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A Novel Quantification of 3D Directional Spread from 
Small-Scale Fading Analysis

Arindam Pal, Mark Beach and Andy Nix, University of Bristol. email: a.pal@bristol.ac.uk

Aim: Novel metrics are proposed to classify the 3D directional spread properties 
of the wireless channel as an aid to design of multi-element antenna systems.

Abstract
A quantification of directional spread that is applicable to an 
arbitrary distribution of multipath energy in a 3-D directional 
domain is developed. The proposed metrics are derived from 
the second order moments of the partial derivatives of the 
spatial fading function, using an eigenvalue analysis. The 
analytical relation between the proposed metric and spatial 
selectivity justifies the use of the metric for analysis and 
optimisation of space-diversity based MIMO antenna systems. 

Motivation
Directional dispersion of multipath energy is an important 
measure in design of wireless systems, with increasing levels 
indicating lower correlation between spatial diversity elements.
The RMS angular spread metric, however, has several key 
limitations. It considers angles in only the 2-D plane and must 
be stated separately for azimuth and elevation angles. Also, it 
is unsuitable for multiple clusters and large directional spreads. 
The analysis presented here provides an extension to that 
provided in [1] and [2].
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Eigenvalue Analysis

The tr[R] and det[R]

3-D directional derivative in direction u = [ux uy uz]
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The channel response for a discrete multipath distribution:

Partial derivative of the spatial transfer function (f =|h|2):

Theory: Spatial Partial Derivatives

The σm
2(u) increases with the spread of energy in 

direction u. It can be shown analytically that the 
average of σm

2(u) over all u is equivalent to the 
summation of diagonal terms of R, also known as tr[R].
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Mean of mu over multiple phase realisations is zero. The 
variance of mu is given by:
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R is the covariance matrix of the partial derivative 
vector ∇f = [fx fy, fz]. 
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This tr[R] is also given by the sum of eigenvalues:

The tr[R] does not provide an indication of the ratio 
between the eigenvalues. The det[R] is a useful 
parameter as it increases with the eigenvalues as well as 
the uniformity of eigenvalues.
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As: gain of the sth multipath component.
[dx dy dz]: directional-of-arrival as unit vector. 
Ns: number of multipath rays.

The following expressions for the second order moments of 
partial derivatives can be derived:
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The tr[R] can be expressed as the average directional 
separation of multipath energy:

321]tr[ λλλ ++=R

The spread of ∇f over the 3 euclidean co-ordinates, 
when calculated for many phase realisations of 
multipath components, takes the form of an ellipsoid. 
The constituent basis vectors ei give the principle 
directions of the ellipsoid, and the eigenvalues λi give 
the widths in these directions. The eigenvalues increase 
with the spread of multipath energy along the 
eigenvectors.

Thus, tr[R] and det[R] concisely characterize the second 
order moments of the directional derivatives. Unlike 
σm

2(u), tr[R] and det[R] are not function of direction.

Part 1/2: The proposed metrics are derived analytically in this section.

The eigenvalue decomposition of R is given by
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Part 2/2: This section provides an illustration of the theory presented in Part 1 using 3D 
propagation data generated by simulation.

Simulations
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Rotation of cluster or linear array

Summary 
The joint use of tr[R] and det[R] has been proposed as a 
quantification of the 3-D directional spread, where R is the 
covariance matrix of the partial derivatives of the spatial transfer 
function.

tr[R] and det[R]
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Unlike tr[R], det[R] 
continues to improve with 
the constituent cluster 
widths even at maximum 
angular separation between 
clusters

bi-cluster distribution:
tr[R] and det[R] both 
increase with constituent 
cluster spreads as well as 
cluster angular separation. 
At β = 180º, tr[R] is 
maximum regardless of the 
constituent cluster widths.
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uni-cluster distribution:
tr[R] increases with cluster 
azimuth and elevation 
widths. tr[R] achieves its 
upper bound for cluster 
azimuth width of 360º, 
regardless of the elevation 
width.

det[R] increases with 
cluster azimuth and 
elevation widths. Unlike 
tr[R], det[R] continues to 
improve with the elevation 
width when the azimuth 
width is 360º.

k is the mean cluster angle and is contained in the 
azimuth plane. β is the angular separation of clusters.

Multipath energy profiles comprising of either one or 
two uniformly distributed clusters in the range of 
[-Γ/2, Γ/2] in azimuth and  [-∆/2, ∆/2] in elevation are 
used.
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RMS Angular Spread

σm
2(u) is maximum when the cluster mean angle is 

perpendicular to the line of observation, which is 
equivalent to the line of a linear array. Note that larger 
σm

2(u) leads to lower antenna correlation.

The RMS azimuth spread of a uniformly distributed 
cluster increases linearly with the azimuth angular width, 
as shown by the β=0º case. For a bi-cluster distribution, 
the RMS spread improves with the separation of clusters 
(β) as well as the constituent cluster widths (Γ1,2):
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