
 Zengchang, Q., & Lawry, J. (2004). ROC Analysis of a Linguistic Decision
Tree Merging Algorithm. In Proc. UKCI. (pp. 33 - 42)

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025490?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/roc-analysis-of-a-linguistic-decision-tree-merging-algorithm(4f1e071d-528e-495e-a42e-6a935d929b2d).html
http://research-information.bristol.ac.uk/en/publications/roc-analysis-of-a-linguistic-decision-tree-merging-algorithm(4f1e071d-528e-495e-a42e-6a935d929b2d).html

ROC Analysis of a Linguistic Decision Tree Merging
Algorithm

Zengchang Qin and Jonathan Lawry
Artificial Intelligence Group

Department of Engineering Mathematics
University of Bristol
Bristol BS8 1TR, UK

{z.qin, j.lawry}@bristol.ac.uk

Abstract

ROC analysis is an important tool for
evaluation and comparison of classifiers
in imprecise environments (i.e., class dis-
tribution and cost parameters are un-
known). Area Under the Curve of ROC
(AUC) is increasingly being recognized
as a better measure for evaluating algo-
rithm performance than accuracy. A big-
ger AUC value implies a better ranking
performance for a classifier. Linguistic de-
cision tree (LDT) is a model based on a
random set framework of modelling with
words. Classification is made based on
probability estimates from all leaves of
the tree. In this paper, a branch merging
algorithm for LDT model is proposed to
generate more compact trees and no sig-
nificant reduction in AUC values is found.

1 Introduction

Traditionally, the main criterion for evaluating
the performance of a classifier is accuracy (per-
centage of test examples that are correctly clas-
sified) or error (percentage of misclassified ex-
amples). However, in many situations, not ev-
ery misclassification has the same consequences
when misclassification costs have to be taken
into account. Provost et. al [11] have demon-
strated problems with using accuracy as a met-
ric. It can be irrelevant or misleading when
classes are imbalanced or when misclassification
costs are unequal. In recent years, Receiver Op-
erating Characteristics (ROC) analysis has been
introduced to evaluate machine learning algo-
rithms [11, 12]. Area under the curve (AUC)
of ROC is used to measure the quality of rank-
ing for a classifier [5, 13]. It provides tools to
compare the classifiers across the entire range
of class distributions and misclassification cost.
Recently, Ling et.al showed that AUC is statis-
tically consistent and more discriminating than

accuracy measure. So, it is fair to use AUC
rather than accuracy to evaluate a learning al-
gorithm.

Linguistic decision tree (LDT) [14] is a tree-
structured model based on a random set frame-
work for “Modelling with Words” [7] referred to
as label semantics [8]. In these trees, fuzzy labels
such as small, medium and large which are, de-
fined by overlapping fuzzy sets, are used to build
the tree. Different from traditional fuzzy or non-
fuzzy decision trees, classification is made based
on probability estimates from all leaves of the
tree and branches of the tree can be interpreted
as a set of linguistic rules which support lin-
guistic reasoning and queries [8]. Linguistic ID3
(LID3) [14], the algorithm for learning LDTs,
is based on an information heuristics modified
from the traditional ID3 [15]. Empirical studies
on classification problems showed that the LDT
model has better or equivalent accuracy and the
best transparency when compared to three other
well known classification models [14].

LDTs generated from the LID3 algorithm
usually have a large number of branches. How-
ever, a large size tree indicates low transparency.
To overcome this problem and obtain much more
compact trees, a branch merging algorithm is
proposed in this paper and the performance for
non-merged and merged LDTs are compared ac-
cording to the AUC measure.

2 Why AUC is a Better Measure?

Traditionally, accuracy, defined as the percent-
age of instances that are correctly classified, or
error, defined as the percentage of incorrectly
classified instances, are the measures which are
widely used for evaluating performance of a clas-
sifier. Using accuracy as a performance measure
assumes that the error costs are equal. However,
this is not realistic if we consider problems such
as medical diagnosis or fraud detection. We need
a classification model which minimises the over-

Table 1: Classification by a probability estimator with different thresholds.
Examples e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Pr(+|ei) 0.11 0.23 0.25 0.37 0.49 0.58 0.63 0.69 0.84 0.97
T = 0.5 − − − − − + + + + +
T = 0.3 − − − + + + + + + +

Table 2: Two classifiers with the same accuracy but different AUC values. This table is inspired by
a similar table in [9]

Examples e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Classifier 1 (CS1) − − − − + − + + + +
ri for Classifier 1 5 7 8 9 10
Classifier 2 (CS2) + − − − − + + − + +
ri for Classifier 2 1 6 7 9 10

all cost but which does not necessarily minimize
error or maximize accuracy. Here, the following
two important statistics are considered.

For a binary classification problem, the true
positive rate (TPR) of a classifier is:

TPR =
positive correctly classified

total positives
(1)

The false positive rate (FPR) of a classifier is:

FPR =
negatives incorrectly classified

total negatives
(2)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

False Positive Rate (%)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

A

A’

A’’

AUC

Figure 1: By varying the decision threshold of a
probability estimation classifier, a ROC curve is pro-
duced.

If we plot FP rate on the X axis and TP
rate on the Y axis. A single classification is then
represented by a point in this 2D space which is
referred to as ROC space. For a probability esti-
mation model, a threshold is needed when doing
classification. For example, table 1 shows 10 ex-
amples e1, · · · , e10 classified by a learning model

which gives probability estimation in a two-class
(i.e. ei → {+,−}) problem. The probabilities
of belonging to class + are sorted from small
to large. Different classification results will be
given according to the rule of

∀ i, ei → {+} if : Pr(+|ei) ≥ T (3)

by assigning different threshold probabilities T .
In table 1, the classification results when T = 0.5
and T = 0.3 are given. We normally set T = 0.5
when we calculate accuracy for a probability
estimation model. If we vary the value of T
through [0, 1] will result a continuous curve in
ROC space which is referred to as a ROC curve.

Suppose the threshold value T is set to 0.5,
which gives ei → {+} for i = 1, · · · , 10 that sat-
isfies Pr(+|ei) ≥ 0.5. However, By varying the
threshold , we can generating a trial in ROC
space, which is called ROC curve. For exam-
ple, figure 1 schematically shows a ROC curve
by choosing 3 different probability thresholds,
where A, A′ and A′′ are the classification re-
sults based on the chosen thresholds. In another
words, A classifier results in a ROC curve, which
aggregates its behavior for all possible decision
thresholds. The quality of the classifier can be
measured by the area under the curve of ROC
(AUC), which measures how well the classifier
separates the two classes without reference to a
decision threshold. In other words, AUC repre-
sents the quality of ranking of examples by this
classifier [5].

Hand and Till [5] present a straightforward
approach to calculate the AUC of a classifier
based on the ranking of examples based on the
their class probabilities. For a binary classifica-
tion problem with two classes {+,−}:

AUC =
S+ − n+(n+ + 1)/2

n+n−
(4)

where n+ and n− are the number of positive
and negative examples, respectively. A ranking
list is given according to the probabilities of the
class +.

S+ =
n+∑
i=1

ri (5)

where ri is the rank of ith positive example in the
ranking list. For example, the AUC for classifier
1 and 2 listed in table 1 are:

AUC(CS1) =
(5 + 7 + 8 + 9 + 10) − 5(5 + 1)/2

5 × 5
=

24

25

AUC(CS2) =
(1 + 6 + 7 + 9 + 10) − 5(5 + 1)/2

5 × 5
=

18

25

We may notice that both classifier 1 and 2
have the same accuracy 80% (8 of 10 examples
are correctly classified) and thus they are equally
good in accuracy. However, the intuition tells us
that Classifier 1 is better than Classifier 2 since
Classifier 1 gives a better overall ranking. Con-
sider an intuitive example, suppose the ranking
tells us how poisonous ten different kinds mush-
rooms are, where ‘−’ represents poisonous and
‘+’ edible. Classsifer 2 will classify a very poi-
sonous mushroom as edible. However, Classifer
1 is not that bad by classifying a less poisonous
mushroom as edible. So, Classifier 1 is better
for the mushrooms classification problem. This
can be seen from AUC measure but not the ac-
curacy measure. Ling et. al mathematically
proved that the AUC measure is consistent and
more discriminating than the accuracy measure
[9]. The method for calculating AUC for multi-
class problems are given in [5], however, in this
paper, only two-class problems are considered.

3 Label Semantics

Label semantics [6] was proposed by Lawry to
capture the idea of using linguistic expressions
to label imprecise concepts. The semantics is
based on random set theory although different
from earlier work of Goodman and Nguyen [4].
The underlying question posed by label seman-
tics is how to use linguistic expressions to label
numerical values. For a variable x into a domain
of discourse Ω we identify a finite set of linguis-
tic labels LA = {L1, · · · , Ln} with which to label
the values of x. Then for a specific value α ∈ Ω
an individual I identifies a subset of LA, denoted
DI

α to stand for the description of α given by I,
as the set of words with which it is appropriate

to label α. If we allow I to vary across a pop-
ulation V , then DI

α will also vary and generate
a random set denoted Dα into the power set of
LA. The frequency of occurrence of a particular
label, say S, for Dα across the population then
we obtain a distribution on Dα referred to as a
mass assignment on labels, more formally:

Definition 1 (Mass Assignment)

∀S ⊆ LA, mx(S) =
|{I ∈ V |DI

x = S}|
|V |

For example, given a set of labels defined on
a man’s age LAage = {young(y), middle-
aged(m), old(o)}. 3 of 10 people agree that
‘middle-aged is the only appropriate label for
the age of 30’ and 7 agree ‘both young and
middle-aged are appropriate labels’. According
to def. 1, m30(y) = 0.3 and m30(y, m) = 0.7 so
that the mass assignment for 30 is

m30 = {m} : 0.3, {y, m} : 0.7

More details about Mass Assignment theory can
be found in [1].

In this framework, appropriateness degrees
are used to evaluate how appropriate a label is
for describing a particular value of variable x.
Simply, given a particular value α of variable
x, the appropriateness degree for labeling this
value with the label L, which is defined by fuzzy
set F , is the membership value of α in F . The
reason we use the new term ‘appropriateness de-
gree’ is partly because it more accurately reflects
the underlying semantics and partly to highlight
the quite distinct calculus based on this frame-
work [8]. This definition provides a relationship
between mass assignments and appropriateness
degrees.

Definition 2 (Appropriateness Degrees)

∀x ∈ Ω, ∀L ∈ LA µL(x) =
∑

S⊆LA:L∈S

mx(S)

Consider the previous example, we can obtain
µm(30) = 0.7 + 0.3 = 1, µy = 0.7. Based
on the underlying semantics, we can translate
a set of numeric data into a set of linguistic
data, where each data value is replaced by mass
assignments on appropriate labels. We need
to make some assumptions for this translation.
The first is the consonance assumption, accord-
ing to which we can determine the mass assign-
ment uniquely from the appropriateness degrees
as follows. (For the justification of the conso-
nance assumption in see [8])

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

X

M
e

m
b

e
rs

h
ip

x
2
 = 0.44 x

3
 =0.78

0.3

Small Medium Large

x
1
 = 0.2

0.5

Figure 2: An example of a full fuzzy covering with
3 uniformly distributed trapezoidal fuzzy sets with
50% overlap.

Definition 3 (Consonance Assumption)

Let {β1, β2, · · ·, βk}= {µL(x)|L ∈ LA,
µL(x) > 0} ordered such that βt> βt+1 for
t = 1, 2, · · · , k − 1 then:

mx = Mt : βt − βt−1, t = 1, 2, · · · , k − 1,

Mk : βk, M0 : 1 − β1

where M0 = ∅ and Mt = {L ∈ LA|µL(x) ≥ βt}
for t = 1, 2 . . . , k.

Based on this assumption, there is a unique mass
assignment for a given set of appropriateness de-
gree values. For example, given µL1 = 0.3 and
µL2 = 1, the only unique consonant mass as-
signment is {L2} : 0.7, {L1, L2} : 0.3, but not
{L2} : 0.8, {L1, L2} : 0.2, {L1} : 0.1 or others.
However, it is undesirable to have mass asso-
ciated with the empty set. In order to avoid
this, we define a full fuzzy covering assumption
as follows: Given a continuous discourse Ω, LA
is called a full fuzzy covering of Ω if:

∀x ∈ Ω, ∃L ∈ LA µL(x) = 1

In this paper, unless otherwise stated, the fuzzy
labels are defined by trapezoidal fuzzy sets with
50% overlap. For example see figure 2 which
shows a full fuzzy covering of the universe with
three fuzzy labels: small, medium and large.

It is also interesting to note that given as-
sumptions (consonant, full fuzzy covering) on la-
bels we can isolate a set of subsets of LA with
non-zero mass assignments. These are referred
to as focal sets :

Definition 4 (Focal Set) The focal set of LA
is a set of focal elements defined as:

F = {S ⊆ LA|∃x ∈ Ω, mx(S) > 0}

Given fuzzy labels defined in figure 2 the fol-
lowing focal elements occur: {small}, {small,

medium}, {medium}, {medium, large} and
{large}. Since small and large do not overlap,
the set {small, large} cannot occur. We can
then always find the unique translation from a
given data point to a mass assignment on fo-
cal elements, specified by the function µL; This
is referred to as linguistic translation (LT). For
a particular attribute with an associated focal
set, linguistic translation is a process of replac-
ing data elements with masses of focal elements
of these data. The linguistic translation for
〈x1, x2, x3〉 based on the consonance assumption
is as follows:(

x
0.2
0.44
0.78

)
LT→

({s} {s, m} {m} {m, l} {l}
0.5 0.5 0 0 0
0 0.3 0.7 0 0
0 0 0 0.6 0.4

)

4 Linguistic Decision Tree

Linguistic decision tree (LDT) [14] is a tree-
structured classification model based on label
semantics. The information heuristics used for
building the tree are modified from Quinlan’s
ID3 [15] in accordance with label semantics. The
class probability estimation for each branch is
evaluated according to the training set. Classi-
fication are made by considering the class prob-
abilities across the whole tree.

Consider a database with n attributes and N
instances and each instance is labeled by one of
the classes: {C1, · · · , Cm}. A linguistic decision
tree built from this database can be defined as
follows:

LDT = {< B1, P (C1|B1), · · · , P (Cm|B1) >, · · ·
< Bs, P (C1|Bs), · · · , P (Cm)|Bs) >}

where P (Ct|B) is the probability of class Ct

given a branch B. A branch with k nodes is
defined as:

B =< F1, · · · , Fk >

where, k ≤ n and Fj ∈ Fj for i = 1, · · · , k. For
example, consider the branch:

<< {small1, medium1}, {large2} >, 0.3, 0.7 >

in a binary classification problem. This means
the probability of class C1 is 0.3 and C2 is 0.7
given attribute 1 can be described as small &
medium and attribute 2 can only be described as
large. In a LDT, one attribute is not allowed to
appear more than once in a branch, an attribute
which is not currently part of a branch is referred
to as a free attribute.

4.1 Classification

Basically, fuzzy discretization provides an inter-
pretation between numerical data and linguistic
data based on label semantics. The effective-
ness of fuzzy discretization may affect the algo-
rithm’s performance. In this paper, we will use
percentile-based discretization: each attribute
universe is partitioned into intervals which each
contains approximately the same number of data
elements. It is a very intuitive way for generat-
ing fuzzy sets.

According to the definition of LDT, if given
a branch of a LDT in the form of B =< F1,
· · · , Fk >. Based on a training set with N in-
stances: DB = {x1, · · · ,xN}T where each in-
stance has n attributes: x = 〈x1, · · · , xn〉. The
probability of Class Ct (t = 1, · · · , m) given B
can then be evaluated as follows. First, we con-
sider the probability of a branch B given x:

P (B|x) =
k∏

r=1

mxj (Fj) (6)

mxj(Fj) for j = 1, · · · , k are mass assignments of
single data element xj . The probability of class
Ct given B can then be evaluated by:

P (Ct|B) =

∑
i∈DBt

P (B|xi)∑
i∈DB P (B|xi)

(7)

where DBt is the subset consisting of in-
stances which belong to class t. In the case
of
∑

i∈DBP (B|xi) = 0, which can occur when
the training database for the LDT is small, then
there is no non-zero linguistic data covered by
the branch. In this case, we obtain no informa-
tion from the database so that equal probabili-
ties are assigned to each class.

P (Ct|B) =
1
m

for t = 1, · · · , m (8)

Now consider classifying an unlabeled in-
stance in the form of x = 〈x1, · · · , xn〉 which may
not be contained in the training data set DB.
First we apply linguistic translation to x based
on the fuzzy covering of the training data DB.
In the case that a data element appears beyond
the range of training data set [Rmin, Rmax], we
assign the appropriateness degrees of Rmin or
Rmax to the element depending on which side
of the range it appears. Then, according to the
Jeffrey’s rule the probabilities of class Ct given
a LDT with s branches are evaluated as follows:

P (Ct|x) =
s∑

v=1

P (Ct|Bv)P (Bv|x) (9)

where P (Ct|Bv) and P (Bv|x) are evaluated
based on equations 6 and 7 (or 8), respectively.

4.2 LID3 Algorithm

Linguistic ID3 (LID3) is the learning algorithm
proposed for building the linguistic decision tree.
Similar to the ID3 algorithm [15], search is
guided by an information based heuristic, but
the information measurements of a LDT are
modified in accordance with label semantics.
The measure of information defined for a branch
B and can be viewed as an extension of the en-
tropy measure used in ID3.

Definition 5 (Branch Entropy) The branch
entropy of a branch B is given by

E(B) = −
m∑

t=1

P (Ct|B) log2(P (Ct|B)) (10)

Now, given a particular branch B suppose we
want to expand it with the attribute xj . The
evaluation of this attribute will be given based
on the expected entropy defined as follows:

Definition 6 (Expected Entropy)

EE(B, xj) =
∑

Fj∈Fj

E(B ∪ Fj)P (Fj |B) (11)

where B∪Fj represents the new branch obtained
by appending the focal element Fj to the end of
branch B. The probability of Fj given B can be
calculated as follows:

P (Fj |B) =
∑

i∈DB(B ∪ Fj |xi)∑
i∈DB(B|xi)

(12)

We can now define the Information Gain (IG)
obtained by expanding branch B with attribute
xj as:

Definition 7 (Information Gain)

IG(B, xj) = E(B) − EE(B, xj) (13)

The goal of tree-structured learning models
is to make subregions partitioned by branches be
less “impure”, in terms of the mixture of class la-
bels, than the unpartitioned dataset. For a par-
ticular branch, the most suitable free attribute
for further expanding (or partitioning), is the
one by which the “pureness” is maximumly in-
creased with expanding. That corresponds to
selecting the attribute with maximum informa-
tion gain.

As with ID3 learning, the most informative
attribute will form the root of a linguistic deci-
sion tree, and the tree will expand into branches

associated with all possible focal elements of this
attribute. For each branch, the free attribute
with maximum information gain will be the next
node, from level to level, until the tree reaches
the maximum specified depth or some other cri-
teria are met.

4.3 Forward Branch Merging

One of the inherent disadvantages for tree induc-
tion algorithms is overfitting. Many algorithms
for punning the trees back were proposed [10].
Here we present a branch merging algorithm for
LDT. By applying the branch merging, LDTs
are using developed breath-first search. At each
depth, the branches which give similar probabil-
ities for target focal elements are merged into
one branch according to a merging threshold :
Definition 8 (Merging Threshold) For two
adjacent branches B1 and B2, if the maximum
difference between class probabilities is less than
or equal to a given merging threshold Tm, then
the two branches can be merged into one branch.

Tm ≥ max
t=1,···,m

(|Pr(Ct|B1) − Pr(Ct|B2)|) (14)

The merged branch MB is defined as follows:
Definition 9 (Merged Branch) A merged
branch with k nodes is defined as

MB = 〈M1, · · · ,Mk〉
where Mj = {F 1

j , · · · , Fw
j } is a set of focal el-

ements such that F i
j is adjacent to F i+1

j for
i = 1, · · · , w − 1. The associate mass for Mj

is given by

mx(Mj) =
w∑

i=1

mx(F i
j) (15)

where w is the number of merged adjacent focal
elements for attribute j.
Here ‘adjacent’ means that the fuzzy labels are
defined sequentially according to a natural or-
dering. For the example shown in figure 2,
{small} and {small,medium} are adjacent focal
elements while {small} and {medium} are not.
Then the probability of a merged branch given
a data element can be evaluated by

P (MB|x) =
k∏

r=1

mxj(Mj) (16)

Based on equations 7, 8 and 15 the following
equation is used to calculate the class probabil-
ities given a merged branch.

P (Ct|MB) =

∑
i∈DBt

P (MB|x)∑
i∈DB P (MB|x)

(17)

Table 3: Description of UCI datasets for test.

Data Cases Features Mixed
1 Can 286 9 yes
2 CanW 699 9 no
3 HC 303 13 yes
4 HS 270 13 yes
5 HP 155 19 yes
6 Pima 768 8 no

Given a new example x, we can classify it by a
merged LDT with s′ branches as follows:

P (Ct|x) =
s′∑

v=1

P (Ct|MBv)P (MBv|x) (18)

When the merging algorithm is applied dur-
ing learning, the adjacent branches meeting the
merging criteria will be merged and re-evaluated
according to equation 17. Then the adjacent
branches after the first round of merging will be
examined in a further round of merging, until
all adjacent branches cannot be merged further.
We then proceed to the next depth. The merg-
ing is applied as the tree develops from the root
to the maximum depth and hence is referred to
as forward branch merging.

5 Experimental Studies

In this section, six binary datasets from UCI ma-
chine learning repository [2] are tested: breast-
cancer (Can), Wisconsin cancer (CanW), heart
(HC), heart-Stalog (HS), heptitis (HP) and In-
dian Pima (Pima). Description about these
datasets including the number of examples, the
number of attributes (features) and whether the
features are mixed features of numerical and
nominal, is shown in table 3.

The LDT parameters for each data set are
set individually: the number of fuzzy sets used
for discretization (NF) is also shown in table 4.
The maximum depth for the Cancer dataset is 2
and other five data sets are 3. These parameter
settings are based on a few test-and-trail experi-
ments [14]. For each data set, the examples were
equally divided into two subsets, one for training
and the other one for test. This is referred to as
50%-50% split experiment. Table 4 shows the
average AUC and standard deviation from 10
runs of 50%-50% split experiments by applying
merging with the merging threshold Tm ranging
from 0 (no merging) to 0.3. The average size of
the trees NR from 10 runs of experiments are
also shown in the table, where size of the tree

Table 4: Mean AUC values with standard deviation on six data sets with different merging thresholds.

Tm = 0 Tm = 0.1 Tm = 0.2 Tm = 0.3
Data NF AUC NR AUC NR AUC NR AUC NR

Can 3 73.69 ± 7.73 13 71.45 ± 7.12 11 74.29 ± 8.44 9 81.11 ± 3.25 4
CanW 3 98.76 ± 0.72 44 99.02 ± 0.54 12 98.69 ± 0.59 9 98.99 ± 0.60 7
HC 2 85.36 ± 2.58 35 84.02 ± 3.46 32 84.79 ± 3.39 25 84.32 ± 4.38 17
HS 2 84.41 ± 3.64 29 85.16 ± 2.90 25 81.12 ± 15.05 19 82.36 ± 5.71 11
HP 2 73.26 ± 6.89 19 73.99 ± 5.36 11 74.80 ± 4.83 9 74.25 ± 5.99 7
Pima 2 81.08 ± 0.97 27 81.92 ± 1.79 14 74.74 ± 15.13 5 81.90 ± 4.84 2

is in terms of the number of branches (also the
the number of rules can be interpreted from a
LDT).

According to the t-test with confidence level
0.9, the AUC values for the merged LDTs are
not reduced significantly comparing to the non-
merging case. Although for some data sets, (e.g.,
breast-cancer) the merged trees performs even
a little better than non-merged trees. But no
statistically significant difference are found. On
the other side, the tree sizes are reduced sig-
nificantly. These facts can be intuitively seen
from figure 3: the left-hand figure shows the
accuracy comparison and the right-hand figure
shows the comparison of the number of branches.
The possible reason for this is because the merg-
ing algorithm generates self-adapting granular-
ities based on class probabilities. Compared
to other methods that discretize attributes in-
dependently, merging may generate more rea-
sonable trees with more appropriate information
granules. However, this still needs more investi-
gation.

The LDTs obtained can be interpreted into
a set of linguistic rules. For example on the
Pima Indian dataset, a merged LDT with 6
branches when Tm = 0.2 is shown as follows:

1: {{s2}, {s2, l2}} − − {s8} 〈0.88, 0.12〉
2: −− {{s8, l8}, {l8}} 〈0.60, 0.40〉
3: {l2} − − {s6} −− {s8} 〈0.88, 0.12〉
4: −− {s8, l8}〈0.31, 0.69〉
5: −− {l8} 〈0.68, 0.32〉
6: −− {{s6, l6}, {l6}} 〈0.34, 0.66〉

where each attribute (from 1 to 8) is dis-
cretized by 2 fuzzy labels: small (s) and large
(l). The class probabilities are shown at the end
of each branch. Initially, the tree has expanded
to level 3, by applying the merging algorithm,
some of branch expanding could be merged

back: for example, the first branch:

{{s2}, {s2, l2}} − −{s8}
is from the merging of the following 3 branches:

{{s2}, {s2, l2}} − −{s8} − −{s6}
{{s2}, {s2, l2}} − −{s8} − −{s6, l6}
{{s2}, {s2, l2}} − −{s8} − −{l6}

For each branch, e.g., the 4th branch:

{l2} − − {s6} − − {s8, l8}
We can interpret it as a linguistic rule:

¬s2 ∧ l2 −− s6 ∧ ¬l6 −− s8 ∧ l8

where {l2} represents that only the label large
is appropriate or, shortly, only large. This is
logically equivalent to the expression ¬s2 ∧ l2.
More details on the logical interpretation can
be found in [8]. So, the above linguistic tree can
be interpreted as follows:

1: s2 −− s8 ∧ ¬l8 〈0.88, 0.12〉
2: −− l8 〈0.60, 0.40〉
3: ¬s2 ∧ l2 −− s6 ∧ ¬l6 −− s8 ∧ ¬l8 〈0.88, 0.12〉
4: −− s8 ∧ l8 〈0.31, 0.69〉
5: −− ¬s8 ∧ l8 〈0.68, 0.32〉
6: −− l6 〈0.34, 0.66〉

As we can see from above that each branch is
also a linguistic rule based on fuzzy labels. This
is also one of the reasons of naming our model
as linguistic decision tree.

6 Conclusions

ROC analysis has been recognized as an impor-
tant tool for evaluation and comparison of clas-
sifiers. Some recent work has been done to use
ROC analysis study decision trees: Provost and
Domingos [13] shows that decision trees can also

1 2 3 4 5 6
70

75

80

85

90

95

100

Datasets

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

T
m

=0
T

m
=0.1

T
m

=0.2
T

m
=0.3

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

Datasets

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
b

ra
n

ch
e

s

T
m

 = 0
T

m
 = 0.1

T
m

 = 0.2
T

m
 = 0.3

Figure 3: Comparison between non-merged trees and merged trees with Tm ranging from 0.1 to 0.3 on the
given test data. Left-hand figures shows the accuracy comparison and right-hand figure shows the comparison
of the number of branches.

give good probability estimations in the AUC
measure. Ferri et. al [3] use the AUC as a
heuristics to learning decision trees. Ling et. al
[9] shows that the AUC measure is more discrim-
inating than the accuracy measure.

In this paper, the AUC measure is used to
evaluate a linguistic decision tree merging al-
gorithm. Some initial results for comparing
merged LDTs and non-merged LDTs in the
AUC measure are presented. By applying this
merging algorithm, the tree sizes are signifi-
cantly reduced while the AUC values are not
significantly influenced when merging thresholds
ranging from 0.1 to 0.3 based on 6 UCI data sets.
Finally, we gave an example of interpreting a
merged LDT as a set of linguistic rules.

References

[1] J.F. Baldwin, T.P. Martin and B.W. Pilsworth.
Fril-Fuzzy and Evidential Reasoning in Artifi-
cial Intelligence. John Wiley & Sons Inc, 1995.

[2] C. Blake and C.J. Merz. UCI machine learning
repository. http://www.ics.uci. edu/∼mlearn/
MLRepository.html.

[3] C. Ferri, P.A. Flach and J. Hernández-Orallo.
Learning decison trees using the area under
the ROC curve. Proceedings of the ICML-02.
Sydney, Australia, pp. 139-146, Morgan Kauf-
mann, 2002.

[4] I.R. Goodman and H.T. Nguyen. Uncertainty
Models for Knowledge Based System. North-
Holland, Amsterdam, 1985.

[5] D. Hand and R. J. Till. A simple generalisation
of the area under the ROC curve for multiple
class classification problems. Machine Learn-
ing. Vol. 45, 171-186, 2001.

[6] J. Lawry. Label Semantics: A formal frame-
work for modelling with words. Symbolic
and Quantitative Approaches to Reasoning
with Uncertainty, LNAI pp. 374-384 Springer-
Verlag, 2001.

[7] J. Lawry, J. Shanahan, and A. Ralescu. Mod-
elling with Words: Learning, fusion, and rea-
soning within a formal linguistic representation
framework. LNAI 2873. Springer-Verlag 2003.

[8] J. Lawry. A framework for linguistic modelling,
Artificial Intelligence, 155: pp. 1-39, 2004.

[9] C. X. Ling, J. Huang and H. Zhang. AUC: a
statistically consistent and more discriminating
measure than accuracy. Proceedings of IJCAI,
2003.

[10] C. Olaru and L. Wehenkel. A complete fuzzy
decision tree technique. Fuzzy Sets and Sys-
tems. 138: 221-254, 2003.

[11] F. Provost, T. Fawcett, and R. Kohavi. The
case against accuracy estimation for compar-
ing induction algorithms. in J. Shavlik, editor,
Prced. of ICML98, pp. 445-453, 1998.

[12] F. Provost and T. Fawcett. Robust classifi-
cation for imprecise environments. Machine
Learning. Vol. 42, 203-231, 2001.

[13] F. Provost and P. Domingos. Tree induction for
probability-based ranking. Machine Learning.
52, 199-215, 2003.

[14] Z. Qin and J. Lawry. A tree-structured model
classification model based on label semantics.
To appear in the Proceedings of IPMU, 2004.

[15] J.R. Quinlan. Induction of decision trees. Ma-
chine Learning 1: 81-106. 1986

