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Abstract: An expression for the  error probability of 
raised cosine filtered circular 16-ary differential amplz- 
tude and phase shift keying (circular 16-DAPSK) in a 
frequency-selective Rayleigh fading channel with pos td t -  
tection diversity reception i s  o(5tained. T h e  effect of delay 
spread, modulation ring ratio and ,jilter roll-off are also 
considered in the  formula t ion .  For a constant bit rate, 
the average irreducible bit error probability f o r  circular 1 ti- 
DAPSK is  shown t o  be superior t o  th8at of 16-DPSK but 
slightly worse t h a n  Q-DPSK. 

Introduction 
Future mobile networks are looking to  integrate digital 
voice with high capacity data based services. Digitid 
modems are prone to the introduction of an irreducible er- 
ror rate that arises as a result of user motion and/or time 
dispersion in the channel [l]. The resulting error floors 
are independent of signal strength and, unless corrected, 
can limit either the speed of the mobile (Doppler) or the 
maximum transmission rate (time dispersion). Hence, for 
a high data rate wireless modem, the effect of delay spread 
must be carefully considered. 

The effect of delay spread on bandwidth efficient modula- 
tions schemes has already been investigated by various au- 
thors. The error performance of quadrature coherent PSK 
with bandlimiting raised cosine (YLC)i pulse shaping was 
examined in [2],[3]. Both papers concluded that Q-PSIK 
outperform B-PSK under the same channel conditions. 
An indepth treatment of the error performance of RC fil- 
tered Q-DPSK with postdetection diversity combining is 
covered in [4]. The error performance of M-ary DPSK 
in frequency selective channels has already been analysed 
including the effects of Doppler shift [ 5 ] ,  where diversity 
combining was considered with time-limited pulse shapes. 
Recently, work in [6] has formulated the error performance 
of RC filtered M-DPSK in a frequency-selective Rayleigh 
fading channel with diversity reception. The irrducible 
bit error probability of B-DPSK is worse than higher level 
schemes such as 4, 8 and 16-DPSK. No improvement is 

observed when the modulation level is greater than four. 
This trend arises since the impact of a more complex, 
higher level, constellation pattern can override the advan- 
tages of a longer symbol period. The error performance 
of PSK and APSK (amplitude and phase shift keying) 
in a frequency-selective Rayleigh fading channel has also 
been reported in earlier works. In [7], 16-QAM was com- 
pared with M-PSK assumming coherent detection. In [8], 
circular 16-DAPSK was compared with M-DPSK. Both 
works used RC pulse shaping, however diversity reception 
was not considered in the comparison. Recently, in [9], 
the authors have calculated the error probability of cir- 
cular 16-DAPSK in a frequency-selective Rayleigh fading 
channel with postdetection diversity reception and tirne- 
limited pulse shapes. The results have shown that circu- 
lar 16-DAPSK performs better when compared with 16- 
DPSK and the improvement increases when diversity is 
applied. However, in a pratical situation, a bandlimited 
signal is normally used to improve bandwidth efficiency 
in a mobile system. Therefore, to justify the advantage of 
circular 16-DAPSK over 16-DPSK, it is essential to analy- 
sis t,he error performance of circular 16-DAPSK with ban- 
dliniited filtering. 

The aim of this paper is to extend the work in [9], so 
that the error probability can be calculated when ban- 
dlimited pulse shapes are applied to circular 16-DAPSK 
in a frequency-selective Rayleigh channel. The expression 
takes into account factors such as root mean square (rms) 
delay spread, ring ratio, raised cosine roll-off factor and 
post-detection diversity combining. Using such equations, 
the irreducible error floor introduced by delay spread can 
be evaluated and the sensitivity to the filter roll-off value 
determined both with and without the use of diversity 
combining. 

System Modelling 
The overall transmission system with postdetection diver- 
sity reception is modelled as shown in Fig.]. For math- 
ematical convenience, an equivalent lowpass signal repre- 
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sentation is used. To achieve both a narrowband spectrum 
and intersymbol interference (ISI) free transmission in the 
absence of delay spread, the overall raised cosine filter re- 
sponse is applied. [2]-[4]: 

where a (0 5 a 5 1) is the roll-off factor and T, is the 
symbol duration. In this paper, a square root RC filter 
is assumed for both transmitter and receiver, and hence 
their frequency responses can be written as: 

where H,, (f) is the frequency response of h,, ( t )  and the 
constant T, is used to normalise the pulse to obtain unit 
power. 

For circular IBDAPSK transmission, the equivalent low- 
pass transmitted signal u( t )  can be written as: 

w -00 

n=-m n=-m 

where d, = 1 or p, and p represents the ring ratio. A d ,  
represents the amplitude of the transmitted signal and 
8, = ~ ( i  - 1)/4, where i = 1 , 2 , .  . . , 8  is the transmitted 
phase. The time response of the transmit filter is defined 
as hT(t) .  The differential encoding technique for circular 
16-DAPSK is discussed in [lo]. The signal generated is 
sent over L independent frequency-selective Rayleigh fad- 
ing channels, the statistical characteristics of which are 
assumed identical. 

The Fading Channel: At the nth time interval, the equiy- 
alent lowpass received signal in the kth diversity channel. 
r k ( t ) ,  can be written as: 

For the kth diversity branch, g k ( t ,  7 )  represents the chan- 
nel impulse response which is a zero mean complex Gaus- 
sian fading process. z k ( t )  denotes zero mean complex ad- 
ditive white Gaussian noise of power spectral density 2 1 % ~ ~ .  
For strictly frequency-selective fading channels [ll] (i.e. 
fading variations much slower compared to the symbol 
rate), the auto-correlation function for gk ( t ,  T )  is stated 
below: 

for k = 1 , 2 , .  . . , L.  E[.] denotes the ensemble average and 
* denotes the complex conjugate value. &(T) represents 
the power delay profile. Earlier works have shown that 
root mean square delay spread is an important parameter 
in the analysis of the error performance of a digital system 
in frequency-selective fading channels [2]-[4]. Th' is param- 
eter is defined as = [J-, T ~ ; ~ ( T ) ~ T ] ~ / ~ ,  where zero 
mean delay and s-", F g ( 7 )  = 1 are assumed. 

Receiver Processing: The receiver block diagram for the 
k t h  order diversity branch is shown in Fig.1. The signal 
rk(t)  is passed through a matched filter with an impulse 
response of h,(t) and sampled at  time t = pT,, where p is 
an integer number. The output of the filter is therefore: 

w 

-00 

uk 1, rk(Q)hR(t - a)da  (6) 

and similarly, for r k ( t  - Ts) ,  the output of the filter is: 

00 

Kk 11, T k ( a  - T,)h,(t - T, - a)da (7) 

For amplitude detection, a square-law envelope detector 
is used to extract the envelope of U, and K k .  The com- 
bined outputs after the postdetection combiner, IU1' = 
xi=.=, i l i k 1 2  and lKI2 = Ck==, IEikI2, are then passed to 
the amplitude decision device, where the a~nplitude ratio 
ILT12/lK12 is decoded by comparing it with two decision 
thresholds, & = (1 + p)/2 and tL = 1/&. For the phase 
detection, a conventional 8-DPSK detector is applied. As 
indicated in Fig. 1 the demodulator a t  each branch forms 
the product between the two complex Gaussian random 
variables of (6) and (7 ) ,  so for Lth order diversity, the 
combiner sums all the demodulator outputs and forms a 
combined vector, 2 = Ck=l 21, = ck=.=, UkKZ L 

Mathematical Analysis 
The error performance of circular 16-DAPSK in 
frequency-flat fading channels has already been analysed 
in [12],[13],[14]. The error probability can be calculated 
using two consecutive signalling periods. However, in a 
frequency-selective fading channel, due to delay spread, 
the error is dominated by the time varying ISI, hence the 
error performance depends on the transmitted sequence, 
@ :  

= (. ' ' .Un- , ,  U,-1, U, ,  % + I ,  G + 2 ,  ' ' .) ( 8 )  

The probability of detecting the amplitude and phase of 
a data symbol incorrectly can be calculated by using the 
expressions below: 

(9) 
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where iVa is the number of possible sequences. 
Pa(@, d,) is the conditional prob,ability of making 
an amplitude decision error when the transmitted ampli- 
tude sequence goes from d,-l to d,. Pp(l@, O n _ , ,  8,) is the 
conditional probability of making a phase error when the 
transmitted phase goes from On-, to 0,. The expressions 
for the conditional amplitude and phase error probabilities 
are already given in [9]. Both expressions are a function 
of the second central moments between the matched filter 
outputs, u k  and K k .  The second central moments muu, 
mKK and muK (normalised to T s / 2 N o )  are shown below: 

where U;, = Tsh,,(pTs - T - nT,) and rS = (1 4- 
p)A2Ts/4N,. rS represents the average received symbol 
energy-to-noise power spectral density ratio per channel. 

Numerical Results and Discussion 
Analysis in the last section has shown that the calcuated 
error performance is dependent on the number of inter- 
ference symbols considered in equations (11)-( 13). Al- 
though the equations derived in the last section allow LIS 

to considered any number of interference symbols, in this 
paper only adjacent-pulse-limited IS1 channels [5],[6],[11], 
are considered for numerical evaluation. Without loss of 
generality, the symbol at time n = 0 is used for detection, 
hence the sampling time, pTs := 0. The average amplitude 
and phase error probabilities for circular 16-DAPSK can 
be written in the following form: 

(1.5) 

where k = 4 represents the number of bits per symbol 

and @ = ( u - ~ ,  U - , ,  uo, U , )  represents the truncated trans- 
mitted sequence. (Note: For expressions Pa(@, d o )  
and Pp(@,8-l lQo) see [9, Eq.2 and 91.) The second central 
moments are simplified to: 

muu = rs lm t9 (0 ,  r )Duud~  + 1 
00 

(16) 
00 

~ K K  = r s  lm e g ( O , T ) D K K d r  + 1 (17) 
00 

~ U K  = rs ~ O O & ( T s , . r ) & r K d r  (18) 

Assumming tg(r) is defined with a rectangular power de- 
lay profile as in [ll], the average bit error probability for 
4-, 16-DPSK and circular 16-DAPSK with lSt and 2nd or- 
der diveristy is shown in Fig.:! as a function of normalised 
rms delay spread, db (a roll-off factor of 0.5 is used). The 
rms delay spread is normalised in terms of the bit period 
(i.e. db = rrmS/Tb) so that the error performances can be 
compared for the same information throughput for differ- 
ent levels of modulation scheme. The result shows that 
when the system operates without diversity, the perform 
of circular 16-DAPSK is close to that of QDPSK. The 
effect of filter roll-off factor, (U, on the error probability 
is shown in Fig.3 for db = 0.2. As expected] the error 
probability is reduced as a is increased. For circular 16- 
DAPSK, the modulation ring ratio, /3, has been optimised 
for the above results. A value of 2.2 was found to result 
in the best performance. The numerical results shown 
in Fig.2 and 3 have indicated that circular 16-DAPSK 
outperforms 16-DPSK when bandlimited pulse shaping is 
applied to the systems. This trend confirms the result 
given in 191 where simpler time-limited pulse shapes were 
used. The advantage of using circular 16-DAPSK rather 
than 16-DPSK is further enhanced when postdetection di- 
versity reception is applied. For an rms delay spread of 
50ns (indoor environments) and a target bit error proba- 
bility of le-5, asumming second order diversity reception, 
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a QDPSK modem can transmit up to  1.2Mbps whereas 
for 16-DPSK only 800kbps can be achieved. Using circu- 
lar 16-DAPSK, the maximum allowable transmission rate 
is 1.04Mbps. For outdoor applications, a 64kbps data rate 
and a target bit error probability of le-3 were assumed. 
Once again, assumming second order diversity reception; 
QDPSK and 16-DPSK can tolerate rms delay spreads of 
3.125~s and 1 . 8 7 5 ~ s  respectively. Applying circular 16- 
DAPSK, an rms delay spread of 2 . 6 6 ~ s  can be tolerated. 

Conclusions 
The theoretical error performance of raised cosine filtered 
circular 16-DAPSK with postdetection diversity combin- 
ing has been analysed for a frequency-selective Rayleigh 
fading channel. The numerical results have shown that 
although the error probability of circular 16-DAPSK is 
slightly worse when compared with Q-DPSK under the 
same bit rate transmission (2nd order diversity), it is su- 
perior when compared to 16-DPSK. The advantage of cir- 
cular 16-DAPSK over 16-DPSK is enhanced when post- 
detection diversity reception is applied. Although circular 
16-DAPSK and 16-DPSK both operate with symbol peri- 
ods twice that of Q-DPSK, it is interesting to note that the 
error performance of these schemes are not significantly 
improved. However, for the same bit rate, both 16-level 
schames use half the bandwidth occupied by Q-DPSK. 
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Fig. 1 : Block diagram for circular 16-DAPSK transmission system in equivalent lowpass representation. 
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Rectangular delay profile and db = 0.2. 
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