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Abstract— Channel estimation and tracking pose real problems
in wideband single-carrier wireless communication systems em-
ploying multiple transmit and receive antennas. An alternative to
estimating the channel is to adaptively equalize the received sym-
bols. In this paper, we present an adaptive equalization algorithm
for implementation in multiple-input multiple-output (MIMO)
single-carrier (SC) systems with frequency-domain equalization
(FDE). Furthermore, we outline a novel method of reducing the
overhead required to train the adaptive equalizer. Other compu-
tationally efficient adaptive MIMO SC-FDE algorithms can only
be applied to space-time block-coded (STBC) architectures. The
algorithm detailed in this paper can be implemented in STBC
systems as well as in broadband spatial multiplexing systems,
making it suitable for use in high data rate MIMO applications.

I. INTRODUCTION

Wideband multiple-input multiple-output (MIMO) architec-
tures are very attractive solutions for high date rate wireless
communication systems due to their enormous potential for
capacity gains relative to single-antenna systems [1]. However,
two key signal processing problems have presented themselves
as research into wideband MIMO systems has progressed.
The first of these problems is equalization of the received
symbols. Equalization in a MIMO system is potentially very
complex due to the superposition of all of the transmitted
streams at each receive antenna. Single-carrier (SC) transmis-
sion with frequency-domain equalization (FDE) at the receiver
is one technique that offers a low-complexity solution to
this problem [2], [3]. The second key problem is that of
gaining knowledge of the channel so that equalization can
be performed. In this paper, we attempt to solve these two
problems by presenting an adaptive equalization algorithm for
implementation in MIMO SC-FDE systems.

To date, several adaptive solutions for SC-FDE systems have
been studied. Adaptive algorithms based on the least mean
squares (LMS) algorithm and the recursive least squares (RLS)
algorithm were explored for SC-FDE systems employing re-
ceive diversity in [4]. The potential for significant reductions in
complexity relative to LMS and RLS time-domain algorithms
was shown. A modification of the RLS algorithm was applied
to a space-time coded SC-FDE system in [5]. The structure
of the space-time block code (STBC) was exploited to reduce
the complexity of the algorithm beyond the reduction achieved
through FDE alone.

One drawback of the algorithms presented in [4] and [5]
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Fig. 1. Block diagram of baseband spatial multiplexing SCFDE system.

is that they cannot be applied to MIMO systems with spatial
multiplexing (SM) architectures. Consequently, they are not
suitable for very high data rate applications where SM systems
would be most useful. The algorithm proposed in this paper
can be implemented in both SM and STBC architectures. In
order to highlight the advantages of this algorithm, we focus
on its implementation in an SM system in this paper.

The paper is organized as follows. In section II, we in-
troduce a mathematical model for an SM SC-FDE system.
We detail the proposed adaptive algorithm in section III and
discuss convergence properties of the algorithm in section IV.
In section V, we outline a novel method of reducing the
overhead required to train the adaptive equalizer. We address
the complexity of the proposed algorithm in section VI and
illustrate results obtained from computer simulations in sec-
tion VII. Finally, we present our conclusions in section VIII.

Notation: We use a bold uppercase (lowercase) font to
denote matrices (column vectors); frequency-domain variables
are denoted by a tilde (e.g. ã); Fm is the normalized m × m
DFT matrix where its (k, i)th element is given by Fm;k,i �
(1/

√
m) exp(−j2πki/m) for k, i = 0, . . . , m − 1; Im is

the m × m identity matrix; 0m×n is an m × n zero matrix;
(·)∗, (·)T, (·)H, (·)m, and | · | denote the complex conjugate,
transpose, conjugate transpose, modulo-m, and absolute value
operations, respectively; ⊗ is the Kronecker product operator;
E{·} is the expectation operator; tr{·} is the trace operator;
diag {x0, . . . , xm−1} denotes the m×m diagonal matrix with
the elements {x0, . . . , xm−1} on the diagonal.

II. SPATIAL MULTIPLEXING SYSTEM MODEL

Consider the broadband MIMO system illustrated in Fig. 1,
which has nT transmit antennas and nR receive antennas
where nT ≤ nR. The baseband sequence at each transmit
antenna is modulated onto a single carrier waveform for
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transmission across a wireless channel. The received baseband
sequences are equalized in the frequency domain. A cyclic
prefix is added to each transmitted sequence and removed from
each received sequence to facilitate FDE.

Adopting matrix notation, we can mathematically describe
this system. Let xq be a length-K vector of symbols that is
transmitted from the qth transmit antenna. A cyclic prefix
of Q ≥ L symbols is employed to eliminate interblock
interference, where L is the memory order of each of the
nT nR channel impulse responses (CIRs). The vector yp of
symbols received at antenna p is therefore given by

yp =
nT∑
q=1

Hp,qxq + np. (1)

In (1), np is a length-K vector of i.i.d. zero-mean com-
plex Gaussian noise samples with variance σ2

n/2 per di-
mension and Hp,q is a K × K circulant matrix defined
by the CIR between the qth transmit antenna and the
pth receive antenna. Specifically, the first row of Hp,q is
(hp,q;0, 01×K−(L+1), hp,q;L, . . . , hp,q;1) where hp,q;i is the
ith complex tap coefficient of the CIR between the qth transmit
antenna and the pth receive antenna. It is assumed that the
channels remain static for at least one block duration.

It is convenient to construct a length-nRK vector of re-
ceived symbols y � (yT

1 , . . . , yT
nR

)T. A length-nT K vector x
of transmitted symbols can be constructed in a similar manner
where x � (xT

1, . . . , xT
nT

)T. Therefore, we have

y = Hx + n (2)

where n � (nT
1, . . . , nT

nR
)T and the (p, q)th submatrix of the

nR ×nT block matrix H is Hp,q . The equalized symbols can
be expressed as

x̂ = D−1
nT

ΓHDnR
y (3)

where Dm = Im ⊗FK and ΓH is the nT K ×nRK equalizer
matrix. Because each circulant submatrix of H is diagonalized
by pre- and post-multiplication of a DFT and an IDFT matrix,
respectively, it is convenient to express (3) as

x̂ = D−1
nT

ΓHỹ

= D−1
nT

ΓH
(
H̃x̃ + ñ

)
(4)

where ỹ = DnR
y, H̃ = DnR

HD−1
nT

, x̃ = DnT
x, and

ñ = DnR
n. The (p, q)th diagonal K × K submatrix of

H̃ is H̃p,q � diag{h̃p,q;0, . . . , h̃p,q;K−1}, where the discrete
frequency response of the channel is given by h̃p,q;k =∑L

i=0 hp,q;i exp(−j2πki/K). This mathematical model for an
SM SC-FDE system is used throughout this paper.

III. ADAPTIVE ALGORITHM

The adaptive FDE algorithm described in this section is a
version of the RLS algorithm. The goal is to adaptively update

ΓH =

 γ∗
0,0 · · · γ∗

nRK−1,0
...

. . .
...

γ∗
0,nT K−1 · · · γ∗

nRK−1,nT K−1



utilizing training blocks (training mode) or detected data
blocks (decision-directed mode). However, the update process
requires the revision of nT nRK2 elements, which can become
computationally cumbersome as the block length K increases.
We can reduce the number of elements that must be updated
by observing that only the nR elements of ỹ corresponding to
the kth frequency bin are required to recover the kth frequency
component of the block transmitted from antenna q. Therefore,

γ∗
u,v =

{
au,v + jbu,v , (|u − v|)K = 0
0 , otherwise

and the number of elements in ΓH that must be updated is
reduced to nT nRK.

To update the non-zero elements of ΓH, consider the clas-
sical cost function defined by

Jv (t) =
t∑

�=1

ζ(t, �) |Ev (�, t)|2, ∀ v = 0, . . . , nT K − 1

(5)
where t and � are time indices denoting a given block interval
and ζ(t, �) = ρt−� is the standard weighting factor, which
is included for implementation of the algorithm in decision-
directed mode [6]. A block interval is defined here as the inter-
val of time in which one block from each transmit antenna is
sent. In (5), the error term Ev (�, t) = x̃v (�)−∑

u
γ∗

u,v (t) ỹu (�)

for every u such that (|u − v|)K = 0. The notation x̃v (�)
denotes the vth element of the vector x̃ at time �.

The objective is to minimize Jv (t) for each v. Taking the
partial derivative of (5) with respect to γ∗

u,v (t), setting the
result equal to zero, and performing some algebraic manipu-
lations yields

Rv (t)γv (t) = pv (t) (6)

where

Rv (t) =
t∑

�=1

ρt−�ψv (�)ψH
v (�) (7)

and

pv (t) =
t∑

�=1

ρt−�x̃∗
v (�)ψv (�). (8)

In (6) through (8), γv (t) � (γu0,v (t) , . . . , γunR−1,v (t))T

and ψv (t) � (ỹu0 (t) , . . . , ỹunR−1 (t))T, where the index
um ∈ {0, . . . , nRK − 1} such that (|um − v|)K = 0. We can
rewrite (7) as

Rv (t) = ρRv (t − 1) +ψv (t)ψH
v (t) . (9)

Similarly, we can rewrite (8) as

pv (t) = ρpv (t − 1) + x̃∗
v (t)ψv (t) . (10)

Utilizing (6) through (10), it can be shown that the update
equation for the non-zero elements in the vth column of Γ at
time t is given by

γv (t) = γv (t − 1) + R−1
v (t)ψv (t) εv (t) (11)

where εv(t) = x̃∗
v(t) −ψH

v (t)γv(t − 1).
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TABLE I

ADAPTIVE ALGORITHM FOR SM SC-FDE.

Initialization:

Γ (0) = 0nRK×nT K

Rv (0) = δInR , ∀v = 0, . . . , nT K − 1 and for small δ

ρ← some number close to, but less than, 1

t← 1

Recursion:

∀v = 0, . . . , nT K − 1

R−1
v (t) = ρ−1R−1

v (t− 1)− ρ−2R−1
v (t−1)ψv(t)ψH

v(t)R−1
v (t−1)

1+ρ−1ψH
v(t)R−1

v (t−1)ψv(t)

εv(t) = x̃∗
v(t)−ψH

v (t)γv(t− 1)

γv (t) = γv (t− 1) + R−1
v (t)ψv (t) εv (t)

t← t + 1

To this point, the derivation of the adaptive algorithm has
more or less followed that of the standard RLS algorithm [6].
However, it was important to step through this derivation to
show the first of several interesting points that will be made
about this algorithm: the time-averaged correlation matrix
Rv (t) is an nR×nR matrix. Consequently, for small numbers
of receive antennas, the inverse of Rv (t) can be computed
directly with ease. In contrast, the size of the analogous corre-
lation matrix in the standard time-domain RLS algorithm is de-
pendent upon the length of the time-domain filter, which grows
large with increasing channel memory (i.e. as L increases) [6].
Therefore, in most broadband applications of interest, the time-
domain RLS algorithm can only be implemented via the matrix
inversion lemma, whereas the proposed FDE algorithm can be
implemented easily for small nR in any environment. Indeed,
for MIMO systems with large numbers of receive antennas,
the matrix inversion lemma can be used to compute R−1

v (t)
as well, which is shown along with a summary of the proposed
algorithm in Table I.

IV. CONVERGENCE PROPERTIES

Several convergence properties of the proposed algorithm
were studied. The properties that are of greatest interest are
the mean-square error (MSE) convergence and the rate at
which the matrix ΓH converges to the mean solution Γ

H
.

First, consider the MSE convergence, from which the rate of
convergence follows.

A. MSE Convergence

The vth weight-error vector is defined by ev (t) = γv (t)−
γv where γv = E{γv(t)} and the vth weight-error correlation
matrix is given by

Kv (t) = E
{
ev (t) eH

v (t)
}

. (12)

The MSE of the vth equalizer vector relative to the mean
solution γv can be found by taking the trace of Kv (t).
Assuming that

1) the vectors ψv (1) , . . . , ψv (t) are i.i.d., and
2) ψv (1) , . . . , ψv (t) where t ≥ nR are drawn from a

stochastic process with a zero-mean Gaussian distri-
bution with an ensemble-averaged correlation matrix
Φv = E{ψvψ

H
v },

the MSE of the vth equalizer vector can be expressed as

MSE (t) =
σ2

t − nR − 1
tr
{
Φ−1

v

}
=

σ2

t − nR − 1

nR∑
p=1

1
λv,p

, t > nR + 1 (13)

where λv,1, . . . , λv,nR
are the eigenvalues of Φv . The term σ2

denotes the variance of a zero-mean measurement error pro-
cess ε0,v (t) that is adopted from a multiple linear regression
model, which is given by [6]

x̃v (t) = γH
vψv (t) + ε0,v (t) . (14)

Since Φv is positive definite, the eigenvalues of Φv are
positive. Therefore, we can write

nR∑
p=1

1
λv,p

≥ nR

(
nR∏
p=1

1
λv,p

)1/nR

(15)

which is met with equality if and only if λv,1 = λv,2 = · · · =
λv,nR

. Furthermore, we have
nR∏
p=1

1
λv,p

= det
(
Φ−1

v

)
= [det (Φv)]−1

. (16)

In order to minimize (15), and therefore (13), we must
maximize det (Φv). Applying Hadamard’s Inequality, we have

det (Φv) ≤
nR∏
p=1

φv;p,p (17)

where {φv;p,p}nR

p=1 are the diagonal elements of Φv . Equa-
tion (17) is met with equality if and only if Φv is diagonal,
in which case φv;p,p = λv,p for p = 1, . . . , nR. Therefore, in
order to achieve the minimum MSE, Φv must be a diagonal
matrix with equal elements on the diagonal for all v. Con-
sequently, improper design of the training sequences and/or
ill-conditioned channels may lead to poor MSE convergence.

B. Rate of Convergence

To determine the rate at which the algorithm converges, the
mean-squared a priori estimation error, given by

J ′
v (t) = E

{
|ξv (t)|2

}
(18)

is computed for all v where ξv(t) = ε0,v(t)− eH
v (t − 1)ψv(t)

is the a priori estimation error. Expanding (18) and evaluating
the resulting expectations yields

J ′
v (t) = σ2 + tr {Kv (t − 1)Φv}

= σ2

(
1 +

nR

t − nR − 2

)
, t > nR + 2. (19)

This expression for the rate of convergence can be used to
reduce the number of symbols required to train the equalizer
as will be shown in the next section.
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V. REDUCING TRAINING OVERHEAD

Equation (19) suggests that for nR � 2 approximately 2nR

block intervals must be used for training before the mean-
squared a priori estimation error reaches within 3 dB of its
final value. From this result, a more practical solution would
be to estimate the channel by sequentially transmitting one
training block from each transmit antenna while the others
are silent, which would require nT block intervals, then con-
struct an equalizer from the estimate. However, we conclude
from (19) that the rate of convergence is not dependent on
the lengths of the transmitted symbol vectors. Therefore, the
transmitted time-domain blocks can have any length κ, as long
as K frequency components can be obtained from each block.
Thus, we have three cases: κ > K, κ = K, and κ < K.

κ > K: Choosing κ > K during equalizer training
but using a K-point DFT during equalization is inefficient.
Although the resolution of the training sequences in the
frequency domain is higher, a larger DFT is needed for training
than for transmission. Furthermore, this increased resolution is
not exploited during equalization of the received data symbols.

κ = K: In this case, the full block length is used to train
the equalizer. The algorithm converges to the minimum mean-
squared a priori estimation error floor as described by (19).

κ < K: Frequency-domain interpolation can be used to
obtain K frequency components from each length-κ sequence.
This is a standard technique and has been presented in the
literature [5]. In this case, the eigenvalues in (13) are generally
smaller than if the full block size were used because a length-κ
sequence of constant-modulus training symbols has less energy
than a length-K sequence. Consequently, the MSE floor is
higher for κ < K than for other values of κ.

Now, consider a system employing the proposed algorithm
where κ is initially less than K. Specifically, let κ = κ0 in
the set K = {κ0, κ1, . . . , κθ−1} where Q ≤ κ0 < κ1 < · · · <
κθ−1 ≤ K. After τ training block intervals, κ is incremented
to κ = κ1. Following another τ training block intervals,
κ is incremented to κ = κ2 and so on. By periodically
incrementing κ, convergence to a high error floor is prevented,
which is a problem with systems implementing frequency-
domain interpolation with a non-varying block size κ < K as
is the case in [5].

In general, τ can be varied to optimize convergence, but τ
is defined as a constant here. As long as τ is not too large and
the system is well-conditioned, the algorithm will continue to
converge, in terms of training block intervals, as described
by (19). However, the number of symbol intervals used for
training will depend on the choice of τ and K. In particular, if
τθ block intervals are used for training, the number of symbol
intervals used for training is given by Ts = τθQ+τ

∑θ−1
ϑ=0 κϑ.

By properly varying the length of each training block, the
overhead required to train the equalizer can be significantly
reduced from the case where κϑ = K for all ϑ.

VI. COMPLEXITY

The complexity of the proposed algorithm when operating
in training mode is compared to that of two techniques that
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Fig. 2. Complexity of techniques for a 2 TX × 2 RX system operating in
training mode where ηls = ηcs = 2 and K = 256.

use an estimate of the channel to construct a linear MMSE
frequency-domain equalizer [3]. The first of these techniques
is a least squares (LS) technique first developed for OFDM
systems with transmit diversity in [7], which has been adapted
for use in SC systems in this study. The second technique is the
aforementioned channel sounding technique (i.e. sequentially
transmitting one training block from each antenna).

Complexity is measured in terms of the number of complex
multiplications that are performed in each method. Fig. 2
depicts the complexities of the three methods where L is the
memory order of the channel. The terms ηcs, ηad, and ηls are
the numbers of block intervals used for channel estimation
and/or equalizer training for the channel sounding technique,
the proposed algorithm, and the LS technique, respectively.
As seen in Fig. 2, the complexity of the adaptive algorithm
is independent of L, making it a low-complexity option for
systems operating in channels with large excess delay spread.

VII. SIMULATION RESULTS

Computer simulations were used to observe the rate of
convergence of the proposed algorithm and the packet error
rate (PER) and bit error rate (BER) of a system employing the
algorithm. The ETSI BRAN A [8] channel model was used in
the simulations and a Doppler spread of 50 Hz was assumed.
Consequently, the channel remained static throughout the
transmission of the training blocks and for the duration of
one packet in the case of the performance study.

Fig. 3 illustrates the rate of convergence of the proposed
algorithm implemented with both a constant training block
size and a variable training block size. As a comparison,
the convergence curves of the LS and channel sounding
techniques are also depicted. Chu sequences were used for
training with the latter technique to provide a good estimate
with nT blocks [2], [9]. These sequences are optimal for
the channel sounding technique since they have constant-
modulus elements in both the time domain and the frequency
domain. Random training sequences were used with the other
techniques. As a reference, the error produced by a linear
MMSE frequency-domain equalizer constructed with perfect
channel state information (CSI) is illustrated in Fig. 3.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE



0 100 200 300 400 500 600 700 800 900 1000 1100

10
-1

10
0

Number of symbol periods used for training (incl. cyclic prefix)

M
ea

n-
sq

ua
re

d 
 a 

pr
io

ri
 e

st
im

at
io

n 
er

ro
r MMSE EQ (perfect CSI)

Channel sounding
LS channel estimation
Prop. (const. block size)
Prop. (var. block size)

Fig. 3. Convergence of SC-FDE techniques employed in a 2 × 2 SM
system operating in the ETSI BRAN A channel. (SNR per RX antenna = 15
dB, K = 256, K = {8, 16, 32, 64, 128}, Q = 8, τ = 4)

The benefits of utilizing a variable training block size with
the proposed algorithm are evident in Fig. 3. In this example, it
is shown that the proposed algorithm and the channel sounding
technique converge to the same estimation error after 280 and
528 training symbol intervals, respectively. This difference
corresponds to a 47% decrease in training overhead in favor
of the proposed algorithm. Unsurprisingly, the LS technique
converges very quickly, nearly reaching the reference curve
after the first training block interval.

The performances of four systems were studied. Two trans-
mit antennas and two receive antennas were employed in each
system. The first two systems devoted two block intervals to
channel sounding and LS channel estimation, respectively. The
third system adaptively computed the equalizer matrix with
15 training blocks where K = {8, 16, 32, 64} and τ = 4. The
fourth system was assumed to have perfect CSI. Each of the
three non-adaptive systems employed an MMSE equalizer.

For each system, once the equalizer was constructed, a
packet of 1024 data bits was encoded with a half-rate con-
volutional encoder that uses the generator polynomials [133]8
and [171]8. The encoded bits were randomly interleaved and
mapped to QPSK symbols that were then arranged into blocks
of K = 256 symbols. A cyclic prefix of Q = 8 symbols was
added to each block prior to transmission. At the receiver, the
equalized symbols were mapped to soft bits that were then de-
interleaved and passed through a standard Viterbi decoder. The
PERs and BERs of the simulated systems are shown in Fig. 4.
As observed, the system employing the proposed algorithm
performs within 3 dB of the system with perfect CSI.

The crossover of the curves for the proposed algorithm
and the channel sounding technique results from the use of
frequency-domain interpolation at high SNR. The proposed
algorithm in this example is affected by noise and the error
floor imposed by frequency-domain interpolation. Therefore,
the crossover point can be viewed as the point where noise no
longer affects the proposed algorithm as much as frequency-
domain interpolation. One might argue that as long as the

0 2 4 6 8 10 12 14 16 18 20
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR per RX antenna (dB)

PE
R

 / 
B

E
R

MMSE EQ (perfect CSI)
LS channel estimation/MMSE EQ
Proposed algorithm
Channel sounding/MMSE EQ

PER

BER
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system is operating below the desired PER when this crossover
occurs, the fact that the channel sounding technique performs
better than the proposed algorithm is irrelevant.

VIII. CONCLUSION

In this paper, we presented a generalized method for adap-
tively equalizing multi-antenna single-carrier transmissions in
the frequency domain. The convergence of this algorithm is
comparable to, if not better than, a typical channel sounding
technique where the channels between each transmit antenna
and all receive antennas are estimated sequentially. The com-
plexity of the proposed algorithm is significantly lower than
that of a channel estimation technique based on least squares
when the channel has a large excess delay spread.
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