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The Treatment of Geometrically Small Structures in
FDTD by the Modification of Assigned

Material Parameters
Chris J. Railton, Dominique L. Paul, Ian J. Craddock, and Geoffrey S. Hilton

Abstract—A number of different improvements to the analysis
by finite-difference time-domain (FDTD) of small structures, such
as wires, strips and slots have been proposed in the literature. One
of these methods takes account of the fringing fields associated with
metal edges and wires by empirically modifying the assigned mate-
rial parameters in neighboring cells. In this contribution it is shown
that, in many cases, it is possible to derive these modified assigned
material parameters (MAMPs) analytically. In this form, the ap-
proach provides an alternative, and novel, way of incorporating
Static Field Solutions into the FDTD method which has advantages
of simplicity and robustness over existing techniques. Results are
presented for a number of structures including wire transmission
lines and a microstrip patch antenna.

Index Terms—Author, please supply your own keywords or send
a blank e-mail to keywords@ieee.org to receive a list of suggested
keywords.

I. INTRODUCTION

I N [1], it was shown that the effects of field singularities
in the region of wires and strips can be accounted for

within the finite-difference time-domain (FDTD) method, by
altering the permittivities and permeabilities assigned to the
neighboring E and H field nodes. The required values for
these modified assigned material parameters (MAMPs) were
ascertained empirically by performing many FDTD runs on
simple example structures. A mapping between the material
parameters and the fringing capacitance and inductance was
derived which was then used to produce look-up tables for use
in the FDTD program. In [2], it was shown that this technique
could be effectively applied to more complex structures, such
as a microstrip filter, in a way which reduced the dependency of
the results on the choice of the mesh. In addition, the use of this
technique allowed a coarser mesh to be used with equivalent
accuracy. In [3] the same technique was shown to be effective
for a waveguide filter containing a complex iris structure.

In this contribution it is shown that the MAMPs can, in many
cases, be calculated analytically thus avoiding the necessity of
setting up the empirical look-up tables. The method preserves
the robustness and simplicity of [1] but with the added advan-
tage of the rigour of an analytical derivation. Whereas previ-
ously published ways of introducing Static Field Solutions into
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FDTD lead to a direct modification of the coefficients of the
update equations, the method described herein leads instead to
a modification of the physical parameters of the material. The
modeled material is, therefore, always a physical one, so that
issues of reciprocity, stability and local charge conservation are
much more easily addressed.

In Section II, a comparison of the present method with other
published algorithms is given and the benefits of the present
method are highlighted. In Section III, it is shown how the
MAMPs can be calculated for strips and wires and, finally,
Section IV provides a comparison of results obtained using the
present method with those in the literature for the examples of
stripline, wire transmission line, microstrip and a microstrip
patch antenna.

In almost all of the examples tried, it was not necessary to
make any reduction in the time step below that which would
have been chosen for basic FDTD. For the case of very thin
wires or very narrow strips the time step did need to be reduced
but in no case was it found necessary to reduce the time step
below 0.7 of the Courant limit for basic FDTD.

II. COMPARISON WITH PREVIOUS WORK

Much work has been reported in the literature aimed at in-
cluding the effects of field singularities into the FDTD mesh by
altering the update equations appropriately. The philosophy of
the majority of these methods can be summarized by consid-
ering the example of a wedge placed in the FDTD mesh in such
a way that the edge is aligned with the axis. This is shown in
Fig. 1.

The behavior of the fields in the vicinity of the wedge can be
expressed as a Laurent series as given in (1) [4]

(1)

where , is the wedge angle and is the
angle between the wedge and the observation point.

In standard FDTD, the update equations for the field com-
ponent nearest the edge, derived from the integral form of Am-
pere’s Law, is given by

(2)

This approximation to the integrals assumes that the field am-
plitudes vary linearly between nodes. In order to incorporate the
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Fig. 1. Perfect electric conductor wedge placed in the FDTD mesh.

actual field variation between nodes, this equation can be mod-
ified by including correction factors for the line and surface in-
tegrals as follows:

(3)

where and are factors which relate the integrals of
the known asymptotic field variation to the integrals calculated
using the linear approximation. The field values are those at the
position of the corresponding node point. This approach is used
in [4] and [5] for the two-dimensional (2-D) case and where the
edge of the strip coincides with the edges of the FDTD cells.
A similar approach is used in [6] to model a coplanar line and
is extended in [7] to the analysis of a three-dimensional (3-D)
coplanar open stub, including the effects of a right angle bend.

In [8], although the same basic method is applied to 2-D
problems, extra terms of the field expansion (1) are retained in
order to yield a higher order approximation. The coefficients
of the expansion must now be calculated from the field values
at several different nodes. This has been shown to provide
good results for the cutoff frequencies of a finline even when
the edge is placed arbitrarily within the FDTD mesh. However,
the algorithm is a complicated one which requires much care
to obtain the parameters accurately.

A higher order approximation to the field expansion, con-
sisting of the first two terms in the series (1) is applied in [9]
to the full 3-D problems of a patch antenna and a waveguide
iris. Good results are reported for these example structures.

The same starting point of the series (1) is used in [10] to de-
rive correction factors which have the same form as MAMPs and
which are applied to the example of shielded stripline. However,
in [10], MAMPs are only derived for the radial E field compo-
nent in the plane of the strip and for the case where the edge
of the strip coincides with the edge of the FDTD cells. Also,
the value taken for the MAMP is obtained semi-empirically by
using the value which yields the most accurate result for charac-
teristic impedance over a range of cell sizes. In this contribution,

it is shown that similar accuracy is obtained when the analytical
MAMPs are used directly.

In [11], the method is applied to more complicated situation
of diagonal strips. The update equations which are derived also
have the same structure as (3).

In [12], the derivation is done in a different way in that the
correction factors are derived in two stages. Firstly, the singular
nature of the radial electric and circulating magnetic field com-
ponents are taken into account and then the effect caused by the
use of a Cartesian mesh in the presence of a circular symmetric
field is included. Again the form of the update equations is the
same as that of (3).

In general, the values of CLE used in (3) may all be different
from each other. This means that the model does not necessarily
correspond to any physical material and, therefore, reciprocity
and local charge conservation may be difficult, or impossible,
to enforce. A key property which is fundamental to the method
described in this contribution is that, as explained in Section III,

and
. Thus (3) can be rewritten in a simpler form as

(4)
Here, is a single correction factor which takes the form of a
modification to the permeability of the material within the cell.
Thus reciprocity and conservation of charge is guaranteed and
stability issues are more easily addressed.

III. ANALYTICAL DERIVATION OF MAMPS

Consider Maxwell’s equations in integral form

(5)

(6)

Applying these to an FDTD mesh in the usual way yields

(7)

(8)

where , and are the cell sizes and are the serial
numbers of the cell, is the average of the quantity, , along
an directed cell edge and is the average of the quantity,
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Fig. 2. Thin wire embedded in the FDTD mesh. (left) TE plane and (right) TM
plane.

, over an cell face. The other four update equations can be
obtained by rotating the coordinates. This approach is similar to
that used in the finite integration technique, [13], [14].

In order to complete this set of equations it is necessary to
relate the surface averages on the left hand sides to the line av-
erages on the right hand sides. If the fields are assumed to be
constant within each cell, which is equivalent to expanding them
in a set of pulse basis functions, then the two are the same and
the standard FDTD update equations are obtained. However, in
the vicinity of a wire or an edge, if the asymptotic field behavior
is known, a more accurate relation can be obtained.

Inspection of the equations shows that the ratios of the surface
averages to the line averages can be expressed as a modification
to the material parameters in the cell. This leads to a particularly
simple and physically meaningful result. For example

(9)

where

(10)

As long as the behavior of the component of the E field is
known in the space surrounding the singularity, this parameter
is readily calculated. In the final program, only the line integrals
are stored, the surface integrals are not explicitly calculated.

A. Application to Wires

Consider the case of a thin wire located along a line of
nodes as shown in Fig. 2.

The asymptotic field behavior is well known and given as
follows:

(11)

(12)

Fig. 3. Required assigned material parameters for a thin wire. dx = dy =

1 mm.

(13)

where is the wire radius.
The required ratios which yield the MAMPs follow immedi-

ately:

(14)

(15)

(16)

In Fig. 3, the required material parameters and are shown
as a function of wire radius for a cell size of 1 mm. By symmetry,

, which in turn indicates that the velocity of a
directed wave is unaffected by this modification.

It is found that the parameter for , , is fairly constant
so long as the wire radius is less than half the cell size but that
it becomes very small as the radius approaches the cell size.
Such small values could lead to stability problems although, for
radii less than half the cell size, no penalty in time step was
encountered. In practice, however, it has been found that altering

has little effect on the observed results and this parameter is
therefore left unmodified.
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Fig. 4. Theoretical and actual integral paths for calculating hH i.

For the case where the wire radius is greater than half the
cell size, the integration limits should theoretically be altered
to account for the fact that the field is zero inside the wire. For
instance, , would be evaluated as follows:

(17)

It has been found in practice, however, that results obtained in
this way are unrealistic and lead to inaccurate results. On the
other hand, accurate results are obtained if the MAMPs are cal-
culated using (14) and (15) with the limits unaltered. This situa-
tion is shown in Fig. 4 where the dashed lines show the location
of the theoretical integral path, since the field inside the wire,
shown as a grey circle, is zero. The actual integral is taken over
the complete line, including the solid section. If this procedure
is done, then the required values of and are well behaved
even though they do become large when the radius of the wire
approaches the cell size. As will be seen later, consistently good
results can be obtained with wires having a radius considerably
larger than half the size of the cell.

It can be shown that, for wire radii less than half the cell size,
the update equations obtained using this method are formally
identical to those used in [12] although they are obtained more
directly here. The method of [12] is, however, limited to wires
less than half the cell size in radius.

It has been found that, in the geometries tested, a time step of
0.95C for wires of radius greater than 15% of the cell size and
a time step of 0.886C for wires of radius greater than 5% of the
cell size, where is the Courant limit for unmodified FDTD,
gave stable behavior even if the run was continued for 64 000
iterations.

B. Application to Narrow Strips

The fields in the vicinity of a thin strip orientated in the
direction, lying on the plane and at a height , above a ground
plane can be expressed as follows [15]:

(18)

(19)

See (20) and (21) at the bottom of the page. The required
MAMPs are therefore given as follows:

(22)

(20)

(21)
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Fig. 5. Required assigned material parameters for a strip. dx = dy = 2mm.

(23)

where is the distance of the strip edge from the cell
boundary.

In Fig. 5 the calculated MAMPs for a strip height of 10 mm
and a cell size of 2 mm are shown. Here it is shown that the
values are well behaved for all strip widths less than the cell size.
For widths between one cell size and two cell sizes it has not
been possible to apply this method directly. The values obtained
using the empirical approach of [1] are shown for comparison.
In that situation, and take the same value and this can be
seen to lie close to the analytical value of .

It has been found that, in the geometries tested, a time step
of 0.95C for strips of width greater than 30% of the cell size,
0.886C for strips of radius greater than 10% of the cell size and
0.7C for strips of width greater than 2.5% of cell size, where
is the Courant limit for unmodified FDTD, gave stable behavior
even if the run was continued for 64 000 iterations.

C. Application to Wide Strips and Patches

The method described in Section III-B is readily applicable
to the case where the width of the strip is greater than the size of
the cell. In this case the affected cells are the ones which contain
the edges. In Fig. 6, the marked , , , and nodes are
modified using the values derived from (22) and (23) where
is the distance by which the edge protrudes into the cell.

IV. RESULTS OBTAINED USING ANALYTICALLY DERIVED

MAMPS

A. Wire Transmission Line

Transmission lines consisting of a wire above a ground plane
were considered as the first examples. For this test, three dif-
ferent heights 8, 10, and 20 mm, were used. The cell size was 2
mm and radii of between 0.05 and 1.6 mm were considered. The

Fig. 6. Wide strip or patch embedded in the FDTD mesh. (left) TE plane and
(right) TM plane.

Fig. 7. Geometry of the wire transmission line.

wire was terminated at the end by a 400 resistor as indicated
in Fig. 7. A raised cosine pulse was launched along the wire.

The impedance was calculated in two different ways. First,
the amplitude of this incident pulse was compared with the am-
plitude of the pulse reflected from the resistor. Secondly, a snap-
shot of the field distribution around the wire was taken as the
pulse went past and the voltages and currents in the strip were
calculated from these field values. It is noted that, because the
line integrals of the field components are stored, rather than the
amplitude at the node position, no further account need be taken
of the singular behavior of the field at this stage. By obtaining
consistent results from these two methods, confidence is gained
not only that the singular fields are correctly being taken into
account but that the discontinuity between the wire and the re-
sistor is also being correctly handled. The structure is the same
as is used in [16] and [17].

The results are shown in Figs. 8 and 9 where it can be seen
that the two methods of calculating the impedance do give very
similar results. It can be seen that, in each case, the calculated
impedance is somewhat over-estimated but, nevertheless, is
within 2.5% of analytical results for heights of 8 and 10 mm
and within 5% for the height of 20 mm. In addition, it can
be seen that, in contrast to some other methods, eg., [12] and
[18], the agreement remains good even when the wire radius is
greater than half a cell size, ie. greater than 1 mm.

B. Shielded Stripline

A shielded stripline structure, having the same geometry as
that given in [10], was modeled using the MAMP method in
order to compare results. The strip has a width of 2 mm and
is centrally placed in a metal box having a cross-section of 8
mm 4 mm. Calculations of the characteristic impedance of
the structure were made using cell sizes of 1, 0.5, and 0.25 mm.
The calculated results were compared to the value of 98.922
obtained using a very fine mesh and are shown in Table I. The
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TABLE I
RESULTS FOR SHIELDED STRIPLINE

Fig. 8. Characteristic impedance of wire transmission lines calculated from
the reflected pulse.

Fig. 9. Characteristic impedance of wire transmission lines calculated from
the field snapshot.

table also shows the values for the MAMPs used in this method
compared with those used in [10].

It can be seen from these results that, although the error is
slightly greater than in [10] for the coarsest mesh, the results
are more accurate for the other two meshes tested.

C. Microstrip Transmission Line

In order to demonstrate the technique for microstrip, two dif-
ferent test structures were used. In the first case, a square mesh
of size 2 mm and a height of 10 mm was used, in the same way as
for the wire transmission line. In the second case, a rectangular
mesh of size 1 mm 0.3175 mm was used and the strip was
placed at heights of 0.635 and 1.27 mm above the ground plane,
corresponding to 2 and 4 cells, respectively. In each case results

Fig. 10. Calculated characteristic impedance of microstrip. dy =

0:3175 mm, dx = 1 mm.

Fig. 11. Calculated characteristic impedance of microstrip. dy = 2 mm,
dx = 2 mm, h = 10 mm.

were obtained for substrate dielectric constants of 1 and 8.875.
Characteristic impedances were calculated in the same way as
for the wire transmission line using the configuration shown in
Fig. 7.

The calculated results, compared with a quasistatic formula
[19] are shown in Figs. 10 and 11. It can be seen that the agree-
ment is generally very good with a worst case discrepancy of
9% in the case of very small radii.

D. Microstrip Patch Antenna

A microstrip patch antenna, having the dimensions the same
as in [9] was modeled using basic FDTD with a coarse, medium
and fine mesh and the results compared with those obtained
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Fig. 12. Plan view of patch antenna.

Fig. 13. Calculated results for the return loss of the patch antenna using
different mesh sizes.

by using the coarse mesh in conjunction with MAMPs. The
geometry of the antenna is shown in Fig. 12. The substrate
height was 0.794 mm, the dielectric constant was 2.2 and the
box height was 3.97 mm. For the coarse mesh the cell size was

, for the medium mesh the cell
size was while for the fine
mesh the cell size was .
These were chosen to be as cubic as possible given the con-
straints of the geometry. In addition, results were calculated
using MAMPs in conjunction with the noncubic coarse mesh
used in [9] having a cell size .

The excitation plane and the probe were placed in the same
position along the feed line as in [9]. Results for the return loss
are given in Fig. 13. It can be seen that the resonant frequencies,
calculated using basic FDTD, are converging to approximately
7.6 GHz as the mesh size is reduced. Results obtained using
the coarse mesh, enhanced by MAMPs, show good agreement
with the converged results for both the cubic and the noncubic
meshes.

V. CONCLUSION

In this contribution it has been shown that wires and strips
may be accurately treated in the FDTD method by means of

analytically calculated Modified Assigned Material Parameters.
This approach has advantages of simplicity, robustness and ver-
satility over other methods of treating geometrical detail while
giving equivalent accuracy. The analytic approach to the calcu-
lation of MAMPs much reduces the need for empirical look-up
tables to be generated and adds rigour.

The technique lends itself to other situations such as strips
with finite thickness and finite conductivity. It is robust in that
the modified materials are physically realistic and that there is
a clear interpretation of the field values assigned to the modi-
fied nodes. Boundaries between different objects, such as a mi-
crostrip step discontinuity, can be dealt with in a natural and
simple manner.
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