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Design and Implementation of a Random Neural
Network Routing Engine

Taskin Kocak, Jude Seeber, and Hakan Terzioglu

Abstract—Random neural network (RNN) is an analytically increase. This year the NP market is to reach $231 million
tractable spiked neural network model that has been implemented put in four years it is estimated to reach $7.2 billion [3]. This

in software for a wide range of applications for over a decade. 5 Iv the r n that n rk pr ing is the f
This paper presents the hardware implementation of the RNN SP c_)bab_y t € reaso that _et\l\_/o processing Is the fastest
growing field in the networking industry.

model. Recently, cognitive packet networks (CPN) is proposed . .
as an alternative packet network architecture where there is ~ The applicability of the CPN concept has been demon-
no routing table, instead RNN based reinforcement learning is strated through several software implementations [1], [2], [11].
used to route packets. Particularly, we describe implementation However, higher data traffic and increasing packet processing
details for the RNN based routing engine of a CPN network gemands require the imlementation of this new network archi-

processor chip: the smart packet processor (SPP). The SPP is a . - L . .
dual port device that stores, modifies, and interprets the defining tecture in hardware. The primary motivation for this study is

characteristics of multiple RNN models. In addition to hardware the design and implementation of a prototype CPN router. The
design improvements over the software implementation such as research presented within this paper is the initial work toward
dual access memory, output calculation step, reduced output the realization of this goal. Specifically, this work identifies

calculation module, this paper introduces a major modification ey fynctionalities of the CPN router and the elements that will

to the reinforcement learning algorithm used in the original CPN . | t th Th let ificati f
specification such that the number of weight terms are reduced Impiemen em. € compiete specincations for one com-

from 2n2 to 2n. This not only yields significant memory savings, Ponent, called the smart packet processor (SPP), are derived
but it also simplifies the calculations for the steady state probabil- and a design is implemented. The SPP is a dual port device
ities (neuron outputs in RNN). Simulations have been conducted that stores, modifies, and interprets the defining characteris-
to confirm the proper functionality for the isolated SPP design as tics of multiple random neural network (RNN) models. RNN
well as for the multiple SPP’s in a networked environment. . . L
has been proven to be successful in a variety of applications
Index Terms—Network processors, neural network, packet [6] for more than a decade; however, it has not been imple-
switched networks, random neural networks. . ’ . . .
mented in hardware before. In addition to reporting the first
RNN hardware implementation, this paper introduces a major
I. INTRODUCTION modification to the reinforcement learning algorithm used in

S the Internet continues to expand in number of use%,elenbeet als paper [1] such that the numbgrof ngg_h_t terms
A servers, IP addresses, and routers, the IP based ne ﬁ(reduced fron2n? to 2n. This not only yields significant

must evolve and change. There is a strong demand for noRgmory savings, but it also simplifies the calculations for the

routing architectures that can provide more efficient and rob ahdy st?tef tpf)]robab |I|t|§ s (neu.ron d OUtFLl'ltS |n. IR Tr’]\l )‘f lowi
service tothe Internet constituents. The cognitive packet networ € restotihe paperis organized as foflows. In the 10Towing

(CPN) was proposed as an alternative to the IP based netwd sections, we review the cognitive packet network and the
architectures [1], [2]. CPN attempts to solve some of ﬂ{gndom neural network. Section Il introduces the initial design

problems associated with the legacy IP networks, such as Qggproaches for the CPN network processor. Smart packet pro-

the never-ending expansion of routing tables and their rela:%%s'sordesign is presented in Section Ill. Circuitimplementation

maintenance issues. The rapid expansion of network applicati éa'ls are aI;o given in this sec_tl.on. Section N discusses the
and data traffic is also leading to new specialized proces tem-level integration and verifies the operation of the SPP

designs that would keep up with the growing field of networkin%q_ a networked environment. The paper ends with some conclu-

and communications. Network componentdesign becomesm s and directions for future work.

challenging as the performance and usage of communication i

networks increase. To meet the rapidly changing requiremefirs Cognitive Packet Network

such as performance, cost, flexibility, and interoperability; the The CPN is a store and forward architecture that achieves

networking industry has opted to build products around netwoirktelligent QoS based routing by employing “smart or cogni-

processors (NPs) [9], [10]. The NP market grows rapidly diwe” packets. The CPN uses three different types of packets:

the driving force for faster, more powerful network productsmart packets, dumb packets, and acknowledgment packets. The

dumb packets carry payload (the user’s data) and are source

Manuscript received September 13, 2002; revised March 14, 2003 and Aﬁﬁmed by applying routing information generated from the ex-

30, 2003. periences of the smart packets. Smart packets are sent out con-
The authors are with the School of Electrical Engineering and Computghoysly to search for routes to a destination. Before a particular

Science, University of Central Florida, Orlando, FL 32816 USA (e-malil; . . .

tkocak@cs. ucf.edu). flow of dumb packets can be transmitted, the route information
Digital Object Identifier 10.1109/TNN.2003.816366 for the QoS class must be available at the source. Ifitis unavail-
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able, the source node will create and dispatch smart packets to

determine routes to the selected destination forthe requiredQos | *W%/)
class. As the smart packets propagate through the network, they = =
collect measurement data with regard to link quality. Acknowl- i

edgment packets carry back this measurement data, depositing
it at the CPN routers as they travel the reverse route of the smart A;
packets. The original source node uses the data to establish a (wl +w;)
route for the dumb packets. The CPN router acts as a buffer for \ ——
packets, as a storage area for mailboxes (MBs) where acknowl- (<w+—+7)

ji ji

edgment packets deposit measurement data, and as a processol /

(wi;
(w;'i +w

)

for packets. It receives packets via a finite set of ports and stores 's}s 'S '
them in an input buffer, where sorting based upon QoS require- +: +

ments may occur. It forward packets to other nodes via output ts: ":aj .
buffers, and runs the algorithm used to make routing decisions
concerning smart packets. Contrary to a conventional IP router, ~ { #alt)) )

a CPN router does not maintain a routing table. The routing de-

cisions in a CPN router rely upon a learning algorithm. Previous

attempts to incorporate learning algorithms and adaptation into
packet networks have been insufficiently researched due to the
lack of practical mechanisms. CPN routers execute a reinforce- +
ment learning algorithm in order to select the output link for ”
smart packets. Dumb and acknowledgment packets are source 7
routed with their routes stored within the packets themselves, ~ Fi(t)  instantaneous potential of the neuron
The reinforcement learning algorithm that smart packets rely gn . .
is based on a QoS “GoaI"?Th?a term “Goal” is usr,)ed to indicé e 1. Representation of a neuron in the RNN.

that there is no QoS guarantee rather there is a best effort attempt

to satisfy the QoS objective. The smart packets act as netwonkdel employs the random neural network. The internal state
explorers. They travel through the network, finding routes ard the RNN is a unique solution for any set of weights and input

collecting data. The measurements and the path traveled bythgables.

packet are stored in its Cognitive Map (CM). When the smart

packet arrives at its destination router, the router generateB.aRNN Model

corresponding acknowledgment packet. The acknowledgmenty, gstaplish intelligence based routing, the CPN employs the

packet inherits the smart packet’s source as its destination gRN model by Gelenbe [4], [5], [7]. The RNN is an analyti-
addition, the smart packet's CM is inverted and stored as the ggjy tractable spiked neural network model that has been im-
knowledgment's CM. As the acknowledgment travels throughlemented in a wide range of applications. The function of the
the network, routers will reference its CM to find out where teNN in the CPN model is to capture the effect of the unpre-
send it next. Thus, the acknowledgment packet is source routggable network parameters and convert it into a routing deci-
following the inverse route of the smart packet that initiated ijon. In the random neural network model, signals in the form of
Before the routers forward the acknowledgment to its next hggypulses which have unit amplitude travel among the neurons.
they will read the relevant measurement data from its CM. sgsitive signals represent excitation, whereas negative signals
the reinforcement learning algorithm, the observed outcome @hresent inhibition to the receiving neuron. Thus, an excitatory
a decision is used to “reward” or “punish” the routing algompulse is interpreted as a1” signal, while an inhibitory im-
rithm with respect to that decision. The “Goal” is the metrigmse is interpreted as a‘1" SignaL Each neuromn has a state
that characterizes the success of the outcome, such as pa;;}(%gy which is its potential at time, represented by a nonneg-
travel time or transit delay. As an example, the Qufal (G)  ative integer.
that smart packets pursue may be formulated by as minimizingwhen the potential of neuranis positive, it is referred to as
transit delay(W), loss probability(L), jitter, or some weighted being ‘excited’, and it can transmitimpulses (fire). The impulses
combination, for instance will be sent out at a Poisson ratg with independent, identical
exponentially distributed interimpulse intervals. The impulses
transmitted will arrive at neuron as excitation signals with
G=axW+bxL (@) probabilitypj;, and as inhibitory signals with probabilipy;. A
neuron’s transmitted impulse may also leave the network with
wherea andb are constants selected by the application laygrobability ;, therefored; + >=_, [p; + p;;] = 1. To make
which signify the relative importance of the delay and loss fdhese probabilities easier to work with, Ie],t = mpjg., and
this particular application’s QoS. The reinforcement Iearnir@i‘j = r;p;;; thenfiring rate of neuron r;, is Z;L:l[wjj+w,fj].
algorithm for CPN routing uses a fully recurrent neural networkhew matrices can be viewed as being analogous to the synaptic
model to ensure that all decision variables are mutually relategkights in connectionist models, though they specifically repre-
In order to ensure the convergence of the algorithm, the CRMInt rates of excitatory and inhibitory impulse emission. Since

arrival rate of exogenous excitatory signals

>

S

arrival rate of exogenous inhibitory signals

arrival rate of excitatory signals from neuron j

g g

arrival rate of inhibitory signals from neuron j

>
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Fig. 2. CPN network processor architecture.

thew matrices are formed through a product of rates and prdio- the case wherself-inhibition is allowed, the value of the
abilities, they are guaranteed to be nonnegative. Exogenousmedron’s state can drop by two units in a single time step,
citatory and inhibitory signals, meaning those arriving to thieowever this case will not be considered in the following
neuron from a source outside of the network, also arrive &xpressions. Also in this modetelf-excitationis not of in-
neuror: at rates\; and);, respectively. These are analogous tterest because in its presence, the potential of the neuron may
the input received by the input neurons in a connectionist modelcrease without bound which would lead to instability. There
again however, they represent rates. are also some boundary conditions which prevent some of the

Fig. 1 shows the representation of a neuron in the RNN usiffgnsitions from occurring. First of all, a neuron can fire only
the model parameters that have been defined above. In #{f§€n it has a positive potential as explained above. Second,
figure, only the transitions to and from a single neuioare when the neuron has a potential of zero, the arrival of new

considered in a recurrent fashion. All the other neurons can i§8ibitory signals does not decrease its value further. All of
interpreted as the replicates of neution these constraints will be unified in a single expression when

At thi int it i ider the d . ftﬁhe state transitions are expressed in mathematical form.
IS point, 11S hecessary 10 consider tne dynamics ot the Letk(t) = k1(t), ..., k.(t) be the vector of signal potentials

ra”d‘?r.“ neura_ll r_1etW(_)rk r_nodel by analyzing the p(_)_ssible StaaIFtimet, andk = kq, ..., k, be a particular value of the vector,
transitions. Within a time interval al¢, several transitions can and lets define the probability(k, ) = Pr[k(t) = k]. The

occur which change a neuron’s stéigt). behavior of the probability distribution of the network state can

« The potentiak; (t) of a neuron will decrease by one whenPe derived through the following equations. Siikge): ¢ > 0 is
ever it fires, regardless of the type of the signal emitted (eg_contmuous time Markov che_un, it satisfies an infinite system
citation or inhibition). Also, when an exogenous inhibitony Chapman-Kolmogoroequations.
signal arrives from outside the network to neufoits po- (k, ¢ + At)
tential drops td:;(¢) — 1 at timet + At¢. Moreover, neuron P
i might receive an inhibitory impulse from another neuron = Y _[p(k;", )r(i)d(i) At + p(k; , t)A()) At 1[ki(t) > 0]
j,» whose effect will again be to decrement the valué,of i
at timet by one. + p(kT 1) A@) AL + p(ki, t)(1 — A(i)At)

« Arrival of an exogenous excitatory signal from outside, x (1 — X(3)At)(1 — (i) At) 1[k;(t) > 0]
or an excitatory impulse from another neuron within the _ . . i
network will result in incrementing the neuron potential + ;{p(k;; Ar(Dp™ (0, 4) At 1k (t) > 0]
by one, yieldingk; (t) + 1. o

» Needlessto say, tr(le) valueith neuron’s state remains un- + (kT )r()p™ (4, 4) At
changed when none of the events described above occur.  + p(k;", t)r(i)p~ (i, 5) At 1[k;(t) = 0]}] + o(At)  (2)
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where outcomes. Let the neurons be numbeted . ; n. Thus for any
1 if x is true decisioni, there is some neurahn Decisions in this reinforce-
1z] = {0 otherwise ment learning algorithm are made by selecting the decigion
for which the corresponding neuron is the most excited, i.e., the
one with the largesj;. Note that théth decision may not have
contributed directly to théth reward because of time delays
%etween cause and effect. Suppose thattthéecision corre-
sponds to neuroyi, and that we have measured tlie reward
; ; ; . R;. Let us denote by; the firing rates of the neurons before
r(k) Z[A(t) MO +r(@] 1k > O] the update takes place. We first determine whether the most re-

For steady state analysis, jgtk) denote the stationary proba-
bility distribution which is equal tdim;_,, Prik(t) = k] if it
exists. Thus, in steady state, stationary probability distributi
p(k), must satisfy the global balance equations

N g/ N cent value of the reward is larger than the previous “smoothed”
- Z[p(k;r)r(z)d(z) + (k7 )A) Lk > 0] value of the reward that we call threshdlgl ;. If that is the
’ e PRI case, then we increase very significantly the excitation weights
+p(kDAG) + Z{p(kij )r(@)p™ (i, 5) 1[k; > 0] going into the neuron that was the previous winner (in order to
i reward it for its new success), and make a small increase of the

+ p(k5T)r(i)p™ (4,4) + p(ki ) r(@)p~ (4,5) 1[k; = 0]}].  inhibitory weights leading to other neurons. If the new reward
(3) s not better than the previously observed smoothed reward (the

. S ] ] threshold), then we simply increase moderately all excitatory

The .statlonary prob_ablllty distribution associated with thﬁ/eights leading to all neurons, except for the previous winner,
model is the value which will be taken to be the output of thgnq increase significantly the inhibitory weights leading to the
network, and is given by previous winning neuron (in order to punish it for not being
4) very successful this time). This is detailed in the algorithm given
below. We computd; and then update the network weights as

which reduces to the form follows for all neurons:
It T < R
gi = AT ()/[r(i) + A~ ()] (%)
w+(L7J) = er(LJ) + (Rl - Tl—1)7

where the\™ (i), A= (i) for i = 1,...,n satisfy the system of py py .
’ o k) = k R —T;_ -1), k 8
nonlinear simultaneous equations w (i, k) = w0 k) + (R i=1)/(n = 1), 77 @)

N = Y agufi+ AG), A0 = D g + M) 6

q; = tlim Pr[k;(t) > 0], i=1,...,n

else

U)+(Z]€) w+(i7k)+(T’l—1 _Rl)/(n_1)7 k;éJ7
To put (5) into words, the steady state probability that the neuron w™(¢,7) = w™(¢,5) + (Ti—1 — Ri). 9)

1 is excited is simply equal to the ratio of the sum of all the rates i . )
of arriving excitatory signals to the sum of the rates of arriving 11en we renormalize all the weights by carrying out the fol-

inhibitory signals together with the firing rate of that particulafoWing operations, to avoid obtaining weights that indefinitely
neuron. increase in size. First for ea¢hwe compute

C. Reinforcement Learning for the RNN i =Y [wh(i,m) +w”(i,m)] (10)

There are different learning algorithms that may be appligghd then renormalize the weights with
to the random neural network model. The gradient descent al-

gorithm has been used with feed-forward topologies in many wt(i,5) «— wr(i,7) *r:/r},

applications [6]. This algorithm has two distinct modes: offline w(i,§) — w(i,5) %7 /7 (11)

training and online execution. For the gradient descent algo-

rithm to be implemented, the RNN output vectors need to beFinally, the probabilitieg; are computed using the nonlinear

known a priori and provided during the training mode. Thiiéerations (5) and (6), leading to a new decision based on the

requirement is not compatible with needs of the CPN, whepeuron with the highest probability of being excited.

the dynamic network parameters will preclude offline predic-

tions. RNN-based Reinforcement Learning (RNNRL) applies [I. CPN NETWORK PROCESSORDESIGN

the methodology described below [8]. Given some g@dhat 5 network processors require the ability to manage their

the SP has to ach|eye as afunct|0n_t10 be mlnlmlzed, we fom]Hbut and output packet flows. Specifically, the CPN router,

late a reward? that is simplyR = G™". Successive measured,pich hoyses the CPN network processor, will require the

values of theR are denqt(_ed by;,l = 1,2,.... These are first ability to classify packets by their type so they may be for-

used to compute a decision threshold warded to their proper processing units (see Fig. 2). In addition,
Ty=axTioy + (1 —a)* Ry @) the buffer management will need to implement priority sorting

based upon QoS requirements. Since dumb packets are source
whereq is some constamt < a < 1, typically close to 1. routed, the controller associated with forwarding these packets
Now consider a closed RNN with as many neurons as decisisimould be one of the simpler designs. The dumb packet switch
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will need to search the packet's CM and find the local router’s Qo

address. The next address in the CM will also be the next hop System Controller InPort

for the dumb packet. With this information, the switch will then St

assign the packet to the corresponding output port. _ Done

As previously stated, the mailbox is where acknowledgment outpot|  Smart Packet

packets deposit the relevant data measurements they are car- A Processor
rying. In our hardware design, the mailbox is also responsible Q0|

for calculatin.g the reward value from the measurement param- Acknowledgement InPort

eters. Next, it must forward the reward value to a component Packet Mailbox 5Bt

that incorporates the RNN with reinforcement learning. In the Reward

meantime, the acknowledgment packet needs to be transmitted 2ot

to its next hop in its path. Since the packet is source routed, the
mailbo-x can feature a design similar to the dumb packet SWitgy 3. interfacing the smart packet processor with other components.
exclusively for use by the acknowledgment packets. The system

controller has many responsibilities such as

« configuration control of CPN components;
« determining/verifying port connections with adjacen
routers : System Controller
* classification of packets based upon type (i.e., sma Input . Output
dumb); ol I
- forwarding packets to appropriate routing component. | | <o ) Controllers
Acknowledgement
Packet
A. Smart Packet Processor Design Considerations Maitbox
The function of the Smart Packet Processor (SPP) is to det*

.m'”e the outgoing port for al‘l’.IVIng smart packets based uDEln. 4. Router architecture for system level integration.
its QoS, source and destination parameters (QSD). In accor-
dance with the CPN model, the SPP needs to employ the RNN
model with the reinforcement learning algorithm to make its de- 252 R
cisions. The reinforcement learning algorithm requires the re- InPrt |
ward value calculated with the data from the acknowledgment 22__L,] gp | Pata/Control |
packets. Therefore, the SPP, shown in Fig. 3, is a convergence <—= Interface
point for the flow of both smart and acknowledgment packets. Pl
To meetits requirements, the SPP needs to interface with two ex- Q5D st Weigq_t b
ternal structures: the acknowledgment mailbox and the system 7 —— » >torage fable
controller. The ideal design allows simultaneous transactions [ Data/Control
between these components. The system controller waits for the > RL ) "
SPP output to forward smart packets. On the other hand, the ac- ==+l aigorithm %
knowledgment mailbox is merely a receptacle for the data mea- +— as | Neurons
surements within the acknowledgment packets. Therefore, the

priority of the SPP design must be the servicing of the smart

packets. Fig. 5. Composition of the smart packet processor.

B. Preliminary Router Configuration . . .
y g functionality of the SPP. Therefore, the design must

Abasic CPN router, shown in Fig. 4, has beenimplementedto generate and transmit the acknowledgment packets.
conduct preliminary system level simulations. The primary ob- « Simplified network communication schemes will suffice
jective of the device is to enable the testing of the functionality  for this initial testing phase. Since the link characteris-
of the SPP on a system level. Furthermore, the design allows for  tics will be manipulated by external control, the inter-
the future addition of other CPN router components. There are  router communications are only required to be reliable and

several requirements and assumptions for the architecture. practical.
« The design must be modular and flexible to allow for var- * Input and output queue management issues will not be
ious network topologies to be implemented and tested. tested or analyzed in this work.

« The characteristics of the links between the routers must * Dumb packet production and propagation will not be ad-
be configurable. There need to be methods for simulating ~ dressed during this initial testing evolution.
the effects of congestion and broken links. Several design options were considered to satisfy the
» The propagation and processing of acknowledgmergquirements. The solution that has been implemented uses
packets is fundamental to analyzing and assessing th@directional data paths in its network communication scheme.
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Each router is equipped with both input and output port coatgorithm receives control from the acknowledgment mailbox.
trollers that enable duplex links to other routers. Each links seen in the figure, both components have data and control
is capable of being disconnected and reconnected during ffaghs to the weight storage table. The table is a complex dual
simulation. During previous software simulations, link statysort memory structure that stores the RNN weights, thresholds,
was primarily defined by packet transit times. As a smadutputs and QSD indexes. Lastly, the neurons are controlled
packet left routemp, routerp would place a timestamp in its by the RL algorithm and are used to calculate the steady state
cognitive map. When the smart packet reached its destinationtput of the RNN.

the timestamp would be written into the cognitive map of

the corresponding acknowledgment packet. Finally, as the IIl. SMART PACKET PROCESSORDESIGN
acknowledgment returned through router the timestamp
would be read and the packet transit time would be calculat
This time would be converted into a reward value in order to be When requested, the SP interface provides an output port
submitted to the reinforcement learning algorithm. The bloagkumber to the system controller. A high level state diagram for
diagram of the completed smart packet processor designthie SP interface is shown in Fig. 6. Following a reset, the SP
shown in Fig. 5. It consists of four different components: thiaterface idles until it receives the start signal from the system
smart packet interface, the reinforcement learning algorithegntroller. At the same time, the system controller is providing
the neuron array, and the weight storage table. The SP interftoe QSD parameters to the weight storage table. The SP inter-
is externally connected to the system controller while the Riace directs the table to perform a search upon these parameters.

é%_ Smart Packet Interface
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TABLE |
WEIGHT MATRIX AFTER REWARD SCENARIO

Excitation to Neuron 1 | Inhibition to Neuron 1 | Excitation to Neuron 2 | Inhibition to Neuron 2

w1+1 =wf‘1+a Wy = Wiy wi’é:wi’é wy, = wp, +a/3
w;—l :w;l‘l'a Wy = Wy, w%:w;?‘, Wy, = Wy, +a/3
wg—l:w;l_i_a W3y = Wgy w:;r2=w3+2 wg, = Wi, +a/3
wf =wfi +a wy = wy wh=wh Wiy = Wy, +0/3

Excitation to Neuron 3 | Inhibition to Neuron 3 I Excitation to Neuron 4 | Inhibition to Neuron 4

+ _ .+ - .- + _ .+ - =
Wy3 = Wy w3 = wiz +a/3 Wiy = Wiy wiy = wy +a/3
+ _ .+ - = + _ .+ - =
W3 = Wy Wyg = Wy +0a/3 Wyy = Wyy Woy = Wy, +a/3
wi = wi, Wz = Way +a/3 wi, = wi, w3, = way +a/3
33 = W33 33 = W33 34 = W3y 34 = W3y
+ _ .+ - - + ot - =
Wygz = Wyg Wiy = wyz +a/3 Wyyq = Wyy wyy = wy +a/3

TABLE I
WEIGHT MATRIX FOR RATE CALCULATION

Excitation from Neuron 1 | Inhibition from Neuron 1 | Excitation from Neuron 2 | Inhibition from Neuron 2

wh =wii +a W =W wi = wy; +a Wy = Wy

wi"z = wi"z wi, = wi, +a/3 w;'2 = w;é Woy = Wy, +a/3
wi'; = wf’s wiz = wyz+a/3 w;'a = w;é Wy = Wy +a/3
wi';lzwi';1 wi, =wy, +a/3 w;:l:w;; wyy = wy, +a/3

Excitation from Neuron 3 | Inhibition from Neuron 3 [ Excitation from Neuron 4 | Inhibition from Neuron 4

w3 = w3 +a wg, = wh wi =wf +a wi =wh

w3'f'2 = wg'z Wg, = Wi, +a/3 wj’z = wZ’z wy, = Wy, +a/3
w;'?' = w;{s Wag = Way +a/3 w:& = wj’a Wy =wy; +af3
wé’; =w;"‘1 Way = W3y +a/3 wf&:w}}l wyy =wy, +a/3

If the table returns a hit, then the SP interface reads in the peaiue with the threshold to determine whether the previous
numbers that are being provided by the table. In the eventascision, identified by the incoming port number, will be

a miss from the search, the SP interface randomly assigns tewarded or punished. At this point, the new values for the RNN
port numbers. If the primary port number is either disconnectagights and threshold can be calculated. Next, the weights are
or in the direction from which the smart packet came, then tlielivered to the neurons, where the steady state probabilities are
SP interface will select the secondary port number and so onc#ficulated over several iterations. Once they are obtained, the
all other ports are disconnected, then the incoming port numipgobabilities are sorted and the identification numbers (i.e., the
will be selected. Finally, the port number is output to the systecorresponding port numbers) of the neurons with the highest

controller as the done signal is asserted. probabilities are noted. Using the port number rather than the
. . . actualg value saves in both storage area and processing time for
B. Reinforcement Learning Algorithm Component the SP interface. The final step is to update the weight storage

The high level state diagram depicted in Fig. 7 represents fidle with the new weights, threshold, and output decisions.
RL algorithm component. Similar to the SP interface, this com-
ponent waits for a start signal generated by the acknowledgm&t
mailbox. With it signals for a start, the MB also applies the QSD The original CPN model specifications requirgef weight
parameters to the search index of the weight storage table. Téens for each RNN, whereis the number of output links/neu-

RL component initiates a search on the table and waits for a rens. So, in a 32-port CPN router, each RNN would need to
sponse. If present, the table will return the weights and threshskdre and manipulate 2048 weight terms. Furthermore, multiple
of the desired RNN model. If the RNN isn’t found, then the RIRNN models are needed to represent the different QSD pairs
algorithm will instantiate a new one with the default initializathat are active in the router. The hardware design needs to be
tion values. flexible and easily scalable, therefore, ways to minimize the

In accordance with Fig. 5, the MB also provides the Rhumber of weight terms are investigated. Consider a 4 neuron
component with the incoming port number of the associatéally connected implementation with neurons 1 through 4. Sup-
acknowledgment and the reward value calculated from these neuron 1 was the last decision made by the network. An ac-
measurement data. The RL component compares the rewlmdwledgment packet is returned and the neural network will be

Neurons
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Clock T

rewarded for making a good decision. If the weights are groupgig- 10. Block diagram of weight storage table.
together based upon destination (i.e., neuron 1) and type (ex-
citation or inhibition), then it can be seen that all the weightmodified accordingly as shown below. The implication of this
of a group will have the same value. As shown by Table I, trnalysis is a neural network withh weight terms as opposed
excitation weights leading to neuron 1 are all incremented Iy 2n2. Fig. 8 shows the effect of this analysis. Note that the
the same amount, wherea = (R — T'). In addition, the inhi- external inhibition signalA(), is zero in accordance with the
bition weights leading to all other neurons are incremented BPN specifications and therefore not included in the figure.
a/(n—1) with n equal to the number of neurons in the network.
The remaining weights are not modified during this stage. + _ ) _ )
The second part of the algorithm is the normalization process%i = | % Z gj + A7) r(i) +w Z gj +A(0)
Table Il is a rearrangement of the previous table to facilitate the J J
calculation of the interim rate of firex. Summing up the weight
terms, it can be seen that the valuerefis r,,q + 2a for each
neuron, where,q was the previous rate of fire.

(17)

An n port router has an SPP withneurons. The neuron array
requires only@n weight terms and the summation of thealues
(12) @s its inputs as seenin Fig. 9. T¢ealues require a configurable
variable in the design.

Per the algorithm, the next step is to multiply each weight )
by the normalization factor,q4/r+ which can be rewritten as D. Weight Steage ®ble
ro1a/ (To1a + 2a). Finally, the new rate of fire can be calculated. The weight storage table is a dual port memory structure
The substitutions shown below verify that the rate of fire fathat maintains the characteristics of multiple RNN models.
each neuron is constant. The table’s dual port configuration allows for simultaneous
read/read and read/write operations. Port 1 is for read opera-
tions only and is dedicated to smart packet processing. Port 2
is capable of read and write operations as required by the pro-
cessing of the reinforcement learning algorithm. As illustrated
in Fig. 10, the inputs for port 1 consist of a start signal and the
QSD parameters. The outputs are a done and a hit signal as well
as the requested data, if available. In addition to the interface

Realizing now that some of the weight terms are identical, thi@corporated by port 1, port 2 has a read/write signal and data
equation for the steady state probability of the neuron can ioguts. Both ports are synchronized to an external clock source.

Ty = Z[w+(i,m) +w™(i,m)] = roa + 2a

Thew = Z[uf"(i, m) x ro1a/r * +w= (4, m) * ro1a/r*], (13)

Toew = Y _[wT(i,m) + w™ (i,m)] * ro1a /1, (14)
Tnew = (rold + 2@) * 'rold/('rold + 2@)7 (15)

Tnew = Told- (16)
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Fig. 11. Weight storage table components.
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Fig. 12. SPP simulation.

The table consists of three components: a table controllardestination of node 4. When the ACK arrives at the interme-
a content addressable memory, and a random access menthage router, it is processed in the acknowledgment mailbox and
Fig. 11 depicts the internal composition of the table. In the cuhen forwarded accordingly. The mailbox supplies the SPP with
rentimplementation, the CAM size is 16 by 68 bits and the RAhe incoming port number of the ACK (ingort_ack—which
size is 320 bytes. was the outgoing port number of the corresponding SP), the
QSD parameters of the corresponding SP (gdd—the ACK
actually would have the source and destination reversed) and

An SPP for a four-port CPN router has been implementélde calculated reward value. In this trial, the supplied reward
in VHDL. Simulated inputs from the system controller andfalue is less than the initial threshold resulting in a situation
acknowledgment mailbox have been applied to the desigmhere the decision to use port 1 will be punished. Still in
Figs. 12 and 13 show some of the results from the sirfig. 12, a second smart packet with the same QSD parameters
ulations. In Fig. 12, the SPP has been initialized with nenters the router from port 0. In this instance, the SPP uses
network information. The first smart packet arrives througthe experience of the previous smart packet to change its
port O (inc_port_sp) and the system controller queries thelecision. This new smart packet is routed out through port 2.
SPP for the next destination. The SP originated from nodde simulation results in Fig. 13 show the low level execution
4 with a destination of node 6 and a QoS requirement ofdf the reinforcement learning algorithm. Once the SPP receives
(gsdsp = 10000000400000006). Since the SPP does not conthe start signalstartack) from the acknowledgment mailbox,
tain a relevant RNN model within its table, the device respontfse RL component attempts to read the weights and threshold
with a random outgoing port assignme(out port_sp). The related to the given QSD from the table. In this case, the table
random value, in accordance with previous work, is cannot kgsponds with a miss. This resets the weighy andw,,) and
the same direction from where the packet came. In this catfgeshold terms to their default values. For this implementation,
the packet is routed out through port 1. After the smart packée weight, threshold and terms each have 15 bits to the
arrives at node 6, the acknowledgment packet is generated wight of the ones position. Therefore, the hexadecimal value

E. Simulations
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Fig. 13. Simulation results showing learning algorithm.
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Fig. 14. Simulation showing punishment scenario.

08000 is equivalent to 1.0000. In this examination, the exatighesty at 4A0F (an actual probability of 0.578). After those
values are not as important as being able to identify the correeiculations are complete, the RL component determines which
trends in the simulation. After the terms are reset, the threshaleb neurons had the highegtThe final calculation performed

is compared to the reward value from the mailbox. Since tlre this sequence is the adjustment of the threshold value. The
reward value is greater, the RL component must now rewamdw threshold, 017B, is significant increase over the previous
the previous decision (inport_ack represents the previousvalue, 0100, due to the large reward that was received, 3FF9.
decision). To increase the probability of assigning port Dhe final step is to store the necessary RNN characteristics into
again, the excitation weightv,o is increased. In addition, the table. The threshold and weights terms are saved for future
the inhibition weightsw,,, associated with the other ports araise by the RL component. Additionally, the numbers of the two
incremented. This decreases the probability of one of the ottmeurons with the highegts are stored. These numbers will be
ports being selected. Next, the weight terms are normalizedused by the SP interface when subsequent smart packets with
prevent them from growing unbounded. Once the weights ahe corresponding QSD need to be routed.

determined, they are used by the neuron array to calculate th&he simulation results for a punishment scenario are shown
steady state probabilities As seen in the figure, this iterativein Fig. 14. This time the QSD parameters of the packet are
process enables the values to converge. Neuron 0 has 38600000800000009 and the previous decision was port 3.
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Fig. 15. RTL schematic of the “weight storage table” component.

Once again, this is a situation where there is no matching RN : . L
model stored in the table. Therefore, the default weight ar : INTERFACE
threshold values are loaded. Since the reward value is Ie# i
than the threshold, the RL component must now punish tH
earlier decision. To decrease the probability of assigning pdi
3 again, the inhibition weightv,,s is increased. In addition,
the excitation weightsu, assigned with the other ports aref
incremented. This will increase the chances of one of the oth
ports being selected. After the weight terms are normalizef
they are used to calculate the new steady state probabilitifl
q. This time neuron 3 has the lowegtat 4A0F (an actual @
probability of 0.4990) and the other neurons are 400A (0.5002
A new threshold value is calculated and stored in the tab

along with the weights and the port numbers 0 and 1. Froi REINFORCEMENT & TABLE
the simulations, it can be seen that the smart packet proces NEURONS

only requires 6 clock cycles to service the smart packets. The
combination of the table access, reinforcement learning, afiét 16. SPP macro layout for 0/6m process.

steady state calculations need 55 clock cycles.

TABLE Il

. . . . OVERALL PERFORMANCE SUMMARY
F. Circuit Implementation Details

The smart packet processor design is implemented in VHDL. Technology 0.6 pm CMOS
Presynthesis simulations (provided in the previous subsection)
are run to confirm the proper functionality for the design. The
behavioral model for our design is synthesized with Synopsys
tools using 0.6:m CMOS library cells to obtain hardware cir- Number of gates 105,501
cuitimplementation. In synthesizing the design, we set some op- Core area 6.46 mm?
timization constraints, such as maximum area, maximum delay
and clock specifications. The operating frequency of the pro-
cessor is set at 50 Mhz. The design is implemented in a Iéble” component. Compared to the architectural block diagram
erarchical fashion and an example to this is shown in Fig. 1% Fig. 11, this RTL circuit depicts more implementation details
for one of the major components in the design: “weight storagech as the separate table controllers for ACK and SP packets

Supply voltage 33V
Power consumption @ 50 MHz | 57.7 mW
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TABLE IV
COMPONENTSSUMMARY

Component # of gates | Power consumption @ 50 MHz | Critical path delay
Weight storage table 50,824 53.97 mW 9.59 ns

CAM | 22,776 23.86 mW 2.76 ns

RAM | 27,048 28.13 mW 5.93 ns
Reinforcement learning and neurons 54,376 3.59 mW 7.70 ns
SP interface 301 0.13 mW 4.60 ns

which ensure the dual access operation of this module. Thkis is better than the reported results given in the range of 2.4
gate-level netlist obtained after synthesis is imported to Caderioel 0 Gb/s wire-speed processing rates [10], [15], [16].

Silicon Ensemble, for floorplanning, placing and routing of the

design. The layout for the design is shown in Fig. 16. The SPP IV. SYSTEM-LEVEL INTEGRATION

core occupies 6.46 mhin a 3-metal single-poly 0.4 digital - _
CMOS process. Since this core is planned to be used as a mache have verified the operation of the smart packet processor

in our network processor chip, the I/O pads are not drawn. in an isolated environment where the arrival of smart and ac-
The performance summary for the implementation is gi\/é(rpowledgment packets is simulated. The next step is to create

in Table Ill. The number of gates is noticably high, this is du% basic CPN router model and use it to build a network simula-

: . : : n. This will provide us with the ability to test the interactions
he f hat the routing algorithm consi f many if-then ' .
the fact that the routing algorithm consists of many If-the ai?;ﬁween multiple SPPs and to later add more of the functional-

for-do statements and these statements map into a larger k )
design. This is also reflected on the total core area as be,HSS found in the CPN model.
large. However, the area can be made further smaller by using a
smaller process than 0.6 micron CMOS. In comparison, an dvy- SyStem Controller
erage core area for a RISC CPU based processing module in Aside from the SPP, the system controller is the most compli-
router is given as 5.2 mfrin 0.18.um technology [12]. cated design of the CPN router. The system controller interacts
As far as the power consumption is concerned, the bulth all of the other components. It receives packets from the
of the measure is in the “weight storage table” componeimput port controller (IPC) and dispatches them through the
as shown in Table IV. Note that, this component includesutput port controllers (OPC). The system controller activates
the CAM and RAM blocks which comparably have highethe SPP when it needs to route a smart packet and forward
switching activity than the rest of the design. Although, ththe locally generated acknowledgment packets to the mailbox.
“reinforcement learning” component has more number dthe state machine in Fig. 17 shows a high level representation
gates, it consumes less power than the prior. However, toisthe system controller. The IPC requests service from the
component shows a sizable path delay; this is mainly due ggstem controller upon the arrival of a smart packet. The system
the loops used in the VHDL implementation of the learningontroller responds to the request and receives the packet for
algorithm. Based on the delay information given in Table I\hrocessing. The packet’'s destination is examined and used to
we can calculate rough estimates for the maximum numberddtermine which one of the three different routing strategies
searches per second the CAM component (16 words of 68 hitdl be employed.
each) can provide(l search2.76 ns) = 362 M searches/s. If the smart packet has arrived at an intermediate node in its
If compared to some of the few designs reported in this argmth then the SPP will be referenced to determine the next hop.
this shows a performance in between the one reported Tihe QSD parameters and the port that the smart packet arrived
[13] which has 9.4 M searches/s with a larger design: 12Brough are applied to the smart packet interface of the SPP with
words of 320 bits each, and the professional product repor@dignal to start processing. The system controller will remain
in [14] which has 100 M searches/s with 32 Kwords of 28Rlle until the interface responds with an outgoing port number.
bits each. The maximum number of smart packets that chiext, the CM of the smart packet is updated with the address
be processed per second at one node by the SPP is givenfake next hop (determined by the outgoing port number) and
follows: (1 packef9.59 ns+ 4.60 ns) = 70 M packets/s. a reward value. In this implementation, the reward value is a
Here, it is assumed that smart packet routing involves onkariable that can be controlled by the user throughout the simu-
the SP interface and the weight storage table; and also tagon. Finally, the smart packet is forwarded to the correct out-
reinforcement learning algorihtm is run simultaneously. Wgoing port. Service from the OPC is requested. After the OPC
are aware that without completing the dumb packet processiggponds, the system controller waits for the next IPC request.
module and the rest of the CPN network processor, it would nebuters in the CPN know the addresses of their adjacent neigh-
be fair to compare this packet rate with other reported netwdskrs. In the second case, if the smart packet has arrived at a
processing hardware; however, an idea can be given such tloatter connected to the destination router, then the system con-
our performance (based on smart packets with approximatsigller willimmediately attempt to forward the packet to its des-
700 bits each) corresponds to 50 Gh/s wire-speed processtimation. The user can control the status of the port connections.
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vt b0 B. Acknowledgment Mailbox

|

The final component of the CPN router is the acknowledgment
o008 ouos mailbox. The state machine for the design is shown in Fig. 18.
When the IPC makes a request, the mailbox will read in the
@ packet and its incoming port number. The mailbox must search
=2 — the CM for its address. It can then extract the correct reward
value from the CM. The incoming port number and the reward
Q L__] value can be immediately applied to the SPP’s RL component.
= = The source and destination of the acknowledgment packet must
0002 004 be switched so that the QSD parameter is consistent with the
QSD of the corresponding smart packet. Then, the RL algorithm
Fig. 19. Simulation configuration. of the SPP can be activated. In this design, the mailbox waits

_ for the SPP to complete its calculation. After it is complete,
If the port has been disconnected, then the system controllert@s mailbox reads the next address in the CM and determines

above, will request service from the SPP to determine the oy{z outgoing port number. Service from the OPC is requested

going port number. In the final case, if the smart packet has @fg, once granted, the acknowledgment packet is forwarded.
rived at its destination router, then it has successfully completed

its journey. An acknowledgment packet must now be generatEd Simulations

to return the measurement data that has been collected. First,

switching the source and destination of the smart packet generThe topology of the network that is used for system level
ates the packet's QSD. Next, the CM from the smart packetsgnulation is shown in Fig. 19. The configuration is similar to
written in reverse into the acknowledgment’'s CM. the one used in the CPN software test bed. As discussed, each
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Fig. 20. Network simulation aid.
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Fig. 21. Network simulation.

link in the network is configurable in terms of reward value and arrives at router 4. In router 4, the packet’s destination is an ad-
connection status (i.e., disconnected). In the simulation, smgtent router. The system controller verifies the connection and
packets are generated at router address 00000008 with a déiséi-packet is immediately directed to router 5. Note that prop-
nation of address 00000005 and a QoS of 1. Fig. 20 is an aigations involving random assignments take 540 ns (27 clock
for viewing subsequent figures. The top six lines show the QSiycles). In contrast, the forwarding a packet to a direct connec-
of the packets as they pass through routers. The bottom six lities (from router 3 to router 5) requires only 260 ns (13 clock
show the acknowledgment packet flow. Thus, in Fig. 20, we cagcles). The difference in time occurs because the SPP needs to
see a smart packet, QSB 10000000800000005, moving from be accessed before the random assignment can be made.
router 8 to router 5. For this particular simulation, we have de- As seen in Fig. 21, the next smart packet, SP2, follows a
signed the links so that the 8-1-3-5 route will be rewarded whitéfferent path than its predecessor, traveling through routers
other paths are punished. We will verify the correct behavior 8f1-3-5. Again, the assignments are arbitrarily made. This
the system by analyzing the results. figure also shows the generation of the acknowledgment
In Fig. 21, we can see the complete path of a smart packesckets in router 5. The creation of ACK1 is initiated by the
SP1. In router 1, there is currently no route information storedrival of SP1. Since ACK1 is source routed and follows the
for the QSD combination in any of the routers. In this case theverse course of SP1, its first hop is router 4. Similarly, ACK2
smart packet is arbitrarily forwarded from router to router untis manufactured as a response to the receipt of SP2. ACK2's
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Fig. 22. Link disconnected.
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Fig. 23. Link reconnected.

first hop is router 3, as seen in the figure. Fig. 21 also shows the V. CONCLUSION
complete path of ACK1 and the production of more ACKs and The implementation of a neural network routing engine for the

S_PS' Notice that fo_r allthe acknowledgment papkets shown, taﬁN has been verified through simulations. The SPP design
time between leaving router 5 and appearing in the next roulgf, itaneously services smart packets while integrating the
is significantly less than the time between the subsequent hoRsntorcement learning algorithm. To accomplish this, the SPP
Since router 5 generates these acknowledgment packets, {3@¥rporates several interacting state machines with a dual port
do not invoke the reinforcement learning component of thgemory structure for storing and accessing the parameters of
SPP in router 5. In all other routers, the arrival of these packefgtiple RNN models. As a major improvement over the CPN
will activate the RL component, which delays the transmissiaftware implementation, the RNN models have been reduced in
of the packet. Also, notice the pileup of acknowledgmeRfize from2n? weight terms t®n weight terms. The behavioral
packets in router 1 occurring after 5000 ns. This is due faodel for the design is synthesized using @6 CMOS library
acknowledgment packets arriving from different directiongells to obtain hardware circuit implementation. The current
and then waiting for service. Both of these situations will bgigital implementation of the learning algorithm and neurons
addressed in future implementations of the mailbox by usir@nsumes a significant amount of space. As a future direction
more efficient technique to extract and buffer the measureméait this work, an analog/mixed-signal RNN implementation
data. Still in Fig. 21, we can see the propagation of two moveill be considered. A basic CPN router has also been developed
smart packets, SP3 and SP4. SP3 takes the same routéin 8HDL to test the SPP on the system level. In addition to the
SP2, 8-1-3-5, while SP4 uses a different route, 8-1-4-5. TP, its subcomponents are the input port controller, output
decisions made in router 1 are still arbitrary and will remain guort controllers, the system controller, and the acknowledgment
until the data from ACK1 is integrated into router 1's SPP. Thisailbox. The next step in the development of the CPN router
occurs at approximately 6000 ns into the simulation. is to enhance the functionalities of the other components. Both
In Figs. 22 and 23, the acknowledgment packets are ribe system controller and the acknowledgment mailbox need
shown so that we may focus on the smart packet propagatithbe modified to handle the calculations of rewards and goals.
Fig. 22 shows the smart packets after they have learned frdfe dumb packet switch and security controller need to be
the experiences of previous smart packets. They have corre€@pigned and integrated.
chosen route 8-1-3-5. The smart packets would continue to
choose this path as long as it is available and the reward for ACKNOWLEDGMENT

taking it is large enough. In this simulation, we decided to The authors would like to thank A. Ejnioui for the fruitful

force them to alter their path by disconnecting the link betweejiscussions and the critical review of the paper, and D. Harper
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