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Optimized Absorbing Boundary Conditions 
for the Analysis of Planar Circuits Using the 

Finite Difference Time Domain Method 
C. J. Railton, Elizabeth M. Daniel, Dominique-Lynda Paul, and Joseph P. McGeehan 

Abstruct- The availability of effective numerical absorbing 
boundary conditions (ABCs) for use with the Finite Difference 
Time Domain (FDTD) method is essential for efficient application 
of the technique to microwave circuit analysis. Although many 
published results exist which have made use of various ABCs, 
little information concerning the optimum choice has been given. 
In this contribution, the suitability of available ABCs for planar 
circuit analysis is investigated and a new technique is presented 
whereby second order ABCs can be optimized for this type of 
problem. 

I. INTRODUCTION 

HE FINITE DIFFERENCE TIME DOMAIN (FDTD) T method is enjoying a considerable rise in popularity for 
the analysis of complex geometries such as microwave circuits. 
This is partly due to the increase both in the availability of 
computer power and the complexity of structures for which 
analysis is desired. The vast majority of problems to which 
FDTD is being applied involve open structures which, in turn, 
require the use of absorbing boundary conditions (ABCs) to 
correctly terminate the computational domain. 

Over the last decades, a number of ABCs have been 
proposed and several are in common use. The ABCs most 
often referred to in the literature are those derived by Engquist 
and Majda [ 11 with the discretisation given by Mur [2]. These 
are based on approximating the outgoing wave equation by 
linear expressions using either a Taylor or Pad6 approximation. 
Recently this ABC has been extended for application to a 
nonuniform FDTD grid and to inhomogeneous material [3]. 
Other ABCs have been proposed by Higdon [4], Lindman 
[5] and Reynolds [6] but these appear to be less popular. An 
alternative approach has been followed by Fang and Mei [7] 
who use ABCs to estimate both the E and the H field at a 
point on the boundary and then combine the results in such 
a way as to improve the overall accuracy. Deveze et. al. also 
i1.e a combination of the E and H field estimates in order to 
reduce the order of the derivatives which need to be evaluated 
[ 81. Another technique, used mainly for scattering problems, 
includcs estimating the angle of incidence of the wave by 
calculation of the Poynting vector [9]. 
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Although all of these ABCs have been used in conjunction 
with the FDTD method to produce results, little information 
has been given regarding the relative merits of the different 
techniques. The information which does exist, e.g. [lo]-[ 121, 
is largely restricted to the behaviour of the ABCs with a single 
incident plane wave. In practice, this is a situation which 
never occurs. Little guidance exists, therefore, concerning how 
to choose the best ABC for a particular real problem. In 
this contribution, the behavior of some existing algorithms 
will be examined, for the more realistic case of a planar 
open waveguiding structure as well as for the case of plane 
wave incidence. A new technique will be presented whereby 
second order ABCs can be optimized for any given planar 
waveguiding structure and results will be given to verify the 
effectiveness of the method. 

11. FIRST AND SECOND ORDER 
ABSORBING BOUNDARY CONDITIONS 

The first order approximation to the outgoing wave equation 
in the z direction is given by [l]: 

where u is a parameter which can be freely chosen and 
corresponds to the assumed velocity of the incident wave 
normal to the boundary. 

One form of the second order approximation is given as 
[ I ] ,  PI: 

where, in general, the parameters w and k can be freely chosen. 
In [2], u is chosen to be equal to the speed of light in the 

material and k is chosen to be equal to 0.5. If IC were chosen to 
be zero then (3) would reduce to the first order approximation 
for E.  It can also be shown that if k were chosen as 1, then 
(3) would reduce to the first order approximation for H .  

We can deduce the behavior of these ABCs to an incident 
plane wave in the following manner. Consider a plane wave 
with velocity c, travelling with an incident angle of 19 to 
a boundary in the y-z plane. Without loss of generality we 
assume that the wave is polarized with E in the z direction. 
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Fig. 1. Reflection coefficient versus angle of incidence for 2nd order ABCs. 

Then: 

E,  = F(zCosi?+ySin6+ct )  
a,, = cos2 8 
a,, = CCOS6 

a,, = Sin2 8 
a,t = c2 

At the boundary there will be a reflection R which will cause 
the total field at the boundary to satisfy (3). 

Therefore: 

(1 + R)c2 - (1 - R)vcCos6 
- (1 + R ) u ' ~  Sin2 8 = o (4) 

so 

R = -  c ~ - v ~ k - v c c o s 8 + u 2 k c ~ s ~ 8  ( 5 )  
c2 - u2k + UCCOS~ + u2k Cos26 

Fig. 1 shows the way in which R varies as a function of 8 and 
k for the case u = c. It can be seen that maximum flatness of 
the curve is found when k 2 0.65. This would seem to be a 
better value than k = 0.5, as used in [2], if a wide spread in 
incident angle is expected. 

If k = 0.5 and u = c then: 

Fig. 2. Reflection coefficient versus velocity for 2nd order ABCs. 

111. BEHAVIOR OF SECOND ORDER 
ABC's FOR WAVEGUIDE TERMINATION 

The waves impinging on the boundaries of the compu- 
tational domain surrounding a planar waveguide such as 
microstrip are not plane waves and, therefore, the above results 
are not directly applicable. In the direction of propagation, 
a waveguide, whether homogeneous or not, causes a wave 
to impinge normally on the boundary with some velocity, u, 
and some transverse variation, f (y ,  z )  which are, in general, 
functions of frequency. Fig. 2 shows the way in which the 
reflection coefficient, R, varies as a function of the normalized 
incident velocity. 

For a general waveguiding structure, we may not know what 
the transverse variation, f ( y ,  z ) ,  is. It is, therefore, preferable 
to express (3) in an equivalent form which only involves the 
longitudinal derivatives. We can do this by using the wave 
equation: 

(9) (ayy + &,)E, = ( C p 2 a t t  - &,)E, 

where c is the speed of light in the material. 
Substituting (9) into (3)  we get: 

Now the E field as a function of space is given by: 

E = f (y ,  Z,Z + ut) + R f ( y ,  Z ,  z - ut) (1 1) 

where we assume a field of unit amplitude incident at the 
boundary and a reflected wave of amplitude R. 

Therefore 

at, = (1 + R)u2E 
at, = (1 - R)uE 

(Cos8 - 1 ) 2  

(Cos8 + 1 ) 2  
R =  

If k = 1 and u = c then we have: 

ax, = (1 + R ) E  (12) (Cos6 - 1) (7) 
(Cos 8 + 1) 

R =  

To find the reflection coefficient, R ,  which causes the total 
field at the boundary to satisfy (10) we substitute as follows 

corresponding to a first order magnetic A B C .  
If k = 0 and u = c then 

V 

1 - v2k/C2U 
(1 + R)u2 - (1 - R) 

(13) = o  U 2 k  

R = -  (Cos6 - 1) (8) 
(Cos6 + 1) 

+ ( l  + R, 1 - v2k/C2 corresponding to a first order electric A B C .  
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Subrlmtr Mlghf :127mm Tmch wdlh- 1 2 7 m  therefore: 
P.rmrllmly= a a75 

(14) 

If v and c are chosen to be equal to the velocity of propagation, 
then R = 0 regardless of the choice of k. For a dispersive 
waveguide, v and k can be chosen to minimize the total 
reflection. 

(1 - v2k/c2)u2 - uv + kv2 
(1 - v2k/c2)u2 + uv + kw2  

R =  

IV. OPTIMIZING THE ABC’s FOR 
AN INHOMOGENEOUS WAVEGUIDE 

Although the method described above can yield very low 
total reflected power, it is not ideal for the case of an 

across the cross-section of the boundary. This leads to the 

in the final result, especially if the incident pulse contains 

propagate. A better technique is to choose values of v and k 
separately for each dielectric region. Given that we wish to 

has a frequency range of interest {f}, and hence a velocity 
range of interest {u}, we can choose the best values of the 
parameters v and k in the following manner: 

Fig. 3. Microstrip geometry used for comparisons. 

inhomogeneous waveguide because the local value of R varies 

excitation of higher order modes which may cause inaccuracies 

frequency components at which these higher order modes can 

18 

16 

1 4  

12 
minimize the retumed energy from a broad band pulse which Eb 

10 

For convenience, we make the following assignments: o a  

CO 
0 6  

v = -  co c =  - CO u=- 
&if1 6, 

0 1  
where 

E,tfis the effective permittivity of the waveguide. 
ETis the permittivity of the dielectric layer under 0 2  

0 1  
0 1 2 3 4 5 6 7 8 9  consideration. 

Ebis determined from the choice of the parameter v. Contour height lo4 

Wrqhlmg factor (kl tims 10 

We can then find the average reflected power for a given v 
and k by evaluating the integral over the effective permittivity 
of interest. w(ceff) represents the approximate spectrum of the 
incident pulse. 

Fig. 4. Reflection coefficient in microstrip substrate of 2nd order ABCs 
versus weighting factor (k) and E b .  

optimum parameters requires very little computational effort 
and is easily included in the setting up stage of the FDTD 

(15) algorithm. J w(Eeff) ~ ( v ,  Eef f )  dcef f  
r 

J w(Eeff) dEeff 

The values of v and k which minimize this expression are the 
optimum values for the problem under consideration. 

For the microstrip line having the geometry shown in Fig. 3 
and a frequency range of interest of 1-10 GHz, the range 
of effective permittivity is approximately 5.9 - 7. Fig. 4 
shows the value of (15) for 5.9 < < 7, and dielectric 
permittivity of 8.875. W ( E , E )  is taken as unity. It can be 
shown that, in order to minimize (15). we should choose 
k = 0.65, Eb = 9.3. Similarly, for the air region we should 
choose k = 0.3, Eb = 1.7. The expression (15) is only weakly 
dependent on the range of effective permittivity and, therefore, 
available closed form approximations, e.g. [ 131, are entirely 
adequate to calculate them. Moreover, the calculation of the 

v. DISCRETIZATION OF THE SECOND ORDER ABC’S 
Although the discretization given by Mur [2] for the sec- 

ond order boundary condition is widely used, an alternative 
discretization which is more convenient to implement will be 
developed. This has some similarity to the “super-absorbing” 
ABC [7]. We use the discretization for the first order absorbing 
boundary conditions given in [2] in order to estimate the 
tangential E and H fields outside the boundary. The esti- 
mated value of H, together with the FDTD discretization of 
Maxwell’s equations is then used to produce a second estimate 
of the tangential E field and a weighted average of the two 
estimates is used. The difference of our approach to that of 
[7] is that the parameters, k and Eb,  are calculated separately 
for each dielectric layer and each dielectric interface. That this 
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Fig. 5. Reflection from various ABCs of a broad band pulse on microstrip. 

discretization scheme represents the same differential equation 
(3) is shown in the Appendix. 

The optimization of the ABCs at the dielectric interface is 
carried out in the following manner. On the +x face of the 
problem space we require to estimate the value of E, on the 
dielectric interface which is assumed to be in the x-y plane. 
In this case the value of t used in (18) must be the weighted 
average of the permittivities above and below the interface as 
given in [14]. Thus the value of eT used when evaluating the 
integral (15) is given by: 

J 

where dz l  and d ~ 2  is the grid spacing in the direction normal 
to the dielectric/air interface in the dielectric and air regions 
respectively and tl and € 2  are the permittivities in the dielectric 
and air regions, respectively. 

The value of (15) for the case of E = 4.9375, i.e. the average 
of 1 and 8.875 corresponding to dz l  = d z 2  is a minimum if 
we choose k = 0.45 and Eb = 5. 

VI. RESULTS FOR MICROSTRIP STRUCTURES 
Initial tests were carried out on a uniform microstrip line 

with dimensions given in Fig. 3 and using a non-uniform 
grid consisting of 36 x 24 x 40 unit cells. Fig. 5 shows the 
reflected pulse from first order electric and magnetic ABCs 
and the reflection from a optimized absorbing ABC with 
parameters extracted from minimizing (15), viz. In the air 
region, 6 b  = 1.7, IC = 0.3. In the substrate, €b = 9.3, k = 0.65. 
At the aiddielectric interface € b  = 5, IC = 0.45. On the scale 
of Fig. 5 the reflection from the optimized ABC is too small 
to be seen. An expanded view of the reflection, Fig. 6 reveals 
that the peak amplitude of the reflected pulse is approximately 
f0.0008 V which is 0.3% of the height of the incident pulse 
and is comparable to the numerical noise in the mesh. This 
is approximately 20 dB better than the first order ABCs. The 
performance of the ABCs in the frequency domain is shown in 

:t 

-10 . I " . ' ' . ' .  

!O 35 40 45 50 55 60 65 70 75 80 85 x10-/ 
Time fpS1 

( I )  First order E 
121 First order H 
(31 Optrmised 

Fig. 6 .  Expanded view of reflected pulse using different ABCs. 
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Fig. 7. Reflection coefficient of ABCs versus Frequency. 

Fig. 7 where the reflection coefficients are plotted as a function 
of frequency. 

The effect of imperfect absorbing boundary conditions has 
the greatest impact on problems such as the calculation of 
the dispersion characteristic of a transmission line where the 
relative phase of the propagating wave is required. Fig. 8 
shows the calculated dispersion curve for the microstrip whose 
geometry is given in Fig. 3 for different absorbing boundaries. 
For comparison, the same test was carried out using a line 
long enough so that the reflection could be eliminated from the 
calculation. It can be seen that the optimized ABC, although 
giving rise to a noticeable ripple on the curve, is greatly 
superior to the first order Mur ABC. 

VII. EFFECT OF IMPERFECT ABCs ON 
CHARACTERIZATION OF COMPLEX CIRCUITS 

In order to assess the effect of ABC imperfections of 
the calculated S parameters of components of more realistic 
complexity, tests were carried on a low pass filter previously 
modelled in [IS] and [16], a band-pass side coupled filter 
modelled in [17] and [16], and a spiral inductor previously 
modelled in [ 181. Each of these structures were modelled using 
a non-uniform grid. 
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Frequency GHz 

I l l  Firs1 order boucdarirs 
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Calculated microstrip dispersion characteristics using various ABCs. 

refatiw permittNity * 10 

Side coupled filter detail. Fig. 9. 

For the case of the low-pass filter, it was found that the 
results obtained from using the optimized ABCs were not 
significantly different from those obtained using the first order 
ABCs. 

The results for the bandpass filter whose geometry is given 
in Fig. 9 are shown in Fig. 10 for various ABCs. Here it can 
be seen that, although there is little difference between the 
results, those obtained using the optimized ABCs are better in 
the case of Sll and comparible in the case of Szl. For this 
filter a non-uniform grid consisting of 68 x 16 x 72 unit cells 
was used. 

Results for the case of the spiral inductor, [18], whose 
geometry is shown in Fig. 11 are given in Fig. 12. Here it can 
be seen that there is considerable ripple on the results obtained 
using the first order ABCs which has largely been eliminated 
by the use of the optimized ABCs. In particular, the peak in 
S11 at 17 GHz is calculated to be greater than unity with the 
first order ABCs. The results from the optimized ABCs are 
in much better agreement with the measurements presented in 
[18]. A nonuniform grid consisting of 60 x 14 x 86 cells was 
used in this simulation. 

From the foregoing it can be concluded that, although for 
circuits and components whose behavior is largely govemed 
by resonant effects the choice of ABCs is not critical. In 
this category would come resonators, filters etc. For circuits 
whose behavior is largely govemed by the phase changes 
produced by transmission lines the optimized ABCs yields 

- aimuhNd with cp(lnis8d M C ' s  - - - - - - - simulrhd with Hv '5 first mfer ABC's - ._ . _  .- ".d b [le] 

Fig. 10. Scattering parameters of the sidecoupled filter. 

.tvJ 
Fig. 11 .  Geometry of a spiral inductor. 
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Fig. 12. Reflection coefficient of the spiral inductor. 

considerable improvement. In the latter category would come 
transitions, junctions, couplers etc. For this important group of 
components the use of optimized ABCs is highly desirable. 

VIII. BOUNDARIES TRANSVERSE TO 
THE DIRECTION OF PROPAGATION 

Once a waveguide mode is established, the wave impinges 
on the boundaries transverse to the direction of propagation 
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Fig. 13. Transient response on the input port when the ABCs are placed at 
a position of strong electromagnetic field. 

(fz and +y for the geometry of Fig. 9) at an angle of 90'. 
It can be seen from Fig. 1 that the second order ABCs will 
give a reflection coefficient of unity regardless of the values 
of the parameters when a single plane wave impinges with 
this angle of incidence. The situation is, in fact, exascerbated 
by the fact that the velocity of propagation is not equal to 
c. This is equivalent to the sum of plane waves entering and 
emerging from the boundary with an angle of Sin-'(u/c). 
Since R > 1 for the latter case, we have a potentially unstable 
situation. In practice this means that for long time periods or 
for boundaries which are placed where the field strength is 
high, instability is likely to be observed. This phenomenon 
has also been observed in [19]. The effect is illustrated in 
Fig. 13 which shows the time response of the structure of 
Fig. 9 where the boundaries have been placed close to the 
metal strip. It can be seen that instability appears in the late 
time response. The effect can be mitigated but not removed 
by the use of the second order ABCs. It has been found that 
if the time sequence is truncated too close to the point where 
instability occurs, the calculated frequency domain results are 
inaccurate. An investigation into the factors which influence 
the onset of instability have shown the following: 

; 

The size of the unit cells adjacent to the boundaries have 
little effect on the stability of the ABC. 
The ABCs were found to be stable if a metal boundary is 
used for the +y face but potentially unstable otherwise. 
The choice of the parameters and k affect the time 
before the onset of instability but do not prevent it 
entirely. 
Introducing loss in the mesh close to the + y boundary 
caused only a marginal improvement in stability. 
The only parameter which was found to affect the 
stability of the ABCs strongly is the height of the +y 
face above the substrate. For the geometry of Fig. 9, 
this effect is shown in Table I. Here it can be seen that 
changing the box height from 1.5 h to 2.5 h stopped 
the onset on instability during the observation time 
whereas changing the type of ABC made at most a 50% 
improvement. In addition it was found that the accuracy 

TABLE I 
EFFECT OF Box HEIGHT ON ABC STABILITY FOR THE STRUCTURE OF FIG. 8 

H h  TI T% 
1.5 1.2 nS 1.8 nS 
2.0 5.0 nS > 6.0 nS 
2.5 > 6.0 nS > 6.0 nS 
H is the height of the +y boundary 
h is the height of the substrate 
TI is the time before the first order ABCs become unstable 
T2 is the time before the optimized ABCs become unstable 

of the final result was adversely affected if the box height 
was less than about 3 h. 

6) If the box height was set to 4 h then the effect of 
changing the +y face from an ABC to a metal boundary 
was very small. 

From this we can conclude that, for any of the ABCs consid- 
ered, the fy face must be placed at a height of 3 h or more 
above the substrate in order to achieve stability. Since, at this 
height the field strength is low, the use of a metal wall has 
little effect on the overall result. It is expected, therefore that 
the most effective scheme is to use optimized boundaries on 
the +z and +z faces, and to use a metal wall on the +y face. 

It is noted that the problem of instability will be most 
apparent for a structure such as Fig. 9 since, by its highly 
resonant nature, a long time sequence is required. For the 
simpler structure of Fig. 3, the required time sequence is likely 
to be short enough so that no instability will be observed. 

IX. CONCLUSIONS 

In this contribution it has been shown that the description 
of absorbing boundary condition algorithms in terms of single 
incident plane waves is not sufficient information from which 
to choose the best ABC for planar waveguide termination. A 
new technique has been demonstrated whereby the ABCs can 
be optimized which results in a return loss from a wideband 
pulse less than -50 dB. Moreover this technique reduces the 
risk of loss of accuracy due to mode conversion taking place 
at the boundary. The use of these optimized ABCs causes 
considerable improvement in the results of analyses of an 
important category of microstrip components. For boundaries 
transverse to the direction of propagation, we have shown that 
inaccuracy and late time instability can result if the boundary 
is placed in regions of high field strength. 

APPENDIX 
DISCRETIZATION OF SECOND ORDER ABCs 

We consider a boundary situated in the y-z plane. At the 
start of the iteration we assume that we have En+' and 
Hn+1/2 at all points except the boundary plane and En and 
Hn-1/2 at all points including the boundary plane. We form 
our first estimate of E, at time n+l  in the boundary as follows: 
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The second estimate of E, makes use of the standard FDTD + ~ ; - ~ + 1 / 2 , j ,  k + q 2 ) )  

+ K3K1 (H,”+1/2(1/2, j ,k  + 1/2)  

+ K2(H,“+1/2(0,j + 1 / 2 , k  + 1/2)  + k + 1/2)  

+ K3(H;+1/2(1/2, j ,k  + 1/2)  

formula: 

Hn-1/2 E:+l(O,j, k + 1/2)  = E,”(O,j, k + l / 2 )  - y ( - 1 / 2 , i  IC + W) 

- y ( - 1 / 2 , j , k  + 1/21). (A51 

We can now express both estimates of E:+l(O,j, k + 1/2)  in 

~ n - 3 / 2  - H,n+1/2(0, j - 1/2,  IC + l / 2 ) )  

Hn+1/2 
Y (-1/2ij,  + 1/2)) (A2) terms of the quantities known at the start of the iteration. - 

We now show the correspondence of this scheme with the 

In the limit of small time and space increments, equation 

where the K’s are constants involving the mesh size and the 
material properties. 

Combining (A2) with the similar equation used for the 
previous iteration we get: 

second order differential equation (3). 

(A5) becomes: 
1 

E:+’(O,j, k + 1/2)  - 2E,”(O,j, k + 1/2)  

= K2(H:n+1’2(0,j + 1/2 ,  k + 1/2)  

&Ez = - (v-’(&tHy) - P - ~ ( & ~ E ~  - ayYE2))  (A6) 

We can replace &HY using the FDTD formula to derive an 
equation involving only the electric field: 

+ E:-’(O, j ,  k + 1/2)  

- H:+1/2(o,j - l / 2 ,  k + 1/2) )  

- H:-’/2(o,j - 1/2 ,  IC + 1/2) )  

- y (-1/2,.% k + 1/21) 

- y ( - 1 / 2 , i  + 1/2) )  

- K Z ( H , “ - ’ / ~ ( O , ~  + 1 / 2 , k  + 1/2)  

+ K3(H;f1/2(1/2, j ,k  + 1/2)  
Hn+l/2 

Hn-1/2 

- K3(H;-1/2(1/2,j,  k + 1/2)  

643) 

The values of H,”+1/2 on the boundary can be derived from the 
values of E:-’ and E:-1 calculated on the previous iteration. 
The values of H,”-1/2 on the boundary are calculated using 
Mur’s discretization of the first order absorbing boundary 
condition: 

H,”+1/2(-1/2,j, k + 1/2)  = H;-’/’(1/2,j, k + 1/2)  

+ K4 (H,n+1/2( 1/2,  j ,  k + 1/2)  

- y ( - 1 / 2 , j , k  + 1/21). Hn-1/2 

(A41 

Substituting equation (A4) into (A3) we get: 

E:+l(O,j, k + 1/2)  - 2E:(O,j, k + 1/2)  
+ E:-l(O,j, IC + 1/2)  

= KzKs(E:+l(O,j+ l , k +  1 /2)  
- E:+’(O, j ,  k + 1/2) )  

+ K2K7(E;+’(O,j + 1/2,  k + 1)  
- E,nf1(0,j + 1/2 ,  k ) )  

+ K2K6(E:-l(O,j + 1 , k  + 1/2)  
- E,”-l(O,j, k + 1/2) )  

+ K3 ( H;+’l2 (1/2,.i, 

+ KzK7(Ey”-’(o,j + 1/2 ,  k + 1)  
- E;-l(O, j + 1/2,  k ) )  

+ 1/21 
+ H;-1’2(1/2,j, k + 1/2) )  

+ K3(H;-1/2(-1/2, j ,k  + 1/2)  

&E, = (:(&,E, - &,E,) - (&,Ey - ayy&)) 
w 
C 2  

= -(&E, - &,E,) - c2(d,yE, - &E,) (A71 

where c = 1/@ is the speed of light in the dielectric 
material. This gives us our second estimate of E,. 

The first estimate, given by (l) ,  upon differentiation leads to: 

E, = vdt, E,, (A81 

If we take a weighted average of the expressions (A8) and 
(A7) we get: 

C2 &E, = -k + ( 1  - k ) ~  &,E, - -k&E, 

(A9) 
(: ) ‘ u  

- kc2(&yEy - d y y E z )  

Using the fact that V . E = 0 and that, from (1) 

at, E, = Vd,, Ex. 

we can write equation (A9) as follows: 

If k = 0.5 and ‘u = c then this is the same as Mur’s second 
order condition. 
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