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ABSTRACT 
 
To date, most of the channel parameters are solely 
estimated in the element-space domain due to 
implementation simplicity. Although estimation in the 
beamspace domain can reduce both the dimensionality of 
data size and numerical complexity, it is only beneficial if 
applied to arrays with large number of elements. Here, we 
propose to implement the SAGE algorithm in joint 
element-space and beamspace, namely the hybrid-space, 
such that the underlying features of these domains can be 
exploited. The proposed algorithm retains the advantages 
in both domains since user can decide to estimate the 
parameters corresponding to a particular dimension in a 
more appropriate manner such that optimum performance 
can be obtained. We describe the general implementation 
of the frequency domain SAGE algorithm with hybrid-
space processing and present sample of estimated results in 
both the synthetic and real measurement environments. 
 

I. INTRODUCTION 
 
In high-resolution array signal processing, multi-
dimensional channel parameters estimation algorithms 
have emerged to be an active area of research in response 
to the need of overcoming the fundamental Rayleigh 
resolution [1] in Fourier method. Several estimation 
algorithms based on different implementation philosophies  
(e.g. subspace-based, maximum-likelihood-based, etc) 
have been developed. While multi-dimensional algorithms 
offer a higher resolution capability, a large amount of 
memory and computational routines are needed due to its 
large multi-dimensional data input. Although beamspace 
(BS) processing is able to reduce the data size by forming a 
number of beams in certain sector within the data, its 
application is only truly beneficial when the arrays in all 
dimensions have large number of elements (since the BS 
algorithm processes the data of all dimensions in their 
respective BS domains).  
 
Due to the implementation simplicity in the element-space 
(ES), most researchers still prefer to process their data in 
ES (i.e. the classical technique) despite the advantages 
offered by BS processing. In order to combine the 
underlying advantages offered by both ES and BS 
processing, we propose a new implementation of the 
Space-Alternating Generalised Expectation-maximisation 
(SAGE) [2] algorithm with a combination of ES 
processing and the newly developed BS processing [3], 
namely the hybrid-space (HS) processing.  

One can exploit the benefits of HS processing when at 
least one of the arrays (in multi-dimensional processing) 
has large number of elements. We can estimate the 
parameters in a particular dimension corresponding to the 
array with small number of elements in normal ES 
processing, and apply BS processing simultaneously in 
another dimension with large number of elements. Thus, a 
reduction in overall computational complexity and 
effective processing time. In addition, HS processing can 
offer a higher degree of flexilibity when a certain 
dimension might not be suitable for BS processing (e.g. an 
uncalibrated circular array). Furthermore, the automatic 
pairing procedure of the estimated parameters in all 
dimensions can still be performed in the standard manner 
within HS processing. 
 
Here we describe the general implementation of the HS-
SAGE algorithm in the frequency domain. We also present 
some estimated results in both the synthetic and real 
measurement environments. The results are compared to 
that of the classical SAGE algorithm in order to emphasise 
the advantages of using HS processing.  
 

II. CHANNEL MODEL 
 
This section briefly describes the physical channel model 
used in the proposed algorithm in order to aid the 
following discussions. The model is developed in the 
frequency domain specifically for use with the Medav 
RUSK BRI channel sounder [4]. The reader is referred to 
[3] and [4] for more detailed treatment of the model. 
 
The R-dimensional (R-D) sounding snapshot data can be 
represented by a R-D data array in frequency domain, H, 
whereby its element is given by: 
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where [ ]1,0 −∈ rr Kk  denotes the entry of the R-D array, 
Kr is the number of elements in the r-th dimension array, γ 
is the path weigth, L is the number of multipath 
components, µ(r) represents the r-th dimension harmonics 
(i.e. parameter to be estimated) [3][5], and N is the 
complex Additive White Gaussian Noise (AWGN). The 
narrowband plane wave assumption must also hold for 
direction-of-arrival / departure (DoA/DoD) estimation. 
Further, ( ){ } [ ]πµ 2,0∈ℜ r

l  must be fulfilled to avoid any 
estimation ambiguity (Shannon’s sampling theorem), 
where { }⋅ℜ  is the range space of the argument. 



In order to facilitate efficient matrix computation, the R-D 
matrix H is rearranged into compact vector form, x,  
through the vec{·} operator, by stacking the columns of H: 

{ }⋅= vecx                         
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superscript T denotes the vector transposition. The R-D 
steering vector of the l-th path, ( )( )D−R

lµa , is given by: 
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where ⊗ denotes the Kronecker product, and the r-th 
dimension steering vector of the l-th path is given by: 
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( )( )r
lg µ  represents the response of the array elements with 

respect to parameter ( )r
lµ  (e.g. beampattern of a linear 

array). A total of M R-D channel snapshots can be taken 
within the quasi-stationary period of the channel and the 
snapshots can be grouped together for subsequent 
processing : 

[ ]MxxxxX MLLMMM 321=              (5)
 
Note that the array steering vector in (4) is only applicable 
for a linear array, e.g. arrays in the frequency and time 
domains (for Medav RUSK BRI [4]) after proper system 
calibration. Some modifications are necessary if other 
array structure is used, e.g. a circular array in the spatial 
domain (see Section IV and [6] for more details).  
 
The point-source model in (1) can be expanded to 
represent the channel in a distributed-source environment 
in order to include the clustering phenomena. Here we 
define a cluster as a group of multipaths that are closely 
separated in all dimensions (e.g. due to local scattering). 
Without loss of generality, the distributed-source channel 
can be modelled as: 
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where C is the number of clusters, Lc is the number of 
multipaths within a cluster (i.e. distributed sources), )(r

cµ  
is the r-th dimension nominal parameter (i.e. centroid) of 
the c-th cluster, and )(

,
r
lcδµ  is the r-th dimension parameter 

deviation from )(r
cµ  for the l-th path within the c-th 

cluster. The distribution of )(
,
r
lcµ  can be modelled 

according to some standard distribution function, e.g. 
Gaussian, uniform, exponential, etc. Here we assume that 
the clusters do not overlap. Similarly, the compact 
vectorisation representation of the distributed-source 

channel can be performed in a similar way as (2)-(4) (not 
illustrated by means of step-by-step procedure here due to 
space limitation). 
 

III. MULTI-DIMENSIONAL HYBRID-SPACE 
SAGE ALGORITHM 

 
Suppose that we would like to implement BS processing in 
the 2nd-dimension of a R-D estimation problem, and the 
rest of the R-1 dimensions in the normal ES domain. 
Firstly, construct the appropriate DFT beamforming 
matrix, W(2), that forms B2 consecutive orthogonal beams 
encompassing the sector of interest in the 2nd-dimension, 
where B2 < K2 (see [3] for detailed construction of W(2)). 
Secondly, construct the R-D HS transformation matrix: 
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where 
rKI  denotes the identity matrix of size rK . 

Following that, the ES data, X, is transformed into the HS 
counterpart by performing: 

xFx
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where [ ]Xx E=  (i.e. averaged over M snapshots), and the 
superscript H denotes Hermitian transposition. 
 
The steps outlined above form the pre-processing of the 
HS-SAGE algorithm, which are also the main differences 
compared with the classical SAGE algorithm [2]. The 
following procedures are similar to that of the classical 
SAGE algorithm, which is based on the maximum-
likelihood concept where the estimated results are the most 
probable values. This is done by maximising a cost 
function iteratively. Each iteration consists of an 
Expectation-step (E-step) and a Maximisation-step (M-
step) [2]. Note that most of the computations within one 
iteration are performed within the M-step and HS-SAGE 
algorithm aims to reduce the computational burden within 
this step. Timesaving and reduction in computational 
complexity can be achieved with HS processing since at 
least one of the dimensions is processed in the BS domain 
with reduced data size (recall that the complexity of the 
SAGE algorithm grows rapidly with increasing number of 
dimensions and data size). 
 
In the E-step, the complete data [2][3] of the l-th path, lẑ , 
can either be obtained via parallel interference cancellation 
(PIC) (10) or successive interference cancellation (SIC) 
(11) technique: 
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where the ‘ˆ’ sign denotes the estimated data, and the 
signal copy, lŝ , is given in (17). Note that SICl ,ẑ  is 

subject to interference from the uncancelled (l+1)-th path 



as well as the residue components from the previous paths 
that are not totally removed from SICl ,ẑ . On the other 

hand, PICl ,ẑ  is only subject to interference from the 

residue components of other 1ˆ −L  paths as long as the 
model order determination is accurate. From extensive 
numerical simulations, if the PIC technique is applied, the 
estimated results might be biased and the algorithm might 
diverge from steady state if L̂  is less than the true number 
of dominant components in the channel. 
 
In the M-step, the parameters are estimated sequentially by 
performing the coordinate-wise-updating procedure 
illustrated as follows. 
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where ( )″r
lµ  denotes the newly updated r-th dimension 

argument in the current iteration, ( )′r
lµ  is the previously 

updated argument in the last iteration, and the optimisation 
cost function is given by: 
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and 
F

⋅  denotes the Frobenius norm operator. The above 

procedure is repeated in iterations until convergence is 
achieved, i.e. when the estimated parameters have reached 
a steady state, or the change in parameters’ value in the 
following few iterations is below a certain threshold level. 
 
Recall that in this example we have applied BS processing 
in the 2nd-dimension. However, other dimensions can still 
apply BS processing if required. Note that the BS 
processing is best applied on linear array whereby its 
steering vector is column conjugate symmetric, e.g. such as 
that given by (4). As such, the beamspace steering vector, 
( ))2(

lµb , is real-valued since the proposed DFT 
beamforming matrix, W(2), is also column conjugate 
symmetric [5]. Computations in real value will, to some 
extent, increase the processing speed of the algorithm. 
 
Finally, before performing the next (l+1)-th E-step, the 
signal copy of the l-th path is reconstructed as follows. 
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where ( )+⋅HSa  is the Moore-Penrose pseudoinverse of 
( )⋅HSa , i.e. a least-squares solution. The initialisation 

procedure and model order determination (i.e. estimation 
of L̂ ) of the algorithm can be found in [2] and [3]. 
 

IV. SIMULATED RESULTS 
 
In order to validate that the HS-SAGE algorithm achieves 
a similar performance (in terms of estimation error) as the 
classical SAGE algorithm, we perform a simulation in a 
worst-case 3-D synthetical environment using a 2-cluster 
distributed-source model. Here we estimate the nominal 
azimuth DoA (φc), nominal time-delay-of-arrival (TDoA-
τc), and nominal Doppler shift (νc) of the 2 closely spaced 
clusters. Each cluster is assumed to consist of 10 coherent 
paths, i.e. Lc = 10, ∀c. Their path weights are assumed to 
be the same (in terms of amplitude), and the complex 
phase angle is assumed uniformly distributed. Due to the 
difference in phase angles, fast fading (in terms of resultant 
power of each cluster) will occur in each cluster.  
 
For simplicity, the 3-D channel parameters within each 
cluster are assumed to be uncorrelated to each other. The 
parameters are assumed to be Gaussian distributed with the 
mean given by the nominal parameter value (within the 
respective cluster) and the spread is specified in Table 1. 
The channel is synthesised in the frequency domain (see 
Section II) using an 8-element uniform circular array 
(UCA). The signal-to-noise ratio is set to 0 dB. Note that in 
this case the linear array steering vector such as that given 
in (4) has to be replaced by that for a UCA [6], given by: 
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1), r is the UCA radius, θ is the polar angle, and λ is the 
carrier wavelength. For simplicity, the simulation is 
implemented with UCA composed of omni-directional 
elements, and only the azimuth plane is considered, i.e. 

°= 90,lcθ , lc,∀ . Thus, only the nominal azimuth DoA is 
estimated in the spatial domain. The settings in the 
synthetical environment are given in Table 1. In addition, 
we include the Rayleigh resolution [1] of the system in 
Table 1. Note that the resolution of the system increases as 
the number of elements (in any dimension) increases. 
 
In this particular simulation, we employ BS processing in 
the τ and ν domains, while the φ domain employs the 
classical ES processing since the number of spatial 
elements is small. We reduce the data size in the τ and ν 
domains by 40% by forming 6 beams (encompassing –25 
to  +25 Hz) in the ν domain, and 30 beams in the τ domain 



(encompassing –200 to +400 ns). For comparison purpose, 
we apply 3-D HS-SAGE and 3-D classical SAGE 
algorithms with the same data set to estimate the nominal 
parameters. The algorithms are executed through 40 
iterations using a same computer and their total processing 
time is recorded.  
 

( ) ( ) ( )[ ]ντφ µµµ lclclc ,,, ,,  
[ ]lclclc tf ,,, 2,2, νπτπφ ∆∆  
f∆ = frequency array spacing 

t∆ = time array spacing 
[ ]tfr ∆∆ ,,  [0.57λ, 1 MHz, 10 ms] 
[ ]ντφ KKK ,,  [8, 50, 10] 

[ ]ντ BB ,  [30, 6] (for 3-D HS-SAGE) 
Nominal parameters of 

cluster 
[ ]ccc ντφ ,,  

[-10°, 10 ns, -1 Hz]c = 1 

[10°, 15 ns, 1 Hz]c = 2 

Parameter standard 
deviation in each cluster  
[ ])()()( ,, ντφ σσσ ccc  

[1°, 0.5 ns, 0.2 Hz]∀c 

Rayleigh resolution [1] 
[ ]RayRayRay ντφ ,,  [≈38°, 20 ns, 10 Hz] 

Nominal parameter distance 
[ ]ντφ ∆∆∆ ,,  [ ]RayRayRay ντφ 2.0,25.0,5.0  

Table 1: Parameters setting in the synthetical environment 
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Figure 1: Standard geometry structure of a UCA 

 
The estimation error of the nominal parameter in each 
iteration, ( )⋅ξ , is shown in Figures 2-3. It can be seen that 
the HS-SAGE algorithm exhibits a similar performance (in 
terms of convergence characteristic and estimation error) 
as the classical SAGE algorithm. The ratio of processing 
time needed by HS-SAGE to that of classical SAGE is 
0.58. Significant amount of timesaving is achieved due to 
the reduction in complexity and array data size with HS-
SAGE algorithm. Note that the processing time varies 
according to the total memory available for the algorithm, 
speed of the processor, and the efficiency in implementing 
the algorithm. 
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Figure 2: Estimation error of the nominal parameters in each 

iteration for the 1st cluster 
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Figure 3: Estimation error of the nominal parameters in each 

iteration for the 2nd cluster 
 

V. MEASUREMENT RESULTS 
 
In this section, we present some new results from obtained 
samples of measurement data. The measurements were 
conducted at 5.2 GHz using a Medav RUSK BRI channel 
sounder [4] in a corridor-like environment at the 
University of Bristol (U.K.). The sounding bandwidth was 
120 MHz and the transmitted multitone signal period was 
0.8 µs. An 8-element UCA with vertically polarised dipole 
antenna was used at the receiver (Rx). The transmitter (Tx) 
employed an omni-directional antenna and was pushed at 
about 1 m/s towards the UCA’s boresight direction at 0°. 
Measurements were recorded every 15 ms. The heights of 
both Tx and Rx were fixed at 1.55 m and their separation 
distance (from the starting point of Tx) was 10 m. Since 
nobody walked through the environment when the 
measurements were taken, the Doppler shift in the channel 
is mostly dominated by the movement of the Tx. Figure 4 
gives an impression of the measurement environment. 
 
We employ the 3-D HS-SAGE and 3-D classical SAGE 
algorithms to jointly estimate the DoA, TDoA, and 
Doppler shift of the multipaths. Each set of the results 



corresponds to a 3-D data snapshot with dimension 
8=φK , 97=τK , and 5=νK . For 3-D HS-SAGE 

algorithm, we implement BS processing only in τ domain. 
The φ and ν domains are implemented in ES since they are 
small. We reduce the data size in the τ domain by 
approximately 50% by forming 50 beams in the region 
encompassing –100 to +300 ns since multipaths with delay 
greater than 300 ns could not be detected within the 
dynamic range of the sounder. This a priori channel 
information can be obtained by inspecting the power delay 
profile prior to HS-SAGE implementation.  
 

StairsStairs

8-element
UCA

3.8m

15
m

2.
7m

Mobile Tx

10
m

  
Figure 4: Sketched plan (left) and picture (right) of the 

measurement environment 
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The sample results from the same set of 3-D data snapshot 
are displayed in Figures 5-6, whereby the estimated 
Doppler shift is shading-coded, and the calculated path 
weight is size-coded with its value (in dB) printed on the 
graphs. The graphs only display results within a power 
window of -20 dB relative to the strongest line-of-sight 
(LOS) component. Observe that the results are very similar 
to each other and the difference is much less than the 
intrinsic Rayleigh resolution [1] of the system. The 
estimated φ and ν values also match well with the speed of 
the mobile Tx (only the Tx was moving in the 
environment). However, complexity reduction and 

timesaving is achieved using 3-D HS-SAGE algorithm 
(0.63 processing time ratio with respect to that of the 
classical SAGE algorithm).  
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VI. CONCLUSIONS 
 
In this paper we have presented the frequency domain HS-
SAGE algorithm that aims to reduce the processing time 
and complexity of the classical SAGE algorithm. The 
proposed algorithm achieves a similar performance as the 
classical SAGE algorithm, but with increased timesaving 
and reduced numerical complexity. Further work will 
include enhancing the robustness of the HS-SAGE 
algorithm to estimate parameters in a distributed-source 
environment, e.g. the spread of the parameters. 
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Figure 6: Estimated result of 3-D classical SAGE algorithm
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