
 Kocak, T., & Kaya, I. (2006). Low-power bloom filter architecture for deep
packet inspection. IEEE Communications Letters, 10(3), 210 - 212.
10.1109/LCOMM.2006.03028, 10.1109/LCOMM.2006.1603387

Link to published version (if available):
10.1109/LCOMM.2006.03028
10.1109/LCOMM.2006.1603387

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/29025555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/LCOMM.2006.03028
http://dx.doi.org/10.1109/LCOMM.2006.1603387
http://research-information.bristol.ac.uk/en/publications/lowpower-bloom-filter-architecture-for-deep-packet-inspection(f8d00739-3b79-410c-ab44-f1f5c4c8df42).html
http://research-information.bristol.ac.uk/en/publications/lowpower-bloom-filter-architecture-for-deep-packet-inspection(f8d00739-3b79-410c-ab44-f1f5c4c8df42).html

210 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 3, MARCH 2006

Low-Power Bloom Filter Architecture for
Deep Packet Inspection

Taskin Kocak and Ilhan Kaya

Abstract— Bloom filters are frequently used to identify ma-
licious content like viruses in high speed networks. However,
architectures proposed to implement Bloom filters are not power
efficient. In this letter, we propose a new Bloom filter architecture
that exploits the well-known pipelining technique. Through
power analysis we show that pipelining can reduce the power
consumption of Bloom filters up to 90%, which leads to the
energy-efficient implementation of intrusion detection systems.

Index Terms— Bloom filters, low-power design, network intru-
sion detection.

I. INTRODUCTION

NETWORK intrusion detection systems (NIDS) are used
to identify the malicious content such as internet worms

and viruses in network packets. They typically employ a deep
packet inspection functionality, which checks the payload of
the packet against a set of known virus and worm signatures.
Bloom filters [1] are used in such filtering applications to
match strings such as Snort rules [7]. Although Bloom filters
have found wide spread usage in networking applications [2],
they are not conservative in terms of power. An NIDS consists
of 4 Bloom filter engines can dissipate up to 5 W. In order to
reduce the power consumption of Bloom filters, we propose
to employ a pipelining technique in the architecture of Bloom
filters. We call this new type of Bloom filters as pipelined
Bloom filters. In this letter, first, we propose a hardware
system consists of pipelined Bloom filters as an energy-
efficient NIDS. Then, we provide a mathematical analysis to
show that the proposed system is more energy-efficient than
the regular Bloom filter-based architectures used so far.

II. BLOOM FILTERS

A Bloom filter is a data structure that stores a given set of
signatures, by first computing multiple hash functions on each
of the members of the set, and then it queries the database for a
given input string, by again computing many hash functions of
the input with a lookup operation followed over the database.
First operation is called programming of the Bloom filter, and
the second operation is querying. A typical Bloom filter is
illustrated in Fig. 1.

In the programming stage, given a string X, which is a
member of the signature set, a Bloom filter computes k many
hash values on the input X by using k different hash functions.

Manuscript received September 29, 2005. The associate editor coordinating
the review of this letter and approving it for publication was Prof. Iakovos
Venieris.

The authors are with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL 32816 USA (e-mail:
{tkocak, ikaya}@cs.ucf.edu).

Digital Object Identifier 10.1109/LCOMM.2006.03028.

Fig. 1. A regular Bloom filter with k hash functions.

Then it uses these hash values as index to the m-bit long
lookup vector. It sets the bits corresponding to the index given
by the hash values computed. It repeats this procedure for each
member of the signature set.

In the query stage, for an input string Y, Bloom filter
computes k many hash values by utilizing the same hash
functions used in programming of the Bloom filter. Bloom
filter looks up the bit values located on the offsets (computed
hash values) on the bit vector, and,

* If it finds any bit unset at those addresses, it declares
the input string to be a nonmember of the signature set,
which is called a mismatch.

* Otherwise, it finds all the bits are set, it concludes that
input string may be a member of the signature set with
a certain probability (false positive probability), which is
called a match.

A Bloom filter never produces false negatives, which means
if it decides that an input is a nonmember, input certainly does
not belong to the signature set. However, it may produce false
positives.

Following the analysis of [4], the false positive probability
f is calculated by,

f =
(
1 − e

−nk
m

)k

(1)

where n is the number of signatures programmed into the
Bloom filter, m is the length of the lookup vector, and k is the
number of hash functions used to implement the Bloom filter.
In order to minimize the false positive probability, the value
of m must be quite larger than n. For a fixed value of m

n , k
must be large enough such that f gets minimized. The number
of hash functions that minimizes the false positive probability

1089-7798/06$20.00 c© 2006 IEEE

KOCAK and KAYA: LOW-POWER BLOOM FILTER ARCHITECTURE FOR DEEP PACKET INSPECTION 211

is given by
k =

(m

n

)
ln 2 (2)

If we take the average number of bits allocated to a single
signature, m

n = 50 , the number of hash functions per Bloom
filter is calculated as

k = (m/n) ln 2, k = (50) ln 2, k = 35 (3)

Substituting m
n = 50 , and k = 35 into the false positive

probability equation, Equ. 1, yields a small probability with
which Bloom filter produces false positives.

f = 0.535 < 3.10−11 (4)

Hash functions used in the Bloom filters are generally of type
universal hash functions [3]. The performance of universal
hash functions are explored by Ramakrishna et al [6]. The hash
function, being a member of a universal hash function class,
maps the input string to an output string, such that collision
probability of given any two input strings is small. Given any
string X, consisting of b bits,

X =< x1, x2, x3...xb > (5)

ith hash function over the string X is defined as

hi(x) = ri1 • x1 ⊕ ri2 • x2 ⊕ ri3 • x3 ⊕ ...rib • xb (6)

where rij’s are random coefficients ranging from 1 to m, and
xi’s are the bits in the input string.

A single Bloom filter uses k many hash functions in order to
make a decision on the input. Hence the power consumption of
a Bloom filter shown in Fig. 1 is a summation of the power
consumptions of each of the hash functions, PHi

, with the
lookup operation, PL, followed, plus an AND operation:

PBFregular
=

k∑
i=1

(PHi
+ PL) + PAND (7)

Power consumption of the AND gate is ignored hereafter,
since it is minimal compared to the power used by the hash
functions. We also assume that the lookup power over a m-
bit vector is approximately constant for each index calculated
by any of the hash functions. Since hash functions with the
same number of input bits will be implemented with the same
number of components and will consume approximately the
same amount of power. We can write the power consumption
of a regular Bloom filter as follows

PBFregular
=

k∑
i=1

(PHi
+ PL) = k.(PH + PL) (8)

III. PIPELINED BLOOM FILTERS

Since the number of hash functions required to minimize
the false positive probability of a Bloom filter is large, it is
better, in terms of power, to implement these hash functions
in a pipelined manner. We call this new type of Bloom filters
pipelined Bloom filters.

Basically, a pipelined Bloom filter, as shown in Fig. 2,
consists of two groups of hash functions. The first stage always
computes the hash values. By contrast, the second stage of
hash functions only compute the hash values if in the first

Fig. 2. A 2-stage pipelined Bloom filter.

stage there is a match between the input and the signature
sought.

The pipelined Bloom filters will have the same number of
hash functions as the regular Bloom filters. Hence the false
positive probability is the same. A pipelined Bloom filter
exploits the virus free nature of the network traffic in most of
the time. At worst, it will operate like a regular Bloom filter,
which uses all of the hash functions before making a decision
on the type of the input. The advantage of using a pipelined
Bloom filter is if the first stage produces a mismatch, there is
no need to use the second stage in order to decide whether the
input string is a member of the signature set. This is simply
because a Bloom filter never produces a false negative.

Let us first derive the probability of match in the first stage.
By following a similar analysis of [5], we assume that the
hash functions used in each Bloom filter are perfectly random.
This is a reasonable assumption since each hash function
coefficients are selected randomly in range 1 to m. In the
first stage, r-many of the hash functions are utilized. The
probability that a bit is still unset after all the signatures are
programmed into the pipelined Bloom filter by using k-many
independent hash functions is α.

α =
(

1 − 1
m

)kn

≈ e
−kn

m (for largem) (9)

where 1
m represents any one of the m bits set by a single

hash function operating on a single signature. Then
(
1 − 1

m

)
is the probability that the bit is unset after a single hash value
computation with a single signature. For it to remain unset, it
should not be set by any of the k-many hash functions each
operating on all of the n-many signatures in the signature set.
Consequently, the probability that any one of the bits is set is

(1 − α) ≈ 1 − e
−kn

m (10)

In order for the first stage to produce a match, the bits
indexed by all r of the independent random hash functions
should be set. So the match probability of the first stage is,
represented as p,

p =
r∏

i=1

(1 − α) =(1 − α)r ≈ (1 − e
−kn

m)r (11)

212 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 3, MARCH 2006

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of hash functions in the first stage of pipelined Bloom filters, r

P
ow

er
 S

av
in

g
R

at
io

, P
S

R

m/n=50

m/n=100

m/n=25

Fig. 3. Power saving ratio in pipelined Bloom filters w.r.t. number of hash
functions utilized in the first stage.

The mismatch probability of the first stage is simply 1-p,

1 − (1 − e
−kn

m)r (12)

With a probability of (1-p) the first stage of the hash func-
tions in the pipelined Bloom filter will produce a mismatch.
Otherwise, the first stage produces a match, then the second
stage is used to compare the input with the signature sought.
Therefore the power consumption of a pipelined Bloom filter
is given by

PBFpipeline = P1st−stage + P{match} × P2nd−stage

PBFpipeline =
r∑

i=1

(PHi
+ PL) + p ×

k∑
j=r+1

(PHj
+ PL)

+PAND (13)

Again, PAND can be neglected, since it is very small with
respect to the power consumption of hash functions. The
power consumption of a pipelined Bloom filter simplifies to

PBFpipeline
=

r∑
i=1

(PHi
+ PL)

+(1 − e
−kn

m)r ×
k∑

j=r+1

(PHj
+ PL)

= r.(PH + PL) +

(1 − e
−kn

m)r(k − r)(PH + PL) (14)

The power saving ratio, PSR, in a single Bloom filter by
deploying pipelining technique can be calculated as

PSR =
(Pregular − Ppipelined)

Pregular
(15)

By substituting Equ. 8 and Equ. 14 into Equ. 15, the average
power saving ratio, PSR, is given by

PSR =

(
k × A −

[
r + (1 − e

−kn
m)r × (k − r)

]
× A

)
k × A

(16)
where A = (PH + PL), which is the power consumption of
a single hash function with a single lookup operation. After

simplifying As, average power saving ratio, PSR, is found out
to be

PSR =
k − r + (r − k) (1 − e

−kn
m)r

k
(17)

For different values of the number of bits allocated to per
signature, m

n , power savings over the number of hash functions
utilized in the first stage are illustrated in Fig. 3.

The amount of power conserved in the system increases as
m
n increases. This is because the number of hash functions
deployed in the first stage becomes a smaller portion of the
overall hash functions deployed in each configuration. The
increase in the PSR value at first stems from the fact that
increasing the number of hash functions in the first stage
increases the probability of mismatch, thus the second stage is
not utilized. After the optimum value, PSR decreases steadily.
This is again because, the more hash functions are deployed
in the first stage, the more power that they consume. If we
increase the number of hash functions used in the first stage
to such a degree that all hash functions in the system deployed
in the first stage, there remains no power gain at all (i.e., the
system behaves just like a regular Bloom filter.)

IV. CONCLUSION

In this paper, we exploited the fact that the most of the
current network traffic is not malicious and proposed to
pipeline the hash functions in the Bloom filters that are used in
network intrusion detection systems. Analytical results show
that the pipelining technique significantly decreases the total
power consumption of a Bloom filter. It is shown that the
lesser the number of hash functions implemented in the fist
stage of a pipelined Bloom filter, the more the power saving
is. The number of bits allocated to per signature, m

n , affects
the power saving ratio in a pipelined Bloom filter. Analysis
performed for feasible values of m

n revealed up to 90% power
savings. The selection of the hash functions to be deployed in
the first stage of a pipelined Bloom filter is not considered in
the current analysis. Our future work will include this as well
as experimental evaluation of these novel pipelined Bloom
filter architectures.

REFERENCES

[1] B. Bloom, “Space/ time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, July 1970.

[2] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: a survey,” Internet Mathematics, vol. 1, no. 4, pp. 485-509,
July 2003.

[3] J. L. Carter and M. Wegman, “Universal classes of hash functions,”
J. Computer and System Sciences, vol. 18, no. 2, pp. 143-154, Apr.
1979.

[4] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lock-
wood, “Deep packet inspection using parallel bloom filters,” IEEE
Micro, vol. 24, no. 1, pp. 52-61, Jan. 2004.

[5] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans.
Networking, vol. 10, no. 5, pp. 604-612, Oct. 2002.

[6] M. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware
hashing functions for high performance computers,” IEEE Trans.
Computers, vol. 46, no. 12, pp. 1378-1381, Dec. 1997.

[7] The Sourcefire Vulnerability Research Team, “Official Snort
Ruleset,” Sourcefire, Inc., Columbia, MD, Aug. 2005 (web:
http://www.snort.org/pub-bin/downloads.cgi).

