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Abstract

In this paper we propose a random set
framework for learning linguistic models
for prediction problems. In this frame-
work we show how we can model predic-
tion problems based on learning linguis-
tic prototypes defined using joint mass as-
signments on sets of labels. The potential
of this approach is then demonstrated by
its application to a model and by bench-
mark problem and comparing the results
obtained with those from other state-of-
the-art learning algorithms. We then
show how this framework can be used to
evaluate linguistic hypothesises using the
learnt prototype models.

1 Introduction

The idea of using fuzzy sets to represent words
was first proposed by Zadeh [16], who stated
that fuzzy memberships could be used to model
the imprecision and ambiguity of natural lan-
guage terms such as small, medium and large.
However, this generates a number of problems
in terms of semantics and computational com-
plexity (see [9] for a discussion).

Here we propose an alternative framework in-
troduced by Lawry (see [10]). This approach
uses fuzzy sets to partition an attributes domain
into linguistic labels. Random sets (see [3]) and
mass assignments are then used as a method for
evaluating the appropriateness of the labels for
a given value. Prediction is carried out using
mass assignment prototypes representing rela-
tionships between input and output attributes
at the label level. These prototypes are obtained
by aggregating linguistic descriptions of exam-
ples on the prediction space from a database.
The models are then used in conjunction with a
Näıve or Semi-Näıve-Bayes classifier (see [8] and
[11]) together with a defuzzification method to
perform prediction.

2 Label Semantics

Suppose we have an attribute x with domain
Ω and we ask a set of experts V to provide a
finite set of labels LA with which to describe
x. For x ∈ Ω we ask each of the experts E to
supply us with a subset of LA that they deem as
appropriate to describe x. This generates a set
of labels describing x denoted DE

x . As each of
the experts is likely to have a different subset of
appropriate labels to describe the situation, we
obtain a random set Dx across the power set of
LA as we vary between experts. By combining
the label description provided by the experts we
can determine a mass assignment on the power
sets of LA (2LA) representing the distribution of
the random set Dx.

Definition 1 (Mass Assignment) A mass
assignment on 2Ω is a function m : 2Ω → [0, 1]
such that: ∑

S⊆Ω

m(S) = 1

Definition 2 (Value Description) Let V
be the set of experts. For x ∈ Ω the label de-
scription of x is a random set from V into the
power set of LA, denoted Dx, with associated
mass assignment mx:

∀S ⊆ LA mx(S) = PV ({E ∈ V : DE
x = S})

where PV is the prior probability distribution
over the population V .

For any mass assignment on 2LA it is likely
to be the case that only a subset of 2LA will
have non-zero mass. These sets are referred to
as focal sets of LA.

Definition 3 (Focal Sets) The focal sets for
the labels LA are defined as the union of the fo-
cal sets for the mass assignment mx as x varies
across Ω.

FLA = {S ⊆ LA|∃x ∈ Ω,mx(S) > 0}



We can formally define a measure for the ap-
propriateness of a label L for a value x, denoted
µL(x), by evaluating the mass of those label sets
containing L.

Definition 4 (Appropriateness Degrees)

∀x ∈ Ω,∀L ∈ LA µL(x) =
∑

S⊆LA:L∈S

mx(S)

Notice that µL : Ω→ [0, 1] and hence, corre-
sponds to a fuzzy set on Ω. However, the term
fuzzy set does not seem entirely suitable in this
context since we are not measuring a degree of
membership but rather a degree of appropriate-
ness.

Here we have assumed that we have knowl-
edge of the underling expert behaviour but in
many situations this is not the case. Hence, we
need to define a mapping from appropriateness
degrees to mass assignments. To achieve this
we make the assumption that individuals in V

differ regarding what labels are appropriate for
a value only in terms of generality and speci-
ficity. This is referred to as the consonance as-
sumption. Also, we make the further assump-
tion ∀x ∈ Ω max

L∈LA
µL(x) = 1.

Definition 5 (Consonance Mapping) Let
{µL(x) : L ∈ LA} = {y1, . . . , yn} be ordered
such that yi > yi+1 for i = 1, . . . , n− 1 then for
Si = {L ∈ LA : µL(x) ≥ yi},

mx(Si) = yi − yi+1 for i = 1, . . . , n− 1

mx(Sn) = yn, mx(∅) = 1− y1

Example 1 Suppose we have an attribute
on the domain [0, 114] with associated labels
LA = {very small(vs), small(s), medium(m),
large(l), very large(vl)}, defined according to
the following trapezoidal fuzzy sets:
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Figure 1: Appropriates degrees for LA = {vs, s,
m, l, vl}

For x = 66.5 we have µm(x) = 1 and µl(x) =
0.5. From this it is possible to construct the con-
sonant mass assignment for the point x as fol-
lows:

m66.5={medium} : 0.5, {medium, large} : 0.5

If x is now allowed to vary across the domain
[0, 114] we obtain a functional definition for mx

as shown in figure 2.
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Clearly, the framework described in this sec-
tion is related to the random set semantics for
fuzzy memberships proposed by Goodman and
Nguyen [4]. However, the latter defines random
sets on subsets of the attribute universe while
for the current framework they are defined on
subsets of labels. This provides an interesting
new perspective and allows for a more straight-
forward treatment of continuous domains.

3 Label Prototypes for Modelling

Prediction Problems

Consider a prediction problem where the objec-
tive is to model the relationship between input
attributes x1, . . . , xn−1 and output attribute xn.
Label sets LAj are defined on input universes
Ωj : j = 1 . . . , n − 1 and a set of labels LC

is also defined on the output universe Ωn. Each
L ∈ LC is represented by a trapezoidal fuzzy set
on the prediction space. The focal sets of LC are
given by FLC = {S ⊆ LC|∃xn ∈ Ωn,mxn

(S) >
0} = {Fj}j .

Suppose we have a training set of examples
DB = {〈x1(i), . . . , xn(i)〉|i = 1, . . . , N}. The in-
put attributes x1, . . . , xn−1 are now partitioned
into subsets S1,. . . ,Sw where w ≤ n − 1 and
for each Fj ∈ FLC a joint mass assignment
mi,j is determined as follows: Suppose, w.l.o.g.
that Si = {x1, . . . , xv} then the joint mass as-
signment on 2LA1 × · · · × 2LAv conditional on
Fj ∈ FLC is defined by: ∀Tr ∈ 2LAr : r =
1, . . . , v ∀Fj ∈ FLC

mi,j(T1, . . . , Tv) =∑
k∈DBmxn(k)(Fj)

∏v
r=1mxr(k)(Tr)∑

k∈DBmxn(k)(Fj)

Hence, the prototype describing Fj is the vec-
tor: 〈m1,j , . . . ,mw,j〉.



4 Prediction Using Prototypes on

Linguistic Class

We now give details of how prediction can be
performed using linguistic class prototypes to-
gether with a Semi-Näıve-Bayes (see [8]) learn-
ing algorithm. We use Semi-Näıve-Bayes in this
context to weaken the independence assumption
of Näıve-Bayes (see [11]). This is achieved by
defining joint mass assignments to model de-
pendences between attributes in variable group-
ings and then assuming independence between
groupings. We then carry out a defuzzifica-
tion step to obtain a prediction value from this
model.

Bayes theorem is used here to evaluate the
probability of each of the focal elements Fj given
a vector of input values 〈x1, . . . , xn−1〉 as follows:

Pr(Fj |x1, . . . , xn−1) =

Pr(Fj)
∏w
r=1 p(Sr|Fj)∑

k Pr(Fk)
∏w
r=1 p(Sr|Fk)

Where Pr(Fj) = 1
|DB|

∑
k∈DBmxn(k)(Fj).

There is now the problem of how to estimate
the density function p(x1, . . . , xn−1 | Fj). Con-
sider the joint mass assignment for grouping Si
given Fj . If we assume that there is a uni-
form prior distribution on ×v

r=1 Ωr then the
joint prior mass assignment on ×v

r=1 2
LAr is:

∀Ti ⊆ LAi : i = 1, . . . , v

pm(T1, . . . , Tv) =

v∏

i=1

∫

Ωi

mxi
(Ti)ui(xi)dxi

Where u(x1, . . . , xv) =
∏v
i=1 ui(xi) is the

uniform distribution on×v

r=1 Ωr and ur(xr) the
uniform distribution on Ωr. From this we can
define the joint density on x1, . . . , xv conditional
on mi,j :

p(Si|mi,j) = p(x1, . . . , xv|mi,j) =

u(x1, . . . , xv)
∑

T1×···×Tv

mi,j(T1, . . . , Tv)

pm(T1, . . . , Tv)

v∏
r=1

mxr (Tr)

This calculation is motivated by the theorem
of total probability (see [12]) which for a one di-
mensional mass assignment, describing variable
x on Ω, is as follows: ∀a ∈ Ω

p(a|m) =
∑

S⊆LA

p(a|Dx = S)Pr(Dx = S)

=
∑

S⊆LA

p(a|Dx = S)m(S)

also : p(a|Dx = S) =
Pr(Dx = S|x = a)u(a)

Pr(Dx = S)

=
ma(S)u(a)

pm(S)

Hence, making the relative substitution and sim-
plifying we obtain the expression:

p(a | m) = u(a)
∑

S⊆LA

m(S)

pm(S)
ma(S)

By taking p(Si| Fj) ∼= p(Si| mi,j) for each
grouping Si, we now have the following Semi-
Näıve-Bayes calculation:

Pr(Fj |x1, . . . , xn−1) ∝

Pr(Fj)
∏w
r=1 p(Sr|mr,j)∑

k Pr(Fk)
∏w
r=1 p(Sr|mr,k)

We now define a defuzzification method to
determine the predicted value for xn as fol-
lows: Assuming there is a uniform prior dis-
tribution on x1, . . . , xn−1, then, by evaluating
Pr(Fj |x1, . . . , xn−1) for all Fj we obtain a mass
assignment on FLC . This can then be mapped
to a distribution on xn as follows:

p(xn|x1, . . . ,xn−1) =∑

j

Pr(Fj |x1, . . . , xn−1)p(xn|Fj)

where : p(xn|Fj) =
mxn

(Fj)∫
Ωn

mxn
(Fj) dxn

We then take our estimate of xn, denoted x̂n,
to be the expected value of the distribution:

x̂n =

∫

Ωn

xn p(xn|x1, . . . , xn−1) dxn

=
∑

j

Pr(Fj |x1, . . . , xn−1) E(xn|Fj)

An alternative defuzzification method is ob-
tained by replacing E(xn|Fj) by the mode of the
distribution p(xn|Fj) (i.e. argmax(mxn

(Fj)) ).

5 Grouping Methods

In this section we introduce a number of meth-
ods for automatically finding attribute group-
ings that increase discrimination in the model.
In general it is too computationally expensive
to search the complete problem space of all at-
tribute groupings and then partition to see if dis-
crimination can be increased, as the search space
would be exponential. To counter this problem
a heuristic search has been proposed, based on



the order of importance of each of the attribute
groupings Si. The heuristic used to estimate the
importance is defined as follows:

Definition 6 (Importance Measure) Let
the joint mass assignment for Si given Fj be de-
noted mi,j . For any input vector Si the proba-
bility of the focal set Fj can be estimated using
Bayes theorem:

IMj(Si) =

∑
k∈DB Pr(Fj |Si(k)) mxn

(Fj)∑
k∈DB Pr(Fj | Si(k))

where : Pr(Fj |Si) =

p(Si|mi,j)Pr(Fj)

p(Si|mi,j)Pr(Fj) + p(Si|mi,¬j)(1− Pr(Fj))

where mi,¬j is the mass assignment for group Si
conditional on FLC − {Fj}

IMj(Si) is a measure of importance of the set
of variables Si as discriminators of Fj from the
other focal sets. The closer IMj(Si) is to 1 the
more discriminating the group Si. In this case∑

k∈DB Pr(Fj |Si(k))mxn(k)(Fj) is high relative

to
∑

k∈DB Pr(Fj |Si(k))
(
1−mxn(k)(Fj)

)
.

Due to the ‘curse of dimensionality ’ (see [2])
careful limits must be set on the maximum num-
ber of attributes that can be grouped when run-
ning this algorithm. The effect of which can be
limited by trading granularity off against dimen-
sionality. The importance measure here is now
combined with two search strategies to find dis-
criminative groupings:

5.1 Guided Breadth First Search

Consider a breadth first search where the most
important current grouping Si is combined with
all the other current groupings to see if the
combination significantly increases discrimina-
tion. Next the second most important grouping
is tested with the remaining unused groupings
and so on. At the next stage the new groupings
produced are tested in a similar manner and this
continues until a terminating condition is satis-
fied. This method provides a fairly extensive
search of the space of the partitions, but does
limit the structure of the groupings generated.

5.2 Guided Depth First Search

Alternatively, consider a depth first search where
the most important grouping Si is tested with
all other groupings to see if the combination in-
creases discrimination. Next any new grouping
produced is tested with the unused groupings to
see if discrimination is further increased. This

continues until some termination condition is
satisfied. The process is repeated with the next
most important unused grouping and so on, un-
til all unused grouping have been tested. This
allows for a richer structure of groupings but has
the disadvantage that some important groupings
may be missed.

We now define two methods for measuring
whether or not a pair of attributes should be
combined. The first is based on a direct mea-
sure of correlation and the second is based on a
measure of the change in importance resulting
from grouping.

Definition 7 (Correlation Measure) Let
F1 be the focal sets for S1 and F2 the focal sets
for S2. Now letm1,2,j be the joint mass of S1∪S2
given the output focal set Fj.

CORR(S1, S2) =
√

1
|F1||F2|

∑
R⊆F1

∑
T⊆F2

(m1,2,j(R, T )−m1,j(R)m2,j(T ))2

Here a threshold is used so that the nearer
the correlation measure is to 1, the more likely
it is that grouping will take place. An alternative
to measuring correlation is to trying to maximise
the increase in importance of any new grouping
formed.

Definition 8 (Improvement Measure)
Suppose we have two subsets of attributes S1 and
S2 then the improvement in importance obtained
by combining them can be calculated as follows:

IPMj(S1, S2) =
min(IMj(S1), IMj(S2))

IMj(S1, S2)

A threshold is once again used so that the
closer the improvement measure is to 0 the more
likely that the attributes will be combined.

6 Performance on a Benchmark

Problem

We now give details of the performance of the
proposed prediction system. The results ob-
tained from the Fuzzy Bayesian methods are
compared here to a ε-Support Vector Regres-
sion system (ε-SVR) [14], implemented in [6] by
Gunn [5]. The ε-SVR was implemented using
a gaussion Radial Basis Function (RBF) kernel
with an ε-insensitive loss function.

We now define a method for evaluating the
prediction error, the Mean Square Error (MSE),
which is calculated as follows:

MSE =
1

|DB|

∑

i∈DB

(x̂n(i)− xn(i))
2



6.1 Surface Based on: z = sin (x× y)

In this example a training set of 529 points were
generated describing a surface defined according
to the equation z = sin(x×y) where x, y ∈ [0, 3],
as shown in figure 3:
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Figure 3: Surface defined by the 529 points.

The prototype models were generated from 7
labels being defined over the three attributes do-
mains x, y and z. The fuzzy labels were defined
by using a percentile method to obtain a crisp
partition with an equal number of data points
falling within each crisp set and then projecting
trapezoidal fuzzy sets over this partition. As
there are only two input attributes the choice of
search method is arbitrary, as both will obtain
the same results. For the correlation method a
threshold of 0.005 was used and for the improve-
ment measure a threshold of 0.895 was used.

From training the system over the 529 points,
and testing on a denser grid of 2,209 points
the following predictions for both the correla-
tion and improvement measure were obtained
(see figure 4(a)). Figure 4(a) can be directly
compared to the surface obtained by applying
Fuzzy Näıve-Bayes (see figure 4(b)). From this
it can be seen that the prediction accuracy is
significantly increased by using the Semi-Näıve-
Bayes approach.
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(a) Semi-Näıve-Bayes
Prediction.
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(b) Näıve-Bayes Pre-
diction.

Figure 4: Prediction surfaces obtained for both
Näıve and Semi-Näıve-Bayes.

We now can compare these results to those
obtained by applying the ε-SVR to the same
data set and setting the parameters as follows:
σ = 1, ε = 0.05, C =∞. From this it was found
that the ε-SVR method obtains a marginally
better prediction of the surface with an MSE of
0.0011 which is an improvement of 0.0041 com-
pared to that obtained using Semi-Näıve-Bayes.
Though this difference may be reduced by using
more labels to describe the attributes.

6.2 Prediction of Sunspots

This problem is from the time series data library
[7] and contains data on J.R. Wolf and Zürich
sunspot relative numbers [1] between the years
1700-1979. The data was organized as described
in [15], except that the validation set of 35 ex-
amples (1921-1955) was merged into the test set
of 24 examples (1956-1979). This is because a
validation set is not required in the fuzzy label
framework. Hence, a training set of 209 exam-
ples (1712-1920) and a test set of 59 examples
(1921-1979) were used. The input attributes
were xt−12 to xt−1 and the output attribute was
xt. Each attribute had 4 labels defined over the
domains using a percentile method to obtain the
fuzzy partition. The correlation threshold was
set to 0.005 and the improvement threshold set
to 0.895, with a maximum allowed grouping size
of 7 attributes. Figure 5 gives details of the pre-
diction results obtained:

MSE
Training Test

Näıve-Bayes 493.914 810.742

Depth first search:
Correlation Measure 290.325 506.6
Improvement Measure 134.704 499.659

Breadth first search:
Correlation Measure 376.136 539.571
Improvement Measure 219.864 615.07

Figure 5: Prediction result obtained for the
sunspot data set showing the MSE

Figure 5 shows that the depth first search us-
ing the improvement measure obtains the best
result, with a significant increase over Näıve-
Bayes. Some caution must be taken in inter-
preting these results as the thresholds used are
not optimised, hence, for a different threshold
value it is possible that the correlation measure
would obtained the same prediction results as
the improvement measure.

The result obtained here from applying the
fuzzy prediction method can again be directly
compared to those obtained by applying the ε-
SVR to the problem. Here the parameters of



the ε-SVR were set as follows: σ = 3, ε = 0.05,
C = 5. Form this the results shown in figure 6
were obtained. Figure 6 shows that the ε-SVR
obtained a similar but slightly better prediction
result, however, we must be careful in drawing
conclusions, as we are comparing un-optimised
result for both system.

Test set results MSE

ε-Support Vector Regression system 418.126
Best Semi-Näıve-Bayes 499.659

Figure 6: Prediction results obtained for the
sunspot prediction test set from applying ε-SVR
with the following parameters: σ = 3, ε = 0.05,
C = 5, and the best Semi-Näıve-Bayes predic-
tion.

We can further compare our results to those
given in [15] using the suggested measure of
prediction accuracy, Average Relative Variance
(AVR), which is calculated as follows:

ARV (DB) =
1

σ̂2
1

N

∑

k∈DB

(xk − x̂k)
2

Figure 7 show the results obtained using our
best Semi-Näıve-Bayes method (a depth first
search with the improvement measure) and the
ε-SVR are better to those stated by Weigend
et al. [15] with Semi-Näıve-Bayes performing
the best on the 1956-1979 segment of the test
set. It should be highlighted that the results
of Weigend et al. [15] for the years 1712-1920
and 1921-1955 are significantly better. This is
because these time periods corresponded to the
training and validation sets used to train the
neural network. The disparity between the re-
sults seen for the years 1712-1920 and 1921-1955
and those stated by Weigend et al. over the
1956-1979, suggest over-fitting by the network.
However, for a full and fair comparison of the
results here we must also allow the validation
set to be included in the training sets for the
fuzzy Bayesian approach. This is because the
validation set is used during the training pro-
cess. The results in this case are given in the
bottom two rows of figure 7. This shows that,
as we would be expected, we obtain better pre-
diction results for both Semi-Näıve-Bayes and
the ε-SVR system on the validation set (1921-
1955) which now more closely matches the re-
sults given by Weigend et al.. Also we see that in
this instance there is little different in the predic-
tion obtained by using Semi-Näıve-Bayes and by
using the ε-SVR system. Further we can give a
direct comparison between the predicted results
from both the ε-SVR and best Semi-Näıve-Bayes
prediction result. (see figuer 8).

Average Relative Variance

1712
1920

1921
1955

1956
1979

Single step prediction: (see [15] p 414)
Weight Elimination Net. 0.082 0.086 0.35
TRA Model 0.097 0.097 0.28

Results from merging the validation with test
Best Semi-Näıve-Bayes 0.113 0.204 0.254
ε-SVRsystem 0.133 0.117 0.263

Results from merging the validation with training
Best Semi-Näıve-Bayes 0.135 0.108 0.249
ε-SVR system 0.127 0.087 0.248

Figure 7: Full comparison of results with those
obtained by Weigend et al. [15].
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Figure 8: Comparison of prediction result ob-
tained form ε-SVR and best Semi-Näıve-Bayes
method.

7 Query Evaluation

Often we what more form a model than just the
ability to obtain a prediction. In addition we
want to use the model to infer relationships and
to test hypothesises. We now propose a method-
ology for evaluating linguistic queries within the
prototype framework. Here the queries are re-
stricted to those that can be expressed in the
form of a vector, ~θ = 〈θ1, . . . , θn〉, where θi is
a label expression generated by recursive ap-
plication of the logical connectives to labels in
LAi. Stated in terms of Zadeh’s linguistic con-
straints this vector represents the expression
x1 is θ1 and x2 is θ2 and . . . and xn is θn.

In the query mechanism we need to be able
to evaluate compound label expression. For ex-
ample, we may wish to know whether or not ex-
pressions such as medium ∧ low, medium ∨ low
and ¬high are appropriate to describe a value
x ∈ Ω. In the context of this framework we
interpret the main logical connectives in the fol-
lowing manner: L1 ∧ L2 means that both L1

and L2 are appropriate labels, L1 ∨ L2 means



that either L1 or L2 are appropriate labels and
¬L means that L is not an appropriate label.
More generally, if we consider label expressions
formed from LA by recursive application of the
connectives then an expression θ identifies a set
of possible label sets λ(θ) as follows:

Definition 9 (Label Expression) The set of
label expression of LA, denoted LE, are defined
recursively as follows:

(i) Li ∈ LE for i = 1, . . . , n

(ii) if θ, ϕ ∈ LE then ¬θ, θ ∨ ϕ, θ ∧ ϕ

Definition 10 For L ∈ LA λ(L) = {S ⊆ LA :
L ∈ S} and for label expressions θ and ϕ.

(i) ∀Li ∈ LA λ(Li) = {S ⊆ LA | Li ∈ S}

(ii) λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)

(iii) λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)

(iv) λ(¬θ) = λ(θ).

Intuitively, λ(θ) corresponds to those subsets
of LA identified as being possible values of Dx

by expression θ. In this sense the imprecise lin-
guistic restriction ‘x is θ’ on x corresponds to
the strict constraint Dx ∈ λ(θ) on Dx. The no-
tion of appropriateness measure given above can
now be extended so that it applies to compound
label expressions. The idea here is that µθ(x)
quantifies the degree to which expression θ is
appropriate to describe x.

µθ(x) =
∑

S∈λ(θ)

mDx
(S)

We specify an output expression on the focal
sets that represent the class labels LC. Hence,
we can now define three queries on Fj ∈ LC, as
follows:

Type I Queries: 〈θ1, . . . , θn−1〉 : Fj

This represents the question: Do elements
of Fj satisfy ~θ ?

Pr(~θ|Fj) =
∑

T1∈λ(~θ1)

· · ·
∑

Tn−1∈λ(~θn−1)

v∏
r=1

mrj (Ti : xi ∈ Sr)

where the description of xn is Fj .

This value can be viewed as quantifying the
appropriateness of the vector ~θ to describe ele-
ments in DB for which the description of xn is
Fj (i.e. Dx = Fj) and is denoted µ~θ(Fj).

Type II Queries: 〈θ1, . . . , θn−1〉

This represents the question: Do elements
of DB satisfy ~θ ?

Pr(~θ) =

j∑

k=1

Pr(Fk)µ~θ(Fk)

This value can be viewed as quantifying the
appropriateness of the vector ~θ to describe the
whole database DB and is denoted µ~θ(DB)

Type III Queries: Fj : 〈θ1, . . . , θn−1〉

This represents the question: Do elements
satisfying ~θ have a value of xn with description
Fj ?

Pr(Fj |~θ) =
Pr(~θ|Fj)Pr(Fj)

µ~θ(DB)

Here we can derive the Type I query using
the Type II and III queries, as follows:

Pr(~θ|Fj) =
Pr(Fj |~θ)µ~θ(DB)

Pr(Fj)

Example 2 Consider the z = sin(x × y) prob-
lem where we defined 7 labels on the x, y and z
universes, as follows:

LAx = LAy = LCz = {extremely small(es),

very Small(vs), small(s), medium(m),

large(l), very large(vl), extremely large(el)}

From this we obtain the focal elements describing
the attributes universes:

Fx = Fy = Fz = {{es, vs}, {vs}, {vs, s}, {s},

{s,m}, {m}, {m, l}, {l}, {l, vl}, {vl}, {vl, el}}

If we assume we have a fully composed model we
have 11 join mass assignments on 2LAx × 2LAy

conditional on Fj ∈ Fz. Then the prototypes for
each focal element of LCz are described as the
one dimensional vectors 〈m{Fj}〉. We can now
consider an example query:

Type I: What is the probability that the x co-
ordinate is large, but not medium and the y co-
ordinate is either medium and not small, or very
large but not extremely large, given the focal set
{vs, s} ?

This query has the following vector form:

〈large ∧ ¬medium, (medium ∧ ¬small)

∨ (very large ∧ ¬extremely large)〉 : {vs, s}

Specifically we have to evaluate:

µ~θ(F{vs,s}) =
∑

Tx∈λ(~θx)

∑

Ty∈λ(~θy)

m{vs,s}(Tx, Ty)



Here it is sufficient to sum m{vs,s} over (λ(θx)∩
Fx)× (λ(θy) ∩ Fy) since all other relevant cells
have zero mass. In this case:

λ(l ∧ ¬m) ∩ Fx = {{l}, {l, vl}}

λ(vl ∧ ¬h)) ∩ Fy = {{vl}, {vl, l}, {l,m}, {m}}

Hence, the required value is given by:

µ~θ(F{vs,s}) =

m{vs,s}({l}, {vl}) +m{vs,s}({l}, {vl, l})

+m{vs,s}({l}, {l,m}) +m{vs,s}({l}, {m})

+m{vs,s}({l, vl}, {vl}) +m{vs,s}({l, vl}, {vl, l})

+m{vs,s}({l, vl}, {l,m}) +m{vs,s}({l, vl}, {m})

= 0.0396 + 0.0088 + 0.0519 + 0.0557

+ 0.0163 + 0.0601 + 0.0019 + 0.059

= 0.2934

We can extent the Type I and Type III
queries so that we can perform queries on com-
pound expressions generated from LC, denoted
∆, rather than on the focal sets of LC. Here
we can no longer can compute the Type I query
directly. Instead we must calculate this using
a Bayesian argument on the type III query as
follows:

Compound Type III: ∆ : 〈θ1, . . . , θn−1〉

This represents the question: Do elements
satisfying ~θ also satisfy xn is ∆ ?

Pr(∆|~θ) =
∑

Fj∈λ(∆)

Pr(Fj |~θ)

Compound Type I: 〈θ1, . . . , θn−1〉 : ∆

This represents the question: Do elements
satisfying xn is ∆ also satisfy ~θ ?

Pr(~θ|∆) =
Pr(∆|~θ)µ~θ(DB)

Pr(∆)

where : Pr(∆) =
∑

Fj∈λ(∆)

Pr(Fj)

This value can be viewed as quantifying the
appropriateness of the vector ~θ to describe ele-
ments in DB for which the description of xn is
∆ and is subsequently denoted as µ~θ(∆).

8 Conclusion

We have introduced a framework for modelling
fuzzy labels and shown how this can be applied
to the induction of fuzzy models for prediction.

In this context input-output relationships are
represented by prototypes comprised of vectors
of mass assignments. Each of the mass assign-
ments is defined over the label sets describing
some subset of the input attributes, where these
subset groupings capture the important depen-
dencies in the modelling problem. A number of
search strategies are introduced to find variable
groupings based on both measures of correlation
and improvement in discrimination. Learnt pro-
totypes can then be used in conjunction with
Semi-Näıve-Bayes and a defuzzification method
to obtain estimated output values given inputs.
In the experiments presented the Fuzzy Bayesian
algorithm gives almost identical results to the
ε-SVR and neural networks. However, the use
of fuzzy labels provides flexible and transparent
models that can be used with a high-level repre-
sentation in terms of fuzzy labels to allow eval-
uation of queries expressed in natural language.
This utilizes the calculus for appropriateness de-
gree proposed in [9] and uses a similar system as
evaluate expressions to that proposed for classi-
fication given in [13].
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