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Abstract— This paper investigates iterative channel estimation
and symbol detection for spatial multiplexing multiple input
multiple output (MIMO) systems with frequency flat block fading
channels using the expectation-maximization (EM) algorithm.
The maximum likelihood (ML) estimation of the MIMO channels
via the EM algorithm requires the computation of the posterior
mean and covariance of transmit symbol vectors which involve
an exhaustive search of all possible symbol combinations and are
computationally prohibitive for large systems. However, most of
the symbol combinations contribute very little to the estimation.
Therefore, we suggest that sequential Gaussian approximation
(SGA) algorithm can be used to identify the M most significant
symbol combinations and we can approximate the mean and
covariance based on those symbol combinations. Simulation
results are provided to illustrate the proposed algorithm.

I. INTRODUCTION

Communication systems with multiple transmit/receiver an-
tennas have been shown to be a very promising technology
for the next generation communication systems[1]. To achieve
a high performance in such a system, the joint channel
estimation and symbol detection plays an important role in
the receiver design. In general, the Maximum Likelihood (ML)
solution requires prohibitive computation for large systems.

The expectation-maximization (EM) algorithm [2] [3] pro-
vides a general framework to approximate the ML solution
with reduced complexity in an iterative manner. A variety
of EM/SAGE based algorithms have been proposed in the
literature [4] [5] [6] [7] [8] [9] to estimate parameters of
interest.

The approximate ML estimation of channels via EM al-
gorithm requires the computation of the posterior mean and
covariance of the transmitted symbols which involves an
exhaustive search of all possible symbol combinations to
estimate the joint posterior symbol probabilities and is com-
putationally prohibitive for large systems.

Many suboptimal symbol detection algorithms, such as
sphere decoder (SD) [10], successive inference cancelation
[7] and probability data association [11], can approximate the
marginal symbol probabilities and the mean of transmitted
symbols with a reduced complexity. SD type algorithms tend
to perform very well but suffer from the fact that their
complexity is varying and depends on the channel realization
[10].

The joint posterior symbol probabilities are always approx-
imated by the product of the marginal symbol probabilities
computed via suboptimal detection algorithms and as a result,
the covariance matrix is approximated as diagonal [7] [8].

In this paper, we consider ML channel estimation via
EM algorithm for spatial multiplexing MIMO systems with
frequency flat block fading channels. Other than approximat-
ing the covariance matrix as diagonal, we compute all the
elements of the covariance matrix via a suboptimal procedure
which does not require searching of all the possible symbol
combinations. This is based on the fact that most of the
symbol combinations contribute very little to the final result
and thus can be approximated with only M significant symbol
combinations. The M most significant symbol combinations
are identified via sequential Gaussian approximation (SGA)
algorithm [12] which has been proposed as a near optimal
symbol detector for MIMO systems.

The paper is organized as follows. Section II describes the
system model. Section III explains how the EM algorithm
works for our system. Section IV illustrates how to identify
the M most significant symbol combinations via the SGA
symbol detection algorithms and how to compute the mean and
covariance based on those symbol combinations. Section V
summarizes the proposed algorithm. Section VI demonstrates
the performance of the proposed algorithm via Monte Carlo
simulation. The paper is concluded in section VII.

II. SYSTEM DESCRIPTION

Consider a narrow band spatial multiplexing MIMO systems
with NT transmit antennas and NR receive antennas. At each
time instant k, the system model is:

y(k) = Hx(k) + n(k) (1)

where H is the NR × NT Rayleigh block fading channel
matrix with h(i,j) as its (i, j)th entry, which is the channel
gain from transmit antenna j to receive antenna i; i =
1, . . . , NR and j = 1, . . . , NT ; x(k) def= [x1(k), . . . , xNT

(k)]T

( [∗]T means transpose, [∗]∗ means conjugate and [∗]H means
conjugate transpose ); a symbol xj(k) transmitted from the
j-th antenna is taken from a modulation constellation A =
{a1, a2, . . . , aN}; n(k) is a NR × 1 zero-mean complex
circularly symmetric Gaussian noise with variance matrix σ2

nI
(I is the identity matrix).
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Let Y1:K
def= {y(1), . . . ,y(K)} denote all the observations

and X1:K
def= {x(1), . . . ,x(K)} denote all the transmitted

symbols in the current transmission burst, the joint density
function for {Y1:K ,X1:K ,H} factors as:

p(Y1:K ,X1:K ,H) = p(H)
K∏

k=1

p
(
y(k)|x(k),H

)
p(x(k))

(2)
where the probability density function p(H) is the prior
knowledge of the channel statistics and p(x(k)) is the prior
information about symbols.

Then the log-function will be:

logp(Y1:K ,X1:K ,H) ∝
∑

k

|y(k) − Hx(k)|2/σ2
n

+ logp(H) +
∑

k

logp(x(k))(3)

III. ML CHANNEL ESTIMATION VIA EM ALGORITHM

The EM algorithm provides an iterative scheme to approach
the ML estimate Ĥ = argmaxHp(Y1:K |H) when the direct
computation is prohibitive. The EM algorithm relies on iter-
ations between two steps: a conditional expectation (E) step
and a maximization (M) step [3].

The E step finds the expected value of the complete-data
log-likelihood log

(
p(Y1:K ,X1:K |H)

)
with respect to the

unobserved data X1:K conditioned on the current channel
estimate H(l):

Q
(
H,H(l)

)
= EX1:K |Y1:K ,H(l)

(
log
(
p(Y1:K ,X1:K |H)

))

∝ − 1
σ2

n

K∑
k=1

(
|y(k) − Hx̄(l)(k)|2 + Tr

(
HS(l)(k)HH

))
, (4)

where:

x̄(l)(k) def= E
(
x(k)|y(k),H(l)

) def= [x̄(l)
1 (k), . . . , x̄(l)

NT
(k)]T

x̄
(l)
j (k) =

∑
xj(k)∈A

xj(k)p
(
xj(k)|H(l),y(k)

)
(5)

where Tr(∗) means the trace of a matrix and the matrix S(l)(k)
is the covariance of the posterior symbol probabilities with its
(i, j)th element defined as follows:

S(l)
(i,j)(k) =

E
((

xi(k) − x̄
(l)
i (k)

)H (
xj(k) − x̄

(l)
j (k)

)
|y(k),H(l)

)
(6)

The channels are updated in the M step by maximizing
Eq.(4) with respect to H:

H(l+1) = Y1:K

(
X̄(l)

1:K

)H
(

X̄(l)
1:K

(
X̄(l)

1:K

)H

+
K∑

k=1

S(l)(k)

)−1

(7)

with X̄(l)
1:K

def= [x̄(l)(1) . . . x̄(l)(K)].
The computation of x̄(l)(k) and S(l)(k) requires the

marginal symbol probability p
(
xj(k)|H(l),y(k)

)
as well as

the joint symbol probability p
(
xj(k), xi(k)|H(l),y(k)

)
for

i, j = 1, . . . , NT . The optimal computation requires the
searching of all possible symbol combinations and is com-
putationally prohibitive for large systems.

However, most of the symbol combinations contribute very
little to the estimation. This motivates the following section,
where we approximate the mean and covariance based on only
M most significant symbol combinations identified via SGA
algorithm.

IV. MEAN AND COVARIANCE APPROXIMATION VIA SGA
BASED SYMBOL DETECTION ALGORITHM

In this section, we will review how to identify the M most
significant symbol combinations using the SGA algorithm and
then illustrate how to compute S(l)(k) and x̄(l)(k) based on
those symbol combinations.

A. M most significant symbol combinations identification

In the SGA algorithm [12], a suboptimal procedure via
Gaussian approximation is proposed to identify the M most
significant symbol combinations from all the possible symbol
combinations. The main idea of the SGA algorithm is as
follows. The selection of M most significant symbol com-
binations for NT antennas is decomposed to NT steps In
the j-th step (j = 1, . . . , NT ), M most significant symbol
combinations are selected for antennas 1, . . . , j based on the
M available most significant symbol combinations selected for
antennas 1, . . . , j − 1 and a Gaussian approximation for the
additive noise and interference from antennas j + 1, . . . , NT .

Assume that for k-th time instant with channel estima-
tion H(l) and j ≥ 1, at the (j − 1)-th step of the
algorithm we have identified M significant combinations
Θ(l)

j−1(k) ≡ {x(m,l)
1 (k), . . . , x(m,l)

j−1 (k),m = 1, 2, . . . ,M}
for antennas 1, 2, . . . , j − 1. We would like to calculate
p(x(m,l)

1 (k), . . . , x(m,l)
j−1 (k), x(l)

j (k)|y(k),H(l)) for all m =
1, . . . ,M and xj ∈ A in order to select Θ(l)

j (k) which
contains M symbol combinations of the largest probabilities,
among the MN possibilities. However this quantity requires
prohibitive computations, and instead we choose a Gaussian
approximation.

Provided that (H(l))HH(l) is invertible one can rewrite Eq.
(1) as follows,

ỹ(k) = x(k) + ñ(k)

=
j∑

q=1

xq(k)eq +
NT∑

q=j+1

xq(k)eq + ñ(k)

def=
j∑

q=1

xq(k)eq + n̂j(k), (8)

where ñ(k) is a Gaussian noise with zero mean
and covariance Λ = σ2((H(l))HH(l))−1, ỹ(k) =
((H(l))HH(l))−1(H(l))Hy(k) and the vector ek is a
column vector whose elements are all zeroes, but the k-th
which is 1.



Now one models the distribution of n̂j(k) as a
moment matched Gaussian distribution. One can then
calculate an approximated joint symbol probability
p̃(x(m,l)

1 (k), . . . , x(m,l)
j−1 (k), xj(k)|y(k),H(l)) of all the

MN possible symbol combinations for m = 1, 2, . . . ,M and
xj(k) ∈ A:

p̃
(
x

(m,l)
1 (k), . . . , x(m,l)

j−1 (k), xj(k)|y(k),H(l)
)

∝ p̃
(
y(k)|x(m,l)

1 (k), . . . , x(m,l)
j−1 (k), xj(k),H(l)

)

p(xj(k))
j−1∏
q=1

p(x(m,l)
q (k))

≈ exp
(
− wH

(
Π(l)

j (k)
)−1

w
)
p(xj(k))

j−1∏
q=1

p(x(l,m)
q (k))

def= ψ(l)
m (xj(k)) (9)

with

w = ỹ(k) − [x(l,m)
1 (k), . . . , x(l,m)

j−1 (k), xj(k), 0, . . . , 0]T ,

Π(l)
j (k) = Λ + γ

NT∑
q=j+1

eqeT
q ,

γ =
1
N

∑
s

|as|2

and p(xj(k)) is the prior information.
Then M symbol combinations with the largest ψ(l)

m (xj(k))
are selected among the MN possible symbol combinations,
resulting in a new set Θ(l)

j (k).

B. SGA algorithm summary

To sum up, the SGA algorithm works as follows with
channel H(l) estimated for k-th time instant:

1) Initialization: compute γ = 1
N

∑
s |as|2 and Π(l)

j (k) for
j = 1, . . . , NT .

2) For each time instant k, compute the zero-forcing esti-
mate ỹ(k) and set Θ(l)

0 (k) = ∅,
3) The M most significant symbol combinations selection

for time instant k. For j = 1 : NT

a) Compute ψ
(l)
m (xj(k)) for all the elements in

Θ(l)
j−1(k) and xj(k) ∈ A according to Eq. (9). Note

that Θ(l)
0 (k) = ∅ when j = 1, we only need to

compute N possible ψ(l)
0 (x1(k)) for x1(k) ∈ A,

b) Select the min(M,N j) symbol combinations
which have the largest ψ(l)

m (xj(k)) and form the
set Θ(l)

j (k).
4) Compute the marginal symbol probabilities for antenna

j = 1, 2, . . . , NT :

a) For m = 1, . . . ,M and xj(k) ∈ A, compute

φ(l)
m (xj(k)) = exp(−(H(l)v)HH(l)v/σ2)

p(xj(k))
∏
i�=j

p(x(l,m)
i (k)), (10)

v = ỹ(k) − [x(l,m)
1 (k), . . . , xj(k), . . . x

(l,m)
NT

(k)]T

b) Compute the symbol probabilities for xj(k) ∈ A,

p̃(xj(k)|y(k),H(l)) =∑
m

φ(l)
m (xj(k))/

∑
xj(k)

∑
m

φ(l)
m (xj(k)). (11)

C. Mean and covariance computation

The mean x̄(l)
j (k) for j = 1, . . . , NT can then be computed

via Eq. (5).
At the end of the Step 3, we have selected the M most

significant symbol combinations

x(l,m)(k) def= [x(l,m)
1 (k), . . . , x(l,m)

NT
(k)]T

and computed

ϕ(l)
m (k) def= p

(
y(k)|x(l,m)(k),H(l)

)∏
j

p(x(l,m)
j (k))

= exp

(
−
(
H(l)

(
ỹ(k) − x(l,m)(k)

))H

H(l)

(
ỹ(k) − x(l,m)(k)

)
/σ2

)∏
j

p(x(l,m)
j (k)) (12)

for m = 1, . . . ,M .
Then we can approximate the (i, j)-th element of covariance

matrix S(l)(k) as follows:

S(l)
(i,j)(k) ≈

1
Z(k)

M∑
m=1

ϕ(l)
m (k)

(
x

(l,m)
i (k) − x̄

(l)
i (k)

)H (
x

(l,m)
j (k) − x̄

(l)
j (k)

)
(13)

where Z(k) =
∑

m ϕ
(l)
m (k) is a normalizing constant.

V. ALGORITHM SUMMARY

To sum up, the SGA symbol detection based EM algorithm
(SGAEM) will work as follows with initial channel estimation
H(0):

1) For k = 1, . . . ,K:

a) Run the SGA algorithm to compute the marginal
symbol probabilities p̃

(
xj(k)|y(k), H̄(l)

)
and se-

lect M most significant symbol combinations
x(l,m)(k) and compute ϕ(l)

m (k) for m = 1, . . . ,M .
b) Compute x̄(l)

j (k) via Eq. (5) and S(l)
(i,j)(k) via Eq.

(13) for i, j = 1, . . . , NT .

2) Compute Hl+1 via Eq. (7)
3) Repeat the last two steps until a certain number of

iterations is reached.



VI. SIMULATION RESULTS

In this section, we illustrate the performance of SGA symbol
detection (M = 20) based EM algorithm (SGAEM) via
computer simulations. Fig. shows the structure of the SGAEM
algorithm for simulation.

To demonstrate the advantages of the proposed SGAEM
algorithm which approximate the covariance based on the M
most significant symbol combinations, we also present the
simulation results of A Posterior Probability (APP) symbol
detector based EM algorithm with diagonal approximation of
covariance matrix (APPEM-Diag) which is used for param-
eter estimation in CDMA system [7] [8]. In the E step of
APPEM-Diag algorithm, the marginal symbol probabilities are
computed with the APP symbol detector and the joint sym-
bol probabilities are approximated as a product of marginal
symbol probabilities :

p
(
xi(k), xj(k)|H(l),y(k)

)
≈ p

(
xi(k)|H(l),y(k)

)
p
(
xj(k)|H(l),y(k)

)
(14)

The covariance matrix S(l)(k) is then approximated as a
diagonal one:

S(l)(k) ≈ Diag
(
γ

(l)
1 (k), . . . , γ(l)

NT
(k)
)

(15)

γ
(l)
j (k) =

∑
xj(k)∈A

|xj(k) − x̄
(l)
j (k)|2p

(
xj(k)|H(l),y(k)

)
.

In the M step of APPEM-Diag algorithm, the channels are
estimated via Eq. (7).

In all our simulations, we set NT = NR = 4 and consider
a 16QAM modulation (N = 16). The SNR is defined as
E{||Hx||2}/E{||n||2} = γNT /σ

2. For each SNR, we ran-
domly generate 104 channels realizations. The initial channel
estimation H(0) is computed from the training sequence as
follows:

H(0) =
(
X(0)HX(0)

)−1
X(0)HY(0) (16)

where X(0) is a 4× 4 orthogonal training sequence known to
the receiver and Y(0) is the observation matrix at receiver.

A. Performance for an uncoded system

In this simulation, each burst length is set to 576 symbols.
The symbol error rate (SER) and the channel estimation mean
square error (MSE) are shown in Fig. 2 and Fig. 3 respectively.
It is seen that the channel estimation quality is improved with
EM iterations and thus better SER can be achieved with both
algorithms. The SER performance can approach the known
channel performance bound APP detector with known channel
(APPKnowChan)) with 4 iterations. In the first iteration, the
SER performance of SGAEM algorithm is the same as that of
APPEM-Diag algorithm.

It can be seen from Fig. 3 that the channel estimation MSE
of SGAEM is much lower than that of APPEM-Diag because
SGAEM can provide a better approximation to the covariance
matrix. After the first iteration, channel MSE performance of

SGAEM algorithm is at least 1dB better than that of APPEM-
Diag algorithm in low to media SNR levels.

B. Soft output quality comparison

In this simulation, we will compare the soft output quality
of SGAEM algorithm with APPEM-Diag alogirhtm.

A rate 1/2 Turbo coder with generators 7 and 5 in octal
notation is used at the transmitter and a 4-iteration BCJR
channel decoder is used at the receiver. The burst length is
1152 bits before channel coding and 238 symbols.

Fig.4 shows the coded BER performance of the APP-
KnowChan, SGAEM and APPEM-Diag. It is seen that the
BER performance of SGAEM is nearly the same as that
of APPEM-Diag in the first iteration when they both use
the initial channel estimation H(0) and their performance are
both improved with EM iterations. However, the coded BER
performance of SGAEM is much better than that of APPEM-
Diag because SGAEM can provide a better channel estimation
results. After the first iteration, BER performance of SGAEM
algorithm is at least 1dB better than that of APPEM-Diag
algorithm in low to media SNR levels.

It is also noticed that significant performance improvement
can be seen in the first 2-3 iterations of SGAEM algorithm,
but the improvement is very small after 3 iterations.

C. Complexity comparison

The complexity of APP detector based EM algorithm
(APPEM-Diag) mentioned in this section grows exponentially
the number of transmit antennas (O(NNT )) which is infeasible
for practical applications for large systems. However, the
complexity of SGAEM proposed in this paper is mainly
dominated by the SGA detector where its complexity is only
O(NT

3) as discussed in [12].

SGA based symbol detection for

    time instant

EM channel

estimation

Initial channel estimation

from training symbols )0(H

Kk ,,1K=

)(lH

Estimated marginal

symbol probabilities

and covariance matrix

Turbo decoding

(soft output quality test)

Fig. 1. Illustration of SGAEM algorithm.
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Fig. 2. Uncoded SER performance, NT = NR = 4, 16QAM.
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Fig. 3. Channel estimation mean square error, NT = NR = 4, 16QAM.

VII. CONCLUSIONS

This paper investigates the joint channel estimation and
symbol detection for MIMO systems via EM algorithm. In
the E-step of the EM algorithm, instead of approximating
the posterior covariance of transmitted symbols as a diagonal
matrix, all the elements of the covariance are computed based
on the M most significant symbol combinations identified via
the SGA algorithm. Simulation results show that the proposed
algorithm can approach the performance bound.
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