destination of the smart packet gener-
ates the packet’s QSD. Next, the CM from the smart packet is
written in reverse into the acknowledgment’s CM.

B. Acknowledgment Mailbox

The final component of the CPN router is the acknowledgment
mailbox. The state machine for the design is shown in Fig. 18.
When the IPC makes a request, the mailbox will read in the
packet and its incoming port number. The mailbox must search
the CM for its address. It can then extract the correct reward
value from the CM. The incoming port number and the reward
value can be immediately applied to the SPP’s RL component.
The source and destination of the acknowledgment packet must
be switched so that the QSD parameter is consistent with the
QSD of the corresponding smart packet. Then, the RL algorithm
of the SPP can be activated. In this design, the mailbox waits
for the SPP to complete its calculation. After it is complete,
the mailbox reads the next address in the CM and determines
the outgoing port number. Service from the OPC is requested
and, once granted, the acknowledgment packet is forwarded.

C. Simulations

The topology of the network that is used for system level
simulation is shown in Fig. 19. The configuration is similar to
the one used in the CPN software test bed. As discussed, each

KOCAK et al.: DESIGN AND IMPLEMENTATION OF AN RNN ROUTING ENGINE 1141

Fig. 20. Network simulation aid.

Fig. 21. Network simulation.

link in the network is configurable in terms of reward value and
connection status (i.e., disconnected). In the simulation, smart
packets are generated at router address 00000008 with a desti-
nation of address 00000005 and a QoS of 1. Fig. 20 is an aid
for viewing subsequent figures. The top six lines show the QSD
of the packets as they pass through routers. The bottom six lines
show the acknowledgment packet flow. Thus, in Fig. 20, we can
see a smart packet, QSD , moving from
router 8 to router 5. For this particular simulation, we have de-
signed the links so that the 8-1-3-5 route will be rewarded while
other paths are punished. We will verify the correct behavior of
the system by analyzing the results.

In Fig. 21, we can see the complete path of a smart packet,
SP1. In router 1, there is currently no route information stored
for the QSD combination in any of the routers. In this case the
smart packet is arbitrarily forwarded from router to router until

it arrives at router 4. In router 4, the packet’s destination is an ad-
jacent router. The system controller verifies the connection and
the packet is immediately directed to router 5. Note that prop-
agations involving random assignments take 540 ns (27 clock
cycles). In contrast, the forwarding a packet to a direct connec-
tion (from router 3 to router 5) requires only 260 ns (13 clock
cycles). The difference in time occurs because the SPP needs to
be accessed before the random assignment can be made.

As seen in Fig. 21, the next smart packet, SP2, follows a
different path than its predecessor, traveling through routers
8-1-3-5. Again, the assignments are arbitrarily made. This
figure also shows the generation of the acknowledgment
packets in router 5. The creation of ACK1 is initiated by the
arrival of SP1. Since ACK1 is source routed and follows the
reverse course of SP1, its first hop is router 4. Similarly, ACK2
is manufactured as a response to the receipt of SP2. ACK2’s

1142 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Fig. 22. Link disconnected.

Fig. 23. Link reconnected.

first hop is router 3, as seen in the figure. Fig. 21 also shows the
complete path of ACK1 and the production of more ACKs and
SPs. Notice that for all the acknowledgment packets shown, the
time between leaving router 5 and appearing in the next router
is significantly less than the time between the subsequent hops.
Since router 5 generates these acknowledgment packets, they
do not invoke the reinforcement learning component of the
SPP in router 5. In all other routers, the arrival of these packets
will activate the RL component, which delays the transmission
of the packet. Also, notice the pileup of acknowledgment
packets in router 1 occurring after 5000 ns. This is due to
acknowledgment packets arriving from different directions
and then waiting for service. Both of these situations will be
addressed in future implementations of the mailbox by using
more efficient technique to extract and buffer the measurement
data. Still in Fig. 21, we can see the propagation of two more
smart packets, SP3 and SP4. SP3 takes the same route as
SP2, 8-1-3-5, while SP4 uses a different route, 8-1-4-5. The
decisions made in router 1 are still arbitrary and will remain so
until the data from ACK1 is integrated into router 1’s SPP. This
occurs at approximately 6000 ns into the simulation.

In Figs. 22 and 23, the acknowledgment packets are not
shown so that we may focus on the smart packet propagation.
Fig. 22 shows the smart packets after they have learned from
the experiences of previous smart packets. They have correctly
chosen route 8-1-3-5. The smart packets would continue to
choose this path as long as it is available and the reward for
taking it is large enough. In this simulation, we decided to
force them to alter their path by disconnecting the link between
routers 3 and 5 at 15 000 ns. As a result, the SPP in router
3 selects router 4 as the next hop and the packet eventually
completes its journey to router 5. At 21 000 ns (seen in Fig. 23),
we reconnect routers 3 and 5. Once again, the system adapts
and selects the correct link for packet transmission.

V. CONCLUSION

The implementation of a neural network routing engine for the
CPN has been verified through simulations. The SPP design
simultaneously services smart packets while integrating the
reinforcement learning algorithm. To accomplish this, the SPP
incorporates several interacting state machines with a dual port
memory structure for storing and accessing the parameters of
multiple RNN models. As a major improvement over the CPN
software implementation, the RNN models have been reduced in
size from weight terms to weight terms. The behavioral
model for the design is synthesized using 0.6m CMOS library
cells to obtain hardware circuit implementation. The current
digital implementation of the learning algorithm and neurons
consumes a significant amount of space. As a future direction
for this work, an analog/mixed-signal RNN implementation
will be considered. A basic CPN router has also been developed
in VHDL to test the SPP on the system level. In addition to the
SPP, its subcomponents are the input port controller, output
port controllers, the system controller, and the acknowledgment
mailbox. The next step in the development of the CPN router
is to enhance the functionalities of the other components. Both
the system controller and the acknowledgment mailbox need
to be modified to handle the calculations of rewards and goals.
The dumb packet switch and security controller need to be
designed and integrated.

ACKNOWLEDGMENT

The authors would like to thank A. Ejnioui for the fruitful
discussions and the critical review of the paper, and D. Harper
for his CAD tools assistance.

REFERENCES

[1] E. Gelenbe, R. Lent, and Z. Xu, “Design and analysis of cognitive packet
networks,”Perform. Eval., vol. 46, pp. 155–176, 2001.

KOCAK et al.: DESIGN AND IMPLEMENTATION OF AN RNN ROUTING ENGINE 1143

[2] Z. Xu, “Design and Analysis of Adaptive Routing in Cognitive Packet
Networks,” Ph.D. Dissertation, University of Central Florida, Orlando,
FL, 2001.

[3] J. Caruso, “Network processor market to grow,”Network World High
Speed LAN’s Newsletter, Sept. 9, 2001.

[4] E. Gelenbe, “Learning in the recurrent random neural network,”Neural
Comput., vol. 5, no. 1, pp. 154–164, 1993.

[5] E. Gelenbe, Z. Mao, and Y. Li, “Function approximation with spiked
random networks,”IEEE Trans. Neural Networks, vol. 10, no. 1, pp.
3–9, 1999.

[6] H. Bakircioglu and T. Kocak, “Survey of random neural network appli-
cations,”Europ. J. Oper. Res., vol. 126, pp. 319–330, Oct. 2000.

[7] E. Gelenbe and K. Hussain, “Learning in the multiple class random
neural network,”IEEE Trans. Neural Networks, vol. 13, no. 6, pp.
1257–1267, 2002.

[8] U. Halici, “Reinforcement learning algorithm with internal expectations
for the random neural network,”Europ. J. Oper. Res., vol. 126, pp.
288–307, Oct. 2000.

[9] N. Shah, “Understanding network processors,” M.S. thesis, University
of California at Berkeley, Berkeley, CA, 2001.

[10] T. Kocak and J. Engel, “A survey of network processors,”
School of EECS, Univ. of Central Florida, Sept. 2002. Available
http://www.cs.ucf.edu/~tkocak/TR/NPsurvey.ps.

[11] R. Lent, “On the design and performance of cognitive packets over wired
networks and mobile ad hoc networks,” Ph.D. dissertation, University of
Central Florida, Orlando, FL, 2003.

[12] T. Wolf and J. S. Turner, “Design issues for high-performance active
routers,”IEEE J. Select. Areas Commun., vol. 19, pp. 404–409, 2001.

[13] J. Dirmar, K. Torkelsson, and A. Jantsch, “A dynamically reconfig-
urable FPGA-based CAM for internet protocol characterization,” in
Proc. 10th Int’l Conf. Field-Programmable Logic and Applications,
2000, pp. 19–28.

[14] SiberCore Technologies, Inc.SiberCAM Ultra-2M SCT2000, 2002.
Product Brief.

[15] H. Shimonishi and T. Murase, “A network processor for flexible QoS
control in very high-speed line interfaces,” inProc. IEEE Workshop on
High Performance Switching and Routing, 2001, pp. 402–406.

[16] N. Shalaby, L. Peterson, A. Bavier, Y. Gottlieb, S. Karlin, A. Nakao,
X. Qie, T. Spalink, and M. Wawrzoniak, “Extensible routers for active
networks,” inProc. DARPA Active Networks Conf., 2002, pp. 92–106.

Taskin Kocak received the B.S. degree in physics
and the B.S. degree in electrical and electronics engi-
neering from Bogazici University, Istanbul, Turkey,
in 1996. He received the M.S. and Ph.D. degrees in
electrical and computer engineering from Duke Uni-
versity, Durham, NC, in 1998 and 2001, respectively.

Currently, he is an Assistant Professor and grad-
uate program coordinator of computer engineering in
the school of EECS at University of Central Florida,
Orlando, FL. From June 1998 to September 2000, he
worked as a mixed-signal VLSI design engineer at

Semiconductor Division of Mitsubishi Electric Corporation in Research Tri-
angle Park, NC. His current research interests are VLSI design, networking and
wireless communications.

Jude Seeberreceived the B.S. and M.S. degrees in
computer engineering from the University of Central
Florida, Orlando, in 2000 and 2002, respectively.

He is currently an ASIC Engineer with 3Dlabs in
Huntsville, AL. His primary responsibility is the de-
velopment of the test strategy for cutting edge graphic
chips.

Hakan Terzioglu received the B.S. degree in elec-
trical engineering from Bogazici University, Turkey,
in 2002. He is currently working toward the Ph.D.
degree in the Department of Computer Engineering
at University of Central Florida, Orlando. His areas
of interest are network processors and analog circuit
design.

