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Abstract— In this paper we consider both analytically and
via Monte Carlo simulation the variation of the information
theoretic capacity of multiple-input, multiple output (MIMO)
communication systems. We present a way of explicitly examining
the effect of interference on the MIMO sub-channel gains. Using
this, we derive asymptotic lower bounds on capacity with many
interferers and in high interference-to-noise ratio and present
simulation results for them.

We also study the behaviour of the capacity as a function of
the number of interferers, the interference-to-noise ratio (INR)
and the transmit and receive array sizes. It is found that, in
interference, the benefit of providing multiple transmit antennas
is very small indeed from a capacity perspective, whilst the
number of receive antennas is critical both to the capacity and
the number of users the system can mitigate interference from.
Unusually, it is seen that, with a modification of the MIMO
channel matrix to incorporate interference, higher correlation in
the channel yields higher capacity rather than the more familiar
desire for decorrelated channels.

I. INTRODUCTION

Dual antenna array wireless communication systems are
currently a topic of great research interest owing to their
promise of dramatic system performance and capacity gains
over present technologies. By deploying multiple antennas at
both ends of the link, these architectures create a multiple-
input, multiple-output (MIMO) channel. Such channels offer
the possibility of substantial data throughput gains via the
use of space–time layering [1], [2] or improved error perfor-
mance by exploiting diversity and coding e.g. [3]. Given the
increasing demand for high-rate wireless data, in both indoor
and outdoor environments, in this paper we will focus on the
capacity gains.

Inevitably, in any wireless system a given user will suffer
(co-channel) interference from other users. The effects of such
interference have been subjected to some limited analysis by
other authors in, for example, [4]–[6] who principally assume
that the interference is spatially white. In fact, of course, the
interference does not emanate equally from all directions — it
will have some spatial colour. Recently, this structuring of the
interference has begun to receive some attention, beginning
with [5] and most notably in [7]–[9].

Future wireless systems will offer the end user multi-
rate data services, with these bearers supporting a variety of
features such as real-time operation, QoS guarantees, video
quality, etc. In general, a user’s transmit power will be
proportional to their data-rate and so there has been some work

carried out recently [7] investigating how the distribution of
interference power affects capacity. The work in [7] extends
that in [5] by giving a more explicit form to the interference
and investigating how the capacity behaves with fixed total
interference-plus-noise power and varying number of inter-
ferers. Such a constraint is reasonable since there is likely
to be some means of controlling the other users in our cell,
particularly if they are all subscribed to the same network
operator. In [7] it is concluded that MIMO performs with
greater spectral efficiency with few, high-power users than with
many, low-power ones but no explanation is given.

The principal contribution of the present work is an ap-
proach which shows in more detail than the existing literature
the impact of interference on the structure of the MIMO
channel matrix as the number or power of the interferers is
increased. This allows us to provide a rigorous explanation of
the conclusions in [7] and to derive asymptotic lower bounds
on the capacity in the presence of many interferers and in high
interference-to-noise ratio (INR). We also investigate more
generally the capacity of MIMO with varying numbers of
interferers and differing transmit and receive array sizes.

Though we arrive at some of the same predictions as [8], we
have a rather different setting of numbers of interferers and
INR instead of array size. Our new approach offers a more
explicit understanding of the manner in which interference
impinges on the performance of MIMO systems, regardless
of their size.

II. SYSTEM MODEL

We consider a single-user, narrowband link with cochannel
interference from other users in the same bandwidth trans-
mitting at the same time. Following the analysis in [7] we
will assign each interferer an equal fraction of the fixed
total interference power as part of our effort to establish
whether MIMO provides higher spectral efficiency with few,
high power users or with many low power ones. We equip
the desired user with nT transmit antennas and nR receive
antennas. Each interfering user has nI transmit antennas, but
is seen by the same set of nR receive antennas as the desired
user.

Thus, the total received signal may be modelled as:
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y = Hs +
√

PI

LnI

L∑
i=1

GisI
i + w

︸ ︷︷ ︸
n

(1)

where y and w are complex nR-vectors with w the additive
white Gaussian receiver noise which we will assume to have
unit power. The complex transmitted signals of the desired user
and each interferer are represented by the PT -power nT -vector
s and the set of L unit power nI -vectors sI

i respectively.
The total interference power PI is distributed equally among
all L interferers. The channel matrices, H ∈ C

nR×nT and
Gi ∈ C

nR×nI of the desired user and interferers respectively
as well as all of the signal vectors have i.i.d zero-mean,
unit-variance complex Gaussian elements and are themselves
mutually independent and quasi-static in time.

III. CHANNEL CAPACITY

We compute the capacity by utilizing a pre-whitened chan-
nel matrix in order to make the interference-plus-noise appear
white. It is shown in [7] that the capacity assuming no
transmit-side channel knowledge may be computed by defining
H̃ = R−1/2H whence

C = log2 det
(
InR

+
PT

σ2nT
H̃H̃†

)
(2)

where R = E{nn†} is the covariance matrix of the combined
interference-plus-noise. In the case of known channel and
interference covariance at the transmitter, water-filling may of
course be employed on the combined channel matrix, although
we do not have space here to present results on this possibility.

Since H̃ contains the effects of both the desired user’s
channel and all of the interferers’ channels we will study it’s
structure as the number and power of the interferers changes.
We consider the singular value decomposition of both matrices
in H̃ and employ the linear unitary operations at transmit and
receive familiar from [10]. Thus we define

R =
[
u1 · · · unR

]



λ1 0 · · · 0

0
. . .

...
...
0 · · · λnR





 u†

1
...

u†
nR


 (3)

and

H =
[
v1 · · · vnR

]



γ1 0 · · · 0

0
. . .

...
... γN

0
. . .

0 · · · 0





 w†

1
...

w†
nT


 (4)

as the SVDs R = UΛU† and H = VΓW†. We will choose
to order the singular values such that λ1 ≥ λ2 ≥ · · · ≥ λnR

and γ1 ≥ γ2 ≥ · · · ≥ γN with N = min (nT , nR) the rank of
the desired user’s channel matrix.

Expanding the channel matrix shows that

H̃ = UV−1/2U†VΓW†. (5)

In [10], in the absence of interference, the familiar result of
‘orthogonal spatial subchannels’ is derived via linear opera-
tions at transmit and receive. In our case, the equivalent of the
linear operations would be for the transmitter to left-multiply
s by W and the receiver to left-multiply the received signal by
U†. Substituting these into (1), noting that we have ‘whitened’
the interference which is hence absorbed into w, yields the
equivalent of [10, Eq. (9)] in interference:

y = Φs + w (6)

where

Φ = Λ−1/2U†VΓ. (7)

Space restrictions prevent us including the proof, but we can
show that the capacity may be computed using Φ in place of
H̃ in (2). This representation of the MIMO channel separates
the effect of interference from the effect of the desired user’s
channel and allows to consider them independently. Thus, we
will examine the effect on Φ of varying the number and power
of the interferers.

We remark first that given our assumption of a Gaussian
transmission codebook, we can develop on the basis of single-
antenna (SIMO) interferers since we may simply group to-
gether nI > 1 of them if we want to form a MIMO interferer.

By carrying out the matrix multiplication in (7) it is seen
that

Φ =


 γ1λ̃1 (u1 · v1) · · · γN λ̃1 (u1 · vN )

...
. . .

...
γ1λ̃nR

(unR
· v1) · · · γN λ̃nR

(unR
· vN )

0nR×χ




(8)
where λ̃i � λ

− 1
2

i . The partition recognizes the fact that, if
nR < nT , Φ will be ‘padded’ with χ = (nT − nR)+ columns
of zeros. It is easily verified that the structure of R is such
that

λ̃i

{
≤ 1 : 1 ≤ i ≤ L

= 1 : L < i ≤ nR

. (9)

IV. BOUNDS ON CAPACITY IN INTERFERENCE

We will now proceed to consider the implications on chan-
nel capacity of the structures shown by (8) and (9) and in
Section V will simulate the bounds we derive.

A. Bound on capacity with many interferers

Recall from Section II that the interferers’ channel matrices
are, like the desired user’s, circularly symmetric complex
Gaussian distributed. Note that R includes the covariance
matrix of the sum of L nI -dimensional Gaussians. Its off-
diagonal elements are non-zero reflecting the colour of the
interference. The Central Limit Theorem can be invoked
to show that, with many interferers, this covariance matrix

0-7803-8256-0/04/$20.00 (C) 2004 IEEE



10
0

10
1

10
2

5

10

15

20

25

30

35

40

Number of Interferers

10
%

 O
ut

ag
e 

C
ap

ac
ity

(b
ps

/H
z)

Interferers with 1 TX
Interferers with 2 TX
Interferers with 3 TX
Interferers with 4 TX

Asymptotic bound 

Fig. 1. 10% outage capacity versus number of interferers for MIMO
interferers with different numbers of TX antennas. User of interest has 8
TX and 8 RX. Curves shown only for unknown channel and interference.

becomes that of a spatially white Gaussian with all non-
diagonal elements zero i.e. as LnI → ∞,

R →
(

PI

σ2
+ 1

)
IN

H̃ →
(

PI

σ2
+ 1

)−1/2

H

C → log2 det
[
InR

+
PT

(σ2 + PI) nT
HH†

]
(10)

which provides a convenient comparison with (2). The SNR
has been replaced by the SINR. This should not be too
surprising since the interference now appears spatially white
and is subsumed within the thermal noise already present.

B. Bounds on capacity in high INR

In this part, we will examine a bound for the capacity in
high INR.

We observe from the definition of U as a unitary matrix that
any increase in INR will result in an increase of the singular
values of R. Recalling (9), it is easy to see that, for a given
fixed number of interferers, increasing INR will decrease the
λ̃i for i < L, but for i > L they will remain fixed at unity.
Consider then, the straightforward effect of the reduction of
some λ̃i to zero in the case of L < nR; that is, consider
that we have fewer interferers than receive antennas and these
interferers transmit with infinite power. Then,

Φ =




01×nR

...
01×nR

φL+1

...
φnR




(11)

where we denote the ith row of (8) as φi. Thus, the direct
manifestation of interference is to reduce the rows of Φ
controlled by those singular values of R it affects. In the
limit of high INR, these rows’ elements vanish. The simplest
limit we can formulate is to compute the capacity given by
substituting (11) in (2).

Equation (11) allows a further insight. Provided L < nR the
system will be able to support some capacity, regardless of
INR. If, though, L ≥ nR, the capacity will decline to zero as
the INR becomes large. This highlights the effect of degrees-
of-freedom in a MIMO system. Intuitively, the MIMO system
is able to ‘support’ as many interferers as it has degrees-of-
freedom, and these degrees-of-freedom are set by the number
of receiving antennas.

This equation allows one final, straightforward prediction.
Obviously, the rows of Φ will only be the zero-vector in the
limit of high INR, and will reduce toward it as INR increases.
This predicts that MIMO systems will perform more efficiently
(more bps/Hz) in lower INR regimes. This has been observed
by simulation in [7]. More generally, we may say that MIMO
systems prefer a noise-dominated regime to an interference
dominated one.

We simulate each of the bounds we have derived and
examine our predictions in the following section.

V. SIMULATION RESULTS

By assumption H and R are random matrices and so the
channel capacity must also be treated as a random variable.
We adopt a performance measure of the 10% outage capacity,
C0.1, where P (C < C0.1) = 10%. In all the following simu-
lations, we used 10 000 instantiations of the channel matrices.
For the whole of this section, the signal-to-noise ratio (SNR)
and the INR are both 20dB, unless specified otherwise.

A. Bound on capacity with many interferers

We begin by showing how C0.1 varies in an 8 × 8 MIMO
system in Fig. 1. Also shown is the asymptotic lower bound
predicted by (10). Since the transmitted signals are Gaussian
by assumption, we would expect there to be a correspondence
between, say, 2 interferers with 1 antenna each and 1 interferer
with 2 antennas. This is clearly seen to be the case.

From the plot of the spatially-white interference lower
bound, we can see that even with a few interferers it serves as
a reasonably accurate prediction of the actual outage capacity.

Fig. 1 also makes clear that MIMO offers greater spectral
efficiency when there are a few, high power interferers than
when there are many, low power ones even though each of
them has proportionally less power. This result was also ob-
served by simulation but not explained in [7] and does warrant
explanation. We showed in (11) the effect of adding interferers
to be the scaling of individual rows of Φ, reducing them to
zero in the limit of high INR. Adding each interferer reduces
another row of Φ, and also affects those rows already scaled
but leaves the others untouched. In high INR, it zeros out an
additional row of Φ. Given the bound we derived in (11),
there is a maximum effect an additional interferer (regardless
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Fig. 2. 10% outage capacity and asymptotic bound versus INR. Desired
user has 8 TX and 8RX antennas. 4 interferers, each with 1 TX antenna,
SNR=15db. Curves shown only for neither channel nor interference informa-
tion.

of its power) can have before L = nR since it cannot affect
rows beyond i = L. Hence, having fewer interferers is more
desirable, even if they are of higher power. Once L ≥ nR,
we showed that the capacity would collapse to zero if the
INR was high enough. In effect, the capacity for L ≥ nR is
‘residual’ and available only because of finite INR. If the INR
were high enough, the capacity would reach zero as soon as
L = nR. This observation explains the saturation observed in
Fig. 1 (and in later figures).

Recall that, as L increases R has decreasing off-diagonal
elements; as R becomes whiter the capacity falls. In H̃ R
affects the correlations in the channel. The gradual whitening
of R represents a decrease in the additional correlation of
the rows/columns of the combined channel. Once R = I,
there is no additional correlation at all. This is unusual —
we are accustomed to wanting as little correlation as possible
to maximize the capacity but here find that higher correlation
achieves that goal. This is explained intuitively by remem-
bering that R is a covariance matrix and the off-diagonal,
cross-correlation elements show the ‘predictability’ of the
interference. The receiver is able to exploit this predictability
to mitigate it. As these off-diagonal elements decrease, the
interference becomes less and less structured. As an example
of the effect of the spatial colour of the interference, consider
two rather improbably located interferers who see identical
channels to the receiver. Their signals simply sum from the
receivers point of view, and they will appear to be just one,
higher power, interferer.

B. Bound on capacity in high INR

We turn now to testing the bound in (11) and the associated
predictions.

In Fig. 2 we show how the capacity varies with INR for
an 8 × 8 system with 4 interferers. The horizontal line is the
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Fig. 3. 10% outage capacity versus INR for an 8 × 8 system with various
numbers of interferers. Each interferer has 1 TX, SNR = 15dB. Curves shown
only for neither channel nor interference information.

‘10% outage’ of the bound we derived in (11). We see that
the bound is approached even at moderate INRs in this case,
and serves as a useful prediction of capacity in this case. If
there were more interferers, the bound would be approached
more slowly since more rows of Φ would be affected and it
would take longer for all of them to fall to the zero-vector.
This graph also clearly supports our prediction that MIMO
prefers to operate in a noise-dominated environment than an
interference dominated one.

The observation that, provided L < nR, the system will
support some theoretic capacity as Φ will have some non-zero
rows is studied in Fig. 3. We show how the capacity varies
with INR for different numbers of interferers. It is readily seen
that, whilst there are fewer interferers than receive antennas
(L < nR), the capacity tends to an asymptotic limit. This is
the theoretic capacity supported by those rows of Φ that have
not been damaged by interference. On the other hand, once
L ≥ nR, it is clear that C0.1 → 0 as INR → ∞.

C. Effect of transmit and receive array sizes

The previous sections have demonstrated the critical effect
of the size of the receive array on the performance of MIMO
in interference. We have not yet seen, however, what effect
increasing the size of this array will have, other than to
expect that the system will support more interferers before
the capacity saturates. Hence, in this section we will explore
the effect of different size receive and transmit arrays.

Fig. 4 focuses on the effect of changing the number of
receiving antennas and Fig. 5 on the effect of changing the
number of transmitting antennas. In both these figures, all
the interferers have 1 transmit antenna. In Fig. 4 we see the
usual result that adding a receive antenna always increases
MIMO capacity — it collects more of the transmitted power.
We see that adding receive antennas provides better resilience
to interference. It raises the curve as expected and, since nR

0-7803-8256-0/04/$20.00 (C) 2004 IEEE



10
0

10
1

10
2

0

5

10

15

20

25

30

Number of Interferers

10
%

 O
ut

ag
e 

C
ap

ac
ity

 (
bp

s/
H

z)

2 RX
3 RX
4 RX
5 RX
6 RX
7 RX
8 RX

Fig. 4. 10% outage capacity versus number of interferers for different
numbers of RX antennas. All interferers have 1TX antenna, desired user has
4TX antennas. Curves shown only for unknown channel and interference.

is now larger and Φ thus has more rows, it saturates later
as we would expect from (11). Note also that adding receive
antennas reduces the bps/Hz cost per interfering antenna. In
going from four receive antennas to eight, the loss decreases
from about 4bps/Hz/antenna to about 2bps/Hz/antenna.

In Fig. 5, we observe the expected fall in capacity as
we remove transmit antennas and the small and diminishing
increase as we add them. Without more receive antennas
to collect more of the transmitted power (which effectively
strengthens the channel’s eigenmodes), we would not expect
any substantial gain. On the other hand, removing transmit
antennas does not decrease the saturation population — we
can always support as many interferers as there are receiving
antennas before the capacity curve will saturate. As a result,
it is worth noting that there is little point providing multiple
transmit antennas with large numbers of interferers, since all
the curves shown exhibit closely similar capacities beyond the
saturation point. There is very little to be gained in this region;
by tripling the number of antennas from 2 to 6, the capacity
grows only from 2bps/Hz to 3bps/Hz.

VI. SUMMARY

The new matrix investigated here make clearer than before
the impact of cochannel interference on MIMO systems. We
have used Φ to show that adding an interfering antenna
has the effect of eliminating one of the well known MIMO
subchannels in the limit of high INR whilst leaving the
others unchanged. This observation allowed us to derive a
lower bound to capacity in high INR. It was also seen that
MIMO systems perform more efficiently the more spatially
coloured the interference they experience and that, with many
interferers, their overall effect is a reduction of the prevailing
SNR.

By simulation we found that there was a significant benefit
in having nR > nT , but very little benefit in having nT > nR
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in interference. Indeed, there was little capacity to be gained
from providing multiple transmit antennas at all.
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