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Channel and Noise Variance Estimation and
Tracking Algorithms for Unique-Word Based

Single-Carrier Systems
Justin Coon, Member, IEEE, Magnus Sandell, Member, IEEE,
Mark Beach, Associate Member, IEEE, and Joe McGeehan

Abstract— Single-carrier (SC) wireless communication systems
generally require knowledge of the channel and the variance
of the additive noise process to equalize a received message.
Obtaining this information can be straightforward in stationary
environments; however, these parameters constantly change in
mobile environments. In this paper, we propose novel algorithms
for estimating and tracking the channel and noise variance
in SC systems by exploiting a unique word (UW) extension.
These UW-based algorithms benefit from low complexity and
lend themselves to SC systems employing frequency-domain
equalization at the receiver.

Index Terms— Frequency-domain equalization (FDE), channel
estimation and tracking, unique word (UW).

I. INTRODUCTION

A fundamental problem in high data rate wireless commu-
nication systems employing single-carrier (SC) transmis-

sion is the equalization of the received message. In the past,
researchers have mainly focused on equalization techniques
that can be implemented in the time domain. Recently, how-
ever, the growing popularity of low complexity multi-carrier
(MC) modulation techniques, such as orthogonal frequency
division multiplexing (OFDM) [1]–[4], has led researchers to
consider equalization of SC transmissions in the frequency
domain [5]–[8]. Typically, systems employing SC transmis-
sion with frequency-domain equalization (SC-FDE) require
knowledge of the channel and the variance of the additive
noise process to perform equalization on the received symbols.
These parameters can be estimated relatively easily prior to
data transmission; however, in non-stationary channels, they
vary with time and must be tracked by some means. In this
paper, we present channel and noise variance estimation and
tracking algorithms for SC-FDE systems employing a unique
word (UW) extension.

The concept of using the UW in SC block transmissions
as an alternative to the well-known cyclic prefix extension
was presented in [9]. The topics of synchronization and
phase tracking using the UW were addressed in [9]–[11] and
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methods for exploiting the UW for equalizer training were
described in [7], [8], [12]. Channel estimation and tracking
techniques based on the UW were also briefly discussed
in [7]–[10], [12], [13]. In this paper, we provide a rigorous
explanation and analysis of a method of performing least
squares (LS) channel estimation that is related to the equalizer
training technique discussed in [7], [8]. We also derive bounds
on the performance of this channel estimation technique.
Furthermore, we propose and analyze a novel, low-complexity
technique that uses the UW and the recursive least squares
(RLS) algorithm to track a temporally fading channel and
estimate the variance of the additive noise process.

The paper is arranged as follows. The channel and noise
variance estimation and tracking algorithms are discussed in
section II. Performance bounds are derived in section III.
Finally, simulation results are illustrated in section IV, and
conclusions are presented in section V.

Notation: We use a bold uppercase (lowercase) font to
denote matrices (column vectors); frequency-domain variables
are denoted by a tilde (e.g. ã); F is the normalized K × K
DFT matrix where its (k, i)th element is given by Fk,i �
K−1/2 exp(−j2πki/K) for k, i = 0, . . . , K−1; Fm denotes
the first m columns of F and F′

m denotes the last m columns
of F; Im is the m×m identity matrix; 0m×n is an m×n all-
zero matrix; (·)∗, (·)T, (·)H, (·)m, and | · | denote the complex
conjugate, transpose, conjugate transpose, modulo-m, and
absolute value operations, respectively; ⊗ is the Kronecker
product operator; E{·} is the expectation operator; tr{·} is
the trace operator; D{x} denotes a diagonal matrix with the
elements of x on the diagonal.

II. CHANNEL AND NOISE VARIANCE ESTIMATION AND

TRACKING

In this section, we describe two methods by which the
channel can be estimated and tracked in an SC system. A
simple procedure for estimating the variance of the additive
noise process is also proposed. The first of the channel estima-
tion methods is deterministic, utilizing a double-length UW to
perform LS channel estimation. A similar technique was used
to train a decision-feedback equalizer in [7], [8]. The second
method is novel and relies on the recursive least squares (RLS)
algorithm along with a separate feedback step to estimate
and track the channel state information (CSI). Although any
time-domain or frequency-domain detection technique can
be employed once the channel has been estimated, these

1536-1276/06$20.00 c© 2006 IEEE
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s(i+1)s(i)UW

Q K K

…UW UWs(i+1)s(i)UW

Q K K

…UW UW

Fig. 1. Example of the basic UW block structure.

ww s(i+1)s(i)w

Q K K

…w ww ww s(i+1)s(i)w

Q K K

…w ww

Fig. 2. Example of the UW block structure used to perform deterministic
LS channel estimation and tracking.

algorithms lend themselves to FDE systems since the use of
the UW gives the system a cyclic nature.

Consider a system employing SC block transmissions with a
UW extension. The ith length-K block of transmitted symbols,
denoted by x(i), can be partitioned into a length-P vector s(i)
of data symbols and a length-Q vector representing the UW.
An illustration of this block structure is depicted in Fig. 1.

In order to mitigate inter-block interference (IBI), we as-
sume that Q ≥ L where L is the memory order of the
channel impulse response (CIR). This condition also induces
circularity in the system, allowing us to express the ith length-
K block of received symbols by

y(i) = H(i)x(i) + n(i) (1)

where H(i) is a K × K circulant matrix representing the
channel at time i and n(i) is a length-K vector of uncorrelated,
zero-mean, complex Gaussian noise samples, each with a
variance of σ2

n/2 per dimension. Specifically,

H (i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 (i) 0 · · · hL (i) · · · h1 (i)
... h0 (i)

. . . 0
. . .

...

hL (i)
...

. . .
...

. . . hL (i)

0 hL (i)
. . . 0

...
. . .

. . .
...

0 · · · 0 hL (i) · · · h0 (i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where hm(i) is the mth complex tap coefficient of the CIR at
time i. This system model will be used in the description of
both of the aforementioned channel estimation and tracking
techniques.

A. Deterministic LS Channel Estimation

We briefly describe the deterministic approach to channel
estimation. Although this method is very similar to an equal-
izer training technique presented in [7], [8], the mathematical
framework defined in this section is a precursor to the analysis
included in section III. Furthermore, the technique discussed
will be used as a benchmark in section IV where the perfor-
mances of several channel estimation/tracking algorithms are
examined.

The UW employed with this technique is simply two
identical length-Q/2 UWs concatenated to form one double-
length UW as illustrated in Fig. 2 where w is the length-Q/2
UW.

It will be shown that the double-length UW can be exploited
to perform channel estimation with each received block, thus

facilitating channel tracking in mobile systems. In contrast to
this method, conventional LS channel estimation techniques
rely on a preamble to estimate the channel and this estimate
is used for all signal processing operations until the channel
can be re-estimated with another preamble.

We will see that a sufficient condition for channel identifi-
ability is

Q

2
≥ L+ 1. (2)

If the length of each UW w satisfies this condition, we may
omit the time index i for brevity and partition (1) into an upper
and lower part, giving[

ya
yb

]
=
[

Ha

Hb

]
x +

[
na
nb

]
(3)

where Ha and Hb denote the first K − Q/2 rows and last
Q/2 rows of H, respectively, and ya, yb, na, and nb are each
defined in a similar manner. The Toeplitz matrix Hb is defined
by its first row (01×K−L−Q/2, hL, . . . , h0,01×Q/2−1) and its
first column 0Q/2×1, and can be partitioned further to yield

Hb =
[

0Q/2×K−Q H1 H0

]
(4)

where H0 and H1 are Q/2 × Q/2 Toeplitz matrices.
The first row and column of H0 are (h0, 01×Q/2−1) and
(h0, . . . , hL, 01×Q/2−L−1)T, respectively, and the first row
and column of H1 are (01×Q/2−L, hL, . . . , h1) and 0Q/2×1,
respectively. Thus, noting that

x =

⎡
⎣ s

w
w

⎤
⎦ (5)

yb can be rewritten as

yb = 0Q/2×K−Qs + H1w + H0w + nb
= (H1 + H0)︸ ︷︷ ︸

H
w + nb (6)

where H is a circulant matrix. As long as (2) is true, each
element of H is either a unique CIR coefficient or zero. If (2)
is not true, the positions of some of the CIR coefficients
in H0 and H1 overlap, which results in a superposition of
CIR coefficients in H. It should be noted that since the first
column of H1 is composed of zeros, the first symbol of the
first constituent UW can be replaced with a data symbol,
thus relaxing the restriction given in (2). Consequently, a
necessary and sufficient condition for channel identifiability is
Q ≥ 2L+ 1. This is a minor point since only one additional
data symbol can be transmitted in each block when this
approach is taken.

Assuming the UW is designed such that (2) holds, we may
rewrite (6) as

yb = Hw + nb
= Wh + nb (7)

where h � (h0, h1, . . . , hL, 01×Q/2−L−1)T and W is a
circulant matrix composed of the elements of w. Thus, as
long as W has full column rank, the LS channel estimate
ĥLS is given by

ĥLS = W†yb (8)
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where W† =
(WHW)−1 WH is the pseudoinverse of W .

Using training sequences interspersed throughout data pack-
ets to perform channel estimation is not a new concept. Indeed,
one example of an application of this technique can be found
in GSM/EDGE [14]. The method presented here, however,
provides a solution to the channel estimation problem in the
context of UW-based SC systems that employ FDE.

B. RLS Channel Estimation and Tracking

The deterministic nature of the UW can be used in another
way to perform channel estimation and channel tracking. For
this method, the only restriction we initially place on the
length-Q UW is Q ≥ L to account for IBI. Referring to (1),
we consider the transformation of the received symbol vector
y(i) into the frequency domain, which is given by

ỹ(i) = H̃(i)x̃(i) + ñ(i) (9)

where ỹ(i) = Fy(i), ñ(i) = Fn(i), x̃(i) = Fx(i), and
H̃(i) = FH(i)FH is a diagonal matrix with the channel fre-
quency response coefficients on the diagonal. The transmitted
vector x̃(i) can be partitioned into a data part and a UW part
as given by

x̃(i) =
[

FP F′
Q

] [ s(i)
u

]

= s̃(i) + ũ (10)

where u is the length-Q UW, s̃(i) = FP s(i), and ũ = F′
Qu.

Therefore,

ỹ(i) = H̃(i)̃s(i) + H̃(i)ũ + ñ(i). (11)

If the channel varies with time, as is the case in mobile
environments, the channel state must be tracked by some
means. Of course, (11) shows that each received block is
dependent upon random signals (the data and noise) as well as
the deterministic UW. Consequently, the UW can be exploited
to track channel variations by applying the RLS algorithm and
treating the UW as the desired signal and the data signal as
interference. In this approach, it is beneficial to remove as
much of the interference from the received signal as possible
prior to channel updating. With this aim, the interference
caused by the data can be partially removed from each
received block by first equalizing and detecting (quantizing)
the data using a previous channel estimate and then subtracting
the estimated interference signal from each received block in
the frequency domain, which gives

ỹu (i) = ỹ (i) −D {FP ŝ (i)} ˆ̃h (i− 1) (12)

where ŝ(i) is the length-P vector of data symbols detected

at time i and ˆ̃h (i) is a length-K vector of the ith estimated
channel frequency response coefficients. This feedback step is
not used in existing UW-based channel estimation techniques,
where data is treated as zero-mean colored noise and either
removed from the received signal through the averaging of
multiple received blocks or suppressed through an iterative
weighted LS algorithm [15]. In contrast, data cancellation as
given by (12) aids the performance of the proposed algorithm
and allows us to design optimal UW structures for use with
this algorithm as discussed in section III-B.

Using the modified received signal given by (12), the RLS
algorithm can be employed with the cost function

ϕ (i) =
i∑

k=1

ρi−k |e (k, i)|2 (13)

where ρ is the standard RLS forgetting factor that is usually
close to, but less than, one [16]. The error term e (k, i) in (13)
is defined as

e (k, i) = ỹu (k) − Ũˆ̃h (i) . (14)

Taking the gradient of (13) with respect to ˆ̃h (i), setting the
result equal to zero, and performing some algebraic manipu-
lations results in an expression for the channel estimate vector

ˆ̃h (i) =
1

i∑
k=1

ρi−k
Ũ−1

︸ ︷︷ ︸
P−1(i)

i∑
k=1

ρi−kỹu (k)

︸ ︷︷ ︸
r(i)

. (15)

The channel estimate may be updated with the ith received
block by noting that

P (i) = ρP (i− 1) + Ũ (16)

and
r (i) = ρr (i− 1) + ỹu (i) . (17)

Note that (15) requires the inverse of P(i) to compute the
updated channel estimate. Since P(i) is a diagonal matrix,
however, this inversion does not pose a problem. Conse-
quently, this method of channel tracking benefits from very
low complexity since only three complex multiplications are
required to update the channel estimate on a given frequency
tone.

For a better estimate, the estimate of the channel frequency
response can be filtered to remove noise. Various frequency-
domain filters can be used; however, the most common tech-
nique of removing noise from the channel estimate amounts to
transforming the channel frequency response estimate into the
time domain with an IDFT where it is windowed according
to the CIR length, then transformed back into the frequency
domain with a DFT. This procedure, which is commonly used
in OFDM systems [17]–[19], effectively separates the channel
subspace from the noise-only subspace, thereby removing
unwanted noise from the channel estimate. By combining the
DFT and windowing steps into partial fast Fourier transform
(FFT) operations where some of the butterfly operations are
culled in accordance with the window size, the complexity of
this windowing technique is minimized.

C. Initialization of the RLS Method

For RLS channel estimation and tracking, r can be initial-
ized to zero. Alternatively, if a reliable initial channel estimate
ˆ̃h(0) is available, r and P can be initialized to

r (0) = βŨˆ̃h(0) (18)

and
P (0) = βŨ (19)
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where β is a positive real number. From (15), we note that

f (i) =
i∑

k=1

ρi−k (20)

is a geometric series, and therefore

f (i) =
1 − ρi

1 − ρ
. (21)

Consequently, we may intelligently choose β to be

β = lim
i→∞

f (i)

=
1

1 − ρ
. (22)

Defining β as above and initializing r and P as in (18)
and (19) is equivalent to initializing the channel estimator by
transmitting an infinite number of blocks containing only the

UW over a static channel, which is denoted here by ˆ̃h(0), and
computing r(∞) and P(∞). This definition of β produces
results as shown in section IV.

D. Estimation of Noise Variance

The UW can also be exploited to estimate the variance of
the additive noise process at the receiver. Here, we assume lin-
ear FDE is employed where the received message is converted
into the frequency domain, equalized with a linear minimum
mean-square error (LMMSE) equalizer, then converted back
into the time domain prior to further processing such as
decoding and detection. It should be noted that this approach
to noise variance estimation can be employed with other FDE
techniques as well.

Using an estimate of the channel, the contribution of the
UW to the received message is first removed from the original
received vector in the frequency domain, giving

ỹs = ỹ − Ũˆ̃h (23)

where again we have omitted the time index i for brevity. We
can write the length-K vector zs of time-domain symbols that
are output from the conventional LMMSE equalizer as [20]

zs = FH

( ̂̃HH ̂̃H +
σ̂2
n

σ2
s

IK

)−1 ̂̃HHỹs (24)

where ̂̃H = D
{
ˆ̃h
}

, σ2
s is the variance of the transmitted

data, σ̂2
n is the current estimate of the noise variance, and it

is assumed that E{xxH} = σ2
sIK . Although this assumption

is clearly untrue since a UW is employed, it is necessary in
order to estimate the noise variance.

Letting xs �
(
sT, 01×Q

)T
and assuming ̂̃H is a reliable

channel estimate, we can define the error covariance matrix
Ce of the detected symbols as

Ce � E
{

(zs − xs) (zs − xs)
H
}
. (25)

Evaluating (25) and performing some algebraic manipulations
yields

Ce = σ2
nF

HB
( ̂̃HH ̂̃H +

σ̂2
n

σ2
s

FPFH
P

)
BF (26)

where

B =
( ̂̃HH ̂̃H +

σ̂2
n

σ2
s

IK

)−1

. (27)

Since we removed the UW contribution from the received
vector in (23), we expect the last Q terms of zs to be
zero1; however, due to the additive noise, these terms are in
general not zero. Denoting the last Q terms in zs by zQs �
(zQs;0, . . . , z

Q
s;Q−1)

T and the last Q elements on the diagonal
of De = Ce/σ

2
n by the vector dQe � (dQe;0, . . . , d

Q
e;Q−1)

T, the
new estimate σ̂2

n of the noise variance can be computed as
follows:

σ̂2
n =

1
Q

Q−1∑
m=0

∣∣zQs;m∣∣2
dQe;m

. (28)

III. PERFORMANCE BOUNDS

In this section, lower bounds on the mean-square error
(MSE) of the channel estimates given in sections II-A and II-B
are derived. Furthermore, the issue of UW design is addressed
where optimal UW structures are given for each channel
estimation/tracking technique. We begin by addressing the LS
method discussed in section II-A.
A. MSE of Deterministic LS Channel Estimate

Define the LS channel estimation error vector by

εLS = ĥLS − h. (29)

Assuming, in this case, that Q = 2(L + 1) and the UW is
normalized, the MSE of the LS channel estimate shown in (8)
is given by

ELS =
1

L+ 1
tr
{

E
{
εLSεH

LS

}}

=
σ2
n

L+ 1
tr
{(WHW)−1

}
. (30)

Using a similar argument as was used in [21], we arrive at a
lower bound on the channel estimation MSE. This bound is
given by

ELS ≥ σ2
n

L+ 1
(31)

where the equality is met if and only if
(WHW)−1

=
1

L+ 1
IL+1. (32)

Equation (32) suggests that the UW must have perfect
periodic correlation properties. Of course, one sequence that
meets this criterion is the Kronecker delta function. However,
this sequence suffers from a high peak-to-average power ratio
(PAPR). Another choice of UW that meets the criterion stated
in (32) without compromising the PAPR is a Chu sequence [7],
[22]. A Chu sequence benefits from having perfect periodic
correlation properties, which satisfies (32), as well as a con-
stant envelope in the time-domain, thus precluding PAPR
problems. If a Chu sequence is used as a UW, (31) is met
with equality and (8) reduces to a scaled circular correlation
between the UW and the received vector yb.

It is important to note that this lower bound on MSE is
greater than that presented for OFDM systems in [21] and for

1In fact, these terms will be affected by residual ISI resulting from the
MMSE equalizer, but we assume here that this ISI is small enough to ignore.
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SC systems employing a cyclic prefix in [23]. This difference
can be attributed to the fact that the UW only occupies a
portion of each transmitted block, and therefore less energy
is used for training in the UW based method than in the full-
training-block methods described in [21], [23].
B. MSE of RLS Channel Tracking

The MSE of the channel tracking algorithm presented in
section II-B was studied. In order to make the MSE derivation
tractable, we assume the interference caused by the data is
perfectly removed from ỹ(i) in (12), which gives

ỹu(i) = Ũh̃(i) + ñ(i). (33)

Furthermore, it is assumed that temporal fading follows
Jakes’ model [24] and the length of the UW is set equal to
the memory order of the CIR (i.e. Q = L).

Define the MSE of the CIR estimate as

ERLS(i) =
1

L+ 1
tr

{
E

{(
ĥ(i) − h(i)

)(
ĥ(i) − h(i)

)H
}}

(34)
where2

ĥ(i) =
1√
K

FH
L+1

ˆ̃h(i) (35)

and h(i) � (h0(i), h1(i), . . . , hL(i))T. Under the assump-
tions stated above, it can be shown that the MSE of the CIR
estimate at time i is given in (36) where the vectors ρi and
ji and the matrix Ji are given in the Appendix along with
a detailed derivation of (36). In (36), ũk denotes the kth
element of ũ. The first error term in (36) is due to the additive
white Gaussian noise process at the receiver. The second term
represents the error in the channel estimate due to temporal
fading.

ERLS (i) =
σ2
n (1 − ρ)

(
1 + ρi

)
K2 (1 + ρ) (1 − ρi)

K−1∑
k=0

1
|ũk|2

(36)

+
1

L+ 1

(
1−2 (1 − ρ)

1 − ρi
ρH
i ji+

(
1 − ρ

1 − ρi

)2

ρH
i Jiρi

)

Equation (36) can be minimized with respect to two pa-
rameters: the UW and the forgetting factor ρ. First, consider
the optimization of the UW for a given value of ρ. Applying
the arithmetic-geometric mean inequality, we arrive at a lower
bound on ERLS(i), which is given by

ERLS (i) ≥ σ2
n (1 − ρ)

(
1 + ρi

)
K (1 + ρ) (1 − ρi)

(
K−1∏
k=0

1
|ũk|2

)1/K

+ C(i)

(37)
where

C(i) � 1
L+ 1

(
1 − 2 (1 − ρ)

1 − ρi
ρH
i ji +

(
1 − ρ

1 − ρi

)2

ρH
i Jiρi

)

is just the second term in (36). Equation (37) is met with
equality if and only if |ũ0|2 = |ũ1|2 = · · · = |ũK−1|2.

2The time-domain windowing operation is employed here to remove noise
from the channel estimate [17], [18].

s(i+1)s(i) uu u

K K

…

Q

s(i+1)s(i) uu u

K K

…

Q

Fig. 3. Example of a UW block structure used to perform RLS channel
estimation and tracking.

Note that by optimizing the UW in this manor, the MSE is
minimized for all values of i (i.e. during both the transient
state and the steady state) for the given value of ρ.

One UW that meets this criterion is the Kronecker delta
function. This is easily verified by recognizing that the DFT
of a delta function has a constant envelope. As previously
mentioned, however, employing a delta function as a UW
leads to a PAPR problem. If the energy in the impulse is
equal to the average energy of each transmitted data symbol,
this PAPR problem is equivalent to that encountered in zero-
padded (ZP) SC systems. It is important to note, however,
that the implementation of a delta function as a UW does
not reduce the UW-SC system to a ZP-SC system. This fact
is illustrated in Figure 3 where the UW that is employed is
simply u = (0, 0, . . . , u)T.

Recall from the previous section that Chu sequences are
optimal for the deterministic channel estimation method dis-
cussed in section II-A. However, Chu sequences do not
provide optimal performance in the MSE sense when they are
applied to the RLS method. This result arises from the fact that
the optimal sequence (in the MSE sense) must be composed of
Q < K symbols but have a constant-modulus K-point DFT.
Since Chu sequences have perfect periodic correlation prop-
erties, they benefit from having constant-modulus symbols in
the frequency domain, but only when the DFT is taken over
the complete sequence rather than a padded sequence [22].
Thus, the lower bound in (37) is not met with a Chu sequence
unless it is a length-K sequence, in which case ũ = Fu. The
UW is a full-length training block in this case and, therefore,
can only be used as a preamble.

Adding a tight constraint to the PAPR of the UW, such as
requiring the UW to be constant-modulus, results in neither
Chu sequences nor the Kronecker delta function being optimal.
The objective in this case is to find a length-Q constant-
modulus sequence that also has a constant-modulus K-point
DFT. Although this task is beyond the scope of this paper,
it should be noted that some methods that can be used to
find sequences that closely match these criteria have been
documented in the literature [25], [26].

As previously mentioned, the MSE of the RLS channel
estimate can also be minimized with respect to the forgetting
factor ρ. This minimization is most useful when computed
for the steady-state MSE (i.e. as i → ∞), which must be
performed numerically since taking the derivative of (36)
with respect to ρ as i → ∞ does not yield a closed form
solution. To illustrate the feasibility of minimizing the MSE
with respect to ρ, the MSE of the channel estimate as given
by (36) was calculated as a function of ρ for an SNR of 15 dB
and normalized Doppler spreads of fn = 10−3, fn = 10−4,
and fn = 10−5. A Kronecker delta function was used for the
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Fig. 4. MSE of RLS channel estimate as a function of ρ for various
normalized Doppler spreads and an SNR of 15 dB.

TABLE I

SUMMARY OF SIMULATED SC-FDE SYSTEMS.

System Channel knowledge σ2
n knowledge

1 Perfect Perfect
2 Preamble only Estimated
3 Double-length UW w/ LS Perfect

estimation (every block)
4 Preamble w/ RLS update Estimated

UW. The results of these calculations are depicted in Fig. 4,
where clear minima are observed for the normalized Doppler
values that were studied.

As observed in Fig. 4, the proposed RLS algorithm does
not track well for high Doppler spreads and should, therefore,
only be implemented in low-mobility environments as will be
shown in the next section.

IV. RESULTS AND DISCUSSION

The algorithms described in section II were implemented
in computer simulations in order to observe their performance
relative to other techniques. In total, four uncoded systems
were simulated. In each of these systems, UWs were appended
to sets of QPSK data symbols to form blocks of K =
64 symbols. These blocks were transmitted over an 11-tap,
exponentially decaying channel in bursts of 500 blocks per
channel use. The channel realizations were generated with a
Rayleigh fading profile from burst to burst, and Jakes’ model
was used to simulate temporal fading within each burst [24].
At the receiver, each system utilized its own knowledge of
the channel and the noise variance to equalize the received
message with an LMMSE FDE [20]. The equalized symbols
were then mapped to QPSK symbols.

The first system was assumed to have perfect knowledge of
the channel and the noise variance. The second system used an
initial channel estimate, which was gleaned from a preamble,
to construct an LMMSE FDE. Only one channel estimate was
obtained for each burst. This system also used the method
presented in section II-D to estimate the noise variance. Each
block transmitted by the third system included a double-length
UW, which was used at the receiver to perform LS channel es-
timation as described in section II-A. It was assumed that this
system had perfect knowledge of the noise variance. Finally,
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Fig. 5. Probability of bit error for SC-FDE systems employing various chan-
nel estimation/tracking techniques in a channel with a normalized Doppler
spread of fn = 1.5 × 10−6 .
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Fig. 6. Estimated noise variance over a range of SNR values.

the fourth system employed the RLS channel tracking method
detailed in section II-B and the noise variance estimation
algorithm given in section II-D. This system initialized the
metrics r and P in accordance with (18) and (19) where
the initial channel estimate was obtained through a preamble.
The windowing/filtering technique described in section II-B
and [17]–[19] was employed to improve the quality of the
channel estimate. A forgetting factor of 0.96 was used. Each
of these systems is summarized in Table I.

Fig. 5 depicts the probability of bit error of each of the
systems described above. In this example, the normalized
Doppler spread that was used with Jakes’ model is fn =
1.5×10−6. The system that employs RLS channel tracking and
noise variance estimation performs better than the two systems
that use deterministic LS channel estimation in this slow-
fading environment. Indeed, the system employing a double-
length UW with constant LS channel updating performs ap-
proximately 2 dB worse than the RLS method while providing
only 75% of the raw throughput. Furthermore, it should be
noted that the difference in performance between the RLS
method and the ideal case is only 1 dB.

The performance of the noise variance estimation technique
is illustrated in Fig. 6 for the example discussed above. From
this figure, it is observed that the estimation technique works
well despite the SNR, although as the quality of the channel
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Fig. 7. Probability of bit error for SC-FDE systems employing various chan-
nel estimation/tracking techniques in a channel with a normalized Doppler
spread of fn = 5 × 10−6.
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Fig. 8. Probability of bit error for SC-FDE systems employing various chan-
nel estimation/tracking techniques in a channel with a normalized Doppler
spread of fn = 1 × 10−5.

estimate degrades, the error in the noise variance estimate
increases significantly as shown by the curve corresponding
to the second system outlined in Table I. Although there is
a slight error in the noise variance estimate for the system
employing RLS channel tracking, this error obviously does
not greatly degrade the performance of this system as shown
in Fig. 5.

So far, we have only discussed the performance of the
channel estimation/tracking algorithms in channels that change
very slowly with time. It is beneficial to observe the perfor-
mance of the algorithms in channels with higher normalized
Doppler spreads. Fig. 7 and Fig. 8 depict the probability of bit
error for each of the systems outlined in Table I operating in
channels with a normalized Doppler spread of fn = 5× 10−6

and fn = 1× 10−5, respectively. All other system parameters
in these examples are the same as those specified for the
example detailed above. As observed in Fig. 7 and Fig. 8,
an error floor begins to emerge for the RLS technique, which
is obviously due to the increased rate of temporal variations
in the channel. This remark is corroborated by Fig. 9, which
depicts the MSE as a function of ρ for the three normalized
Doppler spreads in question at an SNR of 27 dB. Observe that
for a forgetting factor of ρ = 0.96, the MSE steadily increases
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Fig. 9. MSE of RLS channel estimate as a function of ρ for various
normalized Doppler spreads and an SNR of 27 dB.

as the normalized Doppler spread increases.
It is interesting to note that the system employing a double-

length UW and constant deterministic LS updating of the
channel performs well in all of the examples presented here.
Consequently, this technique is a good choice of transmission
scheme for implementation in mobile environments. The only
drawback is the increased overhead due to the double-length
UW. Of course, this drawback is minimized when K >> Q.

V. CONCLUSIONS

In this paper, we presented algorithms for estimating and
tracking the channel and noise variance in moderately mobile
wireless communication systems. These algorithms utilize
the constant nature of the UW extension to perform these
estimation tasks. It was shown that a deterministic LS channel
estimation technique that uses a double-length UW performs
very well in mobile channels, but suffers from a low through-
put due to the long UW. A novel technique based on the
RLS algorithm was also presented. This method was shown
to benefit from very low complexity and better throughput than
the aforementioned technique, but its use is limited to slow-
fading environments. In these environments, the performance
of the RLS-based technique excels, providing a performance
gain of 1-2 dB over the low-throughput deterministic LS
method. APPENDIX

MSE DERIVATION FOR THE RLS ALGORITHM

Consider the MSE at time i, which is defined by

ERLS(i) =
1

L+ 1
tr
{

E
{
ε(i)εH(i)

}}
(38)

where ε(i) = ĥ (i) − h (i). Assuming the interference is
perfectly removed from the ith received block, the windowed
CIR estimate at time i can be written as in (39) where we
have used the fact that h̃(i) =

√
KFL+1h(i) (cf. (15), (21),

and (35)). Noting that the mean of each CIR tap is zero and
the channel and noise are uncorrelated, the expectation in the
expression for the MSE can be evaluated to give (40).

Recall from section III-B that temporal fading is assumed
to follow Jakes’ model in this analysis. Consequently,

E {hm (k)h∗n (�)} =
{
σ2
hm
J0 (2πfnK |k − �|) , m = n

0 , otherwise
(41)
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ĥ (i) =
1 − ρ

1 − ρi

i∑
k=1

ρi−kh (k) +
1 − ρ√

K (1 − ρi)
FH
L+1Ũ

−1
i∑

k=1

ρi−kñ (k) (39)

E
{
ε(i)εH(i)

}
=

σ2
n (1 − ρ)2

(
1 − ρ2i

)
K (1 − ρi)2 (1 − ρ2)

FH
L+1Ũ

−1Ũ−HFL+1 + E
{
h (i)hH (i)

}

+
(

1 − ρ

1 − ρi

)2 i∑
k=1

i∑
�=1

ρ2i−k−�E
{
h (k)hH (�)

}

− 1 − ρ

1 − ρi

i∑
k=1

ρi−kE
{
h (k)hH (i)

}

− 1 − ρ

1 − ρi

i∑
k=1

ρi−kE
{
h (i)hH (k)

}
(40)

and
E
{
h (k)hH (�)

}
= J0 (2πfnK |k − �|)Φ (42)

where J0(x) is the zeroth-order Bessel function of the first
kind, Φ � D{σ2

h0
, σ2

h1
, . . . , σ2

hL
}, and σ2

hm
= E{|hm|2}.

Substituting (42) into (40) and using (38), the MSE is found
to be (43).

This expression can be simplified further by assuming the
total power of the channel is normalized (i.e.

∑L
m=0 σ

2
hm

=
1). Finally, the expression for MSE given by (43) can be
represented in matrix form as given by (44) through (47).

ERLS (i) =
σ2
n (1 − ρ)

(
1 + ρi

)
K2 (1 + ρ) (1 − ρi)

K−1∑
k=0

1
|ũk|2

(44)

+
1

L+ 1

(
1−2 (1 − ρ)

1 − ρi
ρH
i ji+

(
1 − ρ

1 − ρi

)2

ρH
i Jiρi

)

ji =

⎛
⎜⎜⎜⎝

J0 (2πfnK (i− 1))
J0 (2πfnK (i− 2))

...
1

⎞
⎟⎟⎟⎠ (46)

ρi =

⎛
⎜⎜⎜⎝

ρi−1

ρi−2

...
1

⎞
⎟⎟⎟⎠ (47)
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