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ABSTRACT 

A novel Multi-User Detection (MUD) technique for 
CDMA systems is introduced. The new method is well 
suited for cases in which the code cross correlation 
matrix is ill -conditioned. In practice this case coincides 
with having code lengths approximately equal to the 
number of wers - a desirable condition in terms of 
handwidth efficiency. Our approach employs an 
iterative formulation of a well-known regularization 
method for linear inverse problems, which is suited to 
the MUD problem. The technique allows knowledge of 
the finite set in which the solution belongs to be 
exploited in a computationally efficient manner in 
order to iteratively improve the quality of the estimate. 

1. INTRODUCTION 

Since the introduction of the optimal Maximum- 
Likelihood (ML) detector (see [3]) a number of lower 
complexity classes of detectors have been proposed, 
attempting to approach the ML performance in a 
computationally and bandwidth efficient manner. 
Examples of those detector classes are the linear detectors 
(e.g. MMSE and Decorrelator), the linear and non-linear 
Interference Cancellation (IC) based detectors (e.g. Serial 
and Parallel IC. Decision feedback, Turbo MUD etc.) and 
the Subspace Based Linear detectors. A fundamental 
difference between the ML detector and the rest is the 
explicit use of the prior knowledge regarding the solution 
set, which however results in solving an NP-hard 
optimization problem. 

The proposed detector is based on a well established 
method for solving ill-posed linear inverse problems, 
namely Tikhonov Regularization' (TR). The fundamental 
idea in TR is to introduce to the Least Squares (LS) 
optimization criterion some additional side constraints, 
which the desired solution needs to fulfill. Those 
constraints need to he chosen carefully not only to he 

' Also known as Ridge Regression in the statistical literature 
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meaningful hut also to he simple enough to allow an 
analytical solution to the problem. In section 3 we 
demonstrate that the MMSE detector is a special case of 
the TR solution to the MUD problem with a particular 
choice of the regularization parameter. 

The clear distinction between the v k o u s  constraints that a 
TR solution needs to satisfy gives to the method more 
design flexibility hut also increased difficulties in terms of 
determining optimal (in some sense) regularization 
parameters. The new detector is based on a particular 
formulation of the TR problem in which some prior 
solution to the problem is assumed to he known. In 
contrast to other detectors, which make use of prior 
information, the proposed one does not rely on any 
external devices. Instead it uses its own initial estimate in 
conjunction with knowledge of the finite solution set in 
order to feedback a proposal solution, closer to the true 
one, and re-solve the TR problem. This procedure is 
repeated iteratively, giving increased importance to the 
fed-hack solution in each iteration. 

2. FORMULATION OF THE BASIC MUD 
PROBLEM 

In this section a simplified multiuser CDMA model is 
developed and the basic MUD problem is formulated. 

A discrete time baseband model of a synchronous DS- 
CDMA system is considered where U users are active. 
Each of the u j ( l <  i < U )  users transmits a BPSK 

modulated hit biafter this has been spread by some 
N 

spreading sequnece si = S. 6 [ ( k  - n) I"<] (of length 

N) where k is a discrete unit delay variable, Tc is chip 
"4 

l , k = O  
. The energy in each of the 

O , k # O  
period and 6 [ k ]  = 

code sequences is chosen and normalized so that 
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1 , i = j  . Assuming an AWGN channel 
p , < l  , i *  j s, '3 ,  = 

and equal power for each user then the received sequence 
can be expressed as: 

where & is the energy in each modulated symbol and 

- n is some sampled (in chip rate) realization of a white 
Gaussian process with zero mean and covariance matrix 
o2 .!, . For simplicity the problem will he formulated 

involving only with real variables. Extensions for vectors 
defined in complex spaces is straight forward. 

The received signal is despread by cross-correlating : 
with each of the code sequences giving samples 
yi = : I sr each in which the contribution in energy from 
user ui is dominant. Nevertheless contributions from the 
rest of the users are still significant and a detection scheme 
based directly on these samples is characterised by very 
poor performance. Instead of treating multiuser 
interference as some increase in the noise power 
(compared to the single user case), MUD techniques 
attempt to reject the interference by processing all the 
samples y = [ y , ,  y 2  ,.., y o  ] collectively. In particular 

MUD involves solving an inverse linear problem of the 
form: 

~ 

where B is the U x U code cross-correlation matrix 

which is symmetric and positive definite, 
b - = [b, .b, ,..., b,] which needs to he determined, z is the 

same as y for the case where there is no thermal noise 

present and y7 is a sampled (in symbol level) realisation 
of Gaussian process with zero mean and covariance matrix 

- 

- 

2. I .  Brief Review of Linear Multiuser Detectors 

The simplest linear detection technique solves the 
Generalised Least Squares (GLS) problem by assuming 
that the solution belongs to an infinite space and 
minimizing the cost function: 

where C i s  given by the Cholesky decomposition of & 
( B  = C . C T ) .  The solution is the well-known 

decorrelating detector: 

- ~ 

- 

In cases where& is ill-conditioned, the GLS solution is 
very poor even in very good SNR conditions, as noise is 
severely amplified in the directions of the singular vectors 
(of E), associated to small singular values. In that case, 
the MMSE detector offers a much more reliable solution, 
as it effectively dampens components of the solution in 
these directions. The linear MMSE detector can he 
derived by finding the matrix 

- 

- 

which minimises: - 

where E{.} is the statistical expectation operator. The 
MMSE solution to the problem (derived from ( 5 ) )  is given 
as: 

Again the knowledge of the solution set is ignored and b is 
assumed to take values in SU , 

3. TIKHONOV REGULARIZATION 

Tikhonov Regularization is a particular type of 
Regularization method for linear inverse problems with 
the attractive feature, from a computational point of view, 
that no decomposition of any kind (e.g. Singular Value 
Decompostion (SVD), QR decomposition) needs to be 
performed on the design matrix (E in the MUD case). 

Moreover, in general (but not necessarily) decomposition 
based methods are better suited for cases in which there is 
a distinct 'jump' in the magnitude of the singular values, 
indicating some effective rank. TR on the other hand is 
better suited for cases in which there is a smooth decay in 
the spectrum of the design matrix. In MUD the latter case 
typically holds. 

TR, adds to the classical LS constraint an additional 
regularization constaint : 

- 
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The side constaint helps to narrow down the set of 
possible solutions which satisfy the LS constaint, provided 
the former is consistent with the problem. The side 
constaint also needs to be a sufficiently simple criterion if 
an analytical solution to (7) is required. A general choice 
for R(b)which proves to be meaningful in many 
problems and is also simple enough to provide an 
analytical solution is the one proposed by Tikhonov (see 
[I], [21 1: 

- L is some linear operator acting on the solution. In many 

problems L represents the discrete derivative (of some 

order) operator in which case the solution is known to 
fulfill certain smoothness conditions. h' is a smoothing 
regularization parameter whose value dictates the 
smoothness on the filtering function which is imposed on 
the spectrum of the design matrix by the Regularization 
constraint. Obviously, as h2 -10 no weighting is 
imposed on the singular values of Rand the TR solution 

coincides with the LS one. On the other hand as h' + m , 
an exessively smooth function is applied on the spectrum 
of 8 and information about the solution in the 
observation is lost in the attempt to over supress noise. 
Optimal selection of h' is not a trivial task in practice and 
many methods have been proposed in the literature (e.g. 
Cross Validation, Generalised Cross Validation, Graphical 
methods, etc.). 

In the case where knowledge about an initial-default 
solution b is known for the problem then (8) can be 
further generalized as: 

- 

- 

- 

- 

- 

In this case h' controls the bias in the estimator towards 
the default solution. As 1' + the estimator will 
coincide with the default solution and no useful 
information will be extracted from the observations. This 
is not necessarily bad as the default solution might already 
be close to the true one (in which case the observation will 
have a negative effect on the quality of the estimator) 
although it is not easy to verify that in practice. 

Starting from the general formulation of TR criterion : 

A solution can be found by setting 

which leads to the following solution: 

We observe that the Tikhonov estimator resembles 
strongly the structure of the MMSE one. Indeed by setting 
- L = I ,  b = 0 and h' = 0' we get the MMSE solution for 
the case when the noise is zero mean with covarinance 
(3' . L  and uncorrelated with b .  In a similar fashion the 

MMSE multiuser detector can he derived from the TR 
criterion by solving a slightly modified problem 

- 
- _  

- 

in order to take into account the non whiteness of the 
noise. The solution of (13) is given by: 

6, =(d .I+RJ(C.Cr)-'R)-' .R7 .(C.C7)-'.yr = 

=(d. l+R)- '  - -  . y r  
(14) 

- - - - - - - - - - - - - - - - - 

- -  - 

which is exactly the MMSE detector. This result indicates 
that choosing h' =O' for the particular problem is a 
good choice. This is an important observation as far as 
producing an initial estimate in the proposed detector is 
concerned, as it bypasses the need for finding a good 
Regularization (or Ridge) parameter, which usually 
involves solving a non-trivial optimization problem (e.g. 
Generelized Cross Validation). 

4. BOOTSTRAP MUD BASED ON TIKHONOV 
REGULARIZATION 

The proposed Multiuser detector is based on the 
formulation of the TR criterion in which L = 1 but some 

default solution is assumed to be known about the 
problem. In the initial iteration no such solution is known 
so the detector reduces to the MMSE one. As soon as 
some initial estimate is available, we use the fact that the 
distribution of each estimated symbol is well 
approximated by a Gaussian distribution [4] in order to 
make hard decisions only for symbols which satisfy some 
posterior probability of error criterion. Those, which lie 
outside the required decision boundaries, are left 

- -  
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unchanged. So a proposal solution vector is constructed 
which consists of both soft and hard estimates, the latter of 
which we are confident about their correctness. The 
estimator used in each iteration is given by: 

- 
where h i s  the semi-hard proposal solution to the 
problem. The effect of this procedure is to iteratively limit 
the variance in the estimation error while at the same time 
bias the estimator towards the correct solution. Simulation 
results (see section 5 . )  have shown that when this method 
is applied to the MUD problem, it provides a significant 
performance gain especially if in each iteration we show 
increased belief in the proposal solution by increasing the 
value of h'. From a computational point of view the latter 
is not very bad news as (A' . I  i E)-' can be efficiently _ _  

U 
T recomputed by decomposing A2 ' 1 _ = 1' wi  ' , 

i=l 

(where ?;is the all zero vector except for the iih element 
which is 1) and applying iteratively ( U  times) the matrix 
inversion lemma: 

5. SIMULATION RESULTS 

The proposed Bootstrap detector bas been simulated for 
the simple MUD problem presented in section 2. Figure I 
illustartes the Bit Error Rate (BER) versus received SNR. 
Random spreading codes have been used and 
U = N = 5 0 ,  which results in a significantly ill- 
conditioned E indicated by the very poor performance of 

the decorrelator detector and the moderately bad 
performance of the MMSE detector. The single user 
performance which is the target performance is also 
plotted. We also give the decorrelator and MMSE 
performance for the case when N = 2 .  U = 100 which 
results in a well conditioned E ,  indicated by the good 

performance of both the decorrelator and MMSE 
detectors. In a real system this scenario would translate 
into doubling the required bandwidth which is not 
desirable. For the regularization parameter we have chosen 
h' = 0' for the zeroth iteration (MMSE detector) and we 
have introduced a weighting function for subsequent 
iterations so that 1: = k " . D2 , for number of iterations 

k 2 1 with a = 1 . There is a trade-off involved in the 
selection of the weighting function between convergence 

- 

- 

speed and BER performance. Obviously with big 
weightings the information in the data will be ignored and 
the estimator will quickly converge to some value. 

Figure I : BER Vs. SNR Performance Evaluation of the 
Bootstrap Detector 

6. CONCLUSIONS 

A new type of MUD for CDMA has been presented which 
is based on a particular formulation of the Tikhonov 
Regularization criterion where an initial solution to the 
problem is assumed known. In the proposed method this 
solution does not originate from some external source but 
from a sensible use of knowledge about the solution finite 
space and some initial estimate. The method is in principle 
applicable to many other communication and engineering 
linear inverse problems, in which the solution space is 
finite and known and also some knowledge about the 
statistics of the solution is available. 
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