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A Stable Subgridding Algorithm and Its
Application to Eigenvalue Problems

K. M. Krishnaiah and Chris J. Railton,Member, IEEE

Abstract—In this paper, a new and stable subgridding algo-
rithm is proposed for three-dimensional problems which pro-
vides subgridding in both space and time. The concept of an
equivalent-circuit representation and a novel leapfrog time in-
tegration scheme is used to ensure that the algorithm is stable
and efficient. Practical applications of this algorithm in the
characterization of arbitrarily filled dielectric resonators are
reported.

Index Terms—FDTD methods.

I. INTRODUCTION

T HE time-dependent Maxwell’s differential equations can
be represented by a set of difference equations and

can be solved numerically on a computer. This method of
solving Maxwell’s equations is popularly known as the finite-
difference time-domain (FDTD) method, which was first pro-
posed in [1] for two dimensions and later applied to three di-
mensions in [2]–[5]. The FDTD method of solving Maxwell’s
equations is becoming popular mainly due to its simplicity. It
has been widely and effectively used to solve a broad range
of electromagnetic problems [6], [7].

In some problems, a greatly improved accuracy of solution
can be obtained if a finer discretization is used in specific
regions of the computational volume. Frequently, the electric
or magnetic fields or both have large gradients within a limited
volume or sometimes only in one direction. A brute-force
approach of using a sufficiently fine grid (FG) throughout the
computational volume invariably requires exceedingly large
computer resources. Also, some structures have a curved
boundary which needs staircase approximations, which results
in loss of accuracy. In such cases, accuracy depends on the
cell dimensions and usually requires small cells if the curve
is sharp, which again poses the same problems of expensive
computation, memory, and computer limitations.

Some methods [3], [6], [8]–[11] have been proposed to over-
come the burden of excessive computer resources requirement.
Some of the methods [3], [8] use large FDTD cells throughout
the computation volume, but approximate the small geometry
elements by modifying the equations for the large cells that
contain them. For example, a surface-impedance concept may
be used to include material layers thinner than the FDTD
cells [8], [10]. Another variation involves special equations
for calculating the fields in the vicinity of discontinuity thinner
than the FDTD cell size [3], [11]. In the case of the contour
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path (CP) method [9], which is used for curved boundaries,
the basic Cartesian grid arrangement of field components
at all space cells, except those immediately adjacent to the
structure surface, are preserved. Space cells adjacent to the
structure surface are deformed to conform with the surface
locus. Slightly modified time-stepping expressions for the field
components adjacent to the surface are obtained by using the
CP technique. The drawback of this method is that it has a
very limited range of applicability and may exhibit longtime
instability [12], [13].

In the expansion technique [6], the region of interest in
the volume being analyzed is replaced with a finer grid. The
technique consists of making an initial computer run with a
model of the entire system. The electric fields, scattered from
the system and tangential to a sub-boundary, are stored on
disk from this calculation. The portion of the volume inside
the sub-boundary is then subdivided into smaller cells and
the sub-boundary becomes the outer boundary for a second
calculation. The same tangential-field response, as seen on
the sub-boundary for the first run, is imposed on the outer
boundary of the second run. The advantage of the second run
with smaller grid cells is that the missing volume of the domain
appears to be present at this time. A few drawbacks of this
method are: 1) it assumes only weak coupling between main
and sub-volume; 2) it suffers from very slow processing speed;
and 3) it is mesh dependent.

A few general schemes have previously been developed for
a dynamic change of the discretization density in the FDTD
algorithm. They include mesh refinement in both time and
space [14]–[16], and mesh refinement in space only [17].
While the latter approach is much simpler to implement, the
time and space subgridding yields a much more efficient code.
This results from the fact that, in the second approach, the
stability condition has to be computed from the size of the
smallest cell used and, thus, a small time step is needed
in the whole problem space. The variable step-size method
(VSSM) [15] and the mesh-refinement algorithm (MRA) [16],
are similar to the proposed subgridding technique in the
sense that they also make use of dividing the computational
domain into two or more regions with different cell size. The
disadvantage in using these methods is that both require the
calculation of extra second-order difference equations at each
coarse node on the boundary and also storage of an extra
second-order difference—the required number of stored fields
increases with the increase in the ratio of the fine and coarse
cell sizes. The difference between the MRA and VSSM is that
in the VSSM, the second-order differences are calculated from
spatially interpolated field values, whereas in the MRA, the
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second-order differences are calculated and then interpolated
in space. The authors have reported [18] longtime instability
in implementing these methods.

During the preparation of this paper, an alternative method
was published [19] for developing a subgridding algorithm
in a manner which has some similarities to the method
described here. While the overall aim of [19] and of the method
described here is the same, there are some differences in the
approach and final algorithm. Whereas in [19] the discrete curl
and divergence operators are used in the derivation, in this
paper, the consistency is assured by making the subgridding
algorithm formally identical with a passive electrical circuit
[22], [23]. In addition, [19] assumes the boundary magnetic
field to be constant over the coarse grid (CG) time step,
whereas in the proposed method, a novel time interpolation has
been implemented. These differences lead to different update
equations in the final algorithm. A further difference is that
in [19], a subgrid (SG) ratio of two is used, whereas in this
paper, a ratio of three is used. The performance, however, of
the two methods appears to be similar.

Previously, the application of this algorithm in two dimen-
sions to characterize an arbitrarily filled dielectric waveguide
has been shown [18]. The objective of the work presented
in this paper is to develop a practical three-dimensional (3-
D) subgridding algorithm, which is efficient and stable, and
also to characterize its performance under various conditions.
The entire computational volume is divided into a main grid
(coarse) and a number of SG’s (fine). The SG is introduced
only around the discontinuities where the field gradients are
high. To maintain the Courant stability criterion and minimize
the dispersion, different time steps are used based on the main
and SG spatial step. The fields within each grid volume, either
main grid or SG, are found using standard FDTD equations.

When a FG is embedded within an CG, the boundary
field components of the FG cannot be calculated using the
standard FDTD equations. The field amplitudes on the CG
may then be used to estimate the field amplitudes on the FG
by linear or cubical splines or shape-preserving interpolations,
e.g., [20]. However, a simple interpolation that does not
maintain thereciprocity of contribution between and
fields can lead to late time instability. The main-grid boundary
fields are found based on the problem definition, i.e., metal
or absorbing boundary condition (ABC). This subgridding
algorithm decreases the computer resource requirements and
expands the capability of FDTD to more complex problems
such as thin wires, slots, posts, etc. In Section II, the concept of
an equivalent circuit for a 3-D grid discontinuity is described.
In Section III, the novel time interpolation method is briefly
explained with the aid of a time-flow graph. In Section IV, the
complete algorithm along with representative field updation
equations is presented. Finally, Sections V and VI discuss the
numerical results and draw conclusions.

II. A N EQUIVALENT CIRCUIT OF THE GRID DISCONTINUITY

Although a passive lumped circuit equivalent to Maxwell’s
equations has previously been published [21], the form of
this circuit does not lend itself to the analysis of FDTD with

(a)

(b)

Fig. 1. A typical tangential FG boundary electric fieldEbfz(u; v;w+1=2);
coupled to one CG magnetic fieldHbcy(i + 1=2; j; k + 1=2) and three FG
magnetic fieldHfx(u; v � 1 + 1=2;w + 1=2);Hfy(u+ 1=2; v; w + 1=2)
components at the CG to FG transition plane.

subgridding. It is emphasized that the circuit presented here
is not a lumped equivalent to some discontinuity or other
physical feature to be included in the FDTD algorithm—it
is an equivalent to the subgridding algorithm itself.

The equivalent circuit of the unmodified Yee cell consists of
gyrators, connected between and nodes, and capacitors
at all nodes [23]. The gyrators transfer energy between
and field nodes, whereas the capacitor at each node stores
the energy. For an unmodified cell, the gyrator values are

, , , and the capacitor
values are , . In the case
of the grid discontinuity equivalent circuit, the gyrator values
are a function of the interpolation polynomial that will be used
in the interpolation of the boundary CG magnetic field. In the
case of two-dimensional problems, the gyrator values depend
only on the interpolation coefficients. In 3-D problems, they
depend on the interpolation coefficients in the normal direction
to the field that is being interpolated and a splitting coefficient
[19], which determines the contribution of the CG boundary
magnetic field, in the tangential direction of the field that is
being interpolated. The calculation of gyrator and capacitor
values is presented in the following two sections.

A. Equivalent Circuit for the Algorithm in Three Dimensions

In [18], an equivalent circuit for the subgridding algorithm
in two dimensions is presented. For the case of three di-
mensions, the updating scheme becomes more complicated.
The schematic representation of the typical transition plane
between coarse and FG is shown in Figs. 1 and 2. The
exploded view of the transition plane is shown in the Figs. 1(b)
and 2(b). The FDTD domain and the coordinate axes are
also shown. The gyrators and capacitors are not shown for
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(a)

(b)

Fig. 2. A typical tangential CG boundary magnetic field
Hbcy(i + 1=2; j; k + 1=2); coupled to 15 FG electric field
Efz(u; v � 1 : v + 1; w � 2 + 1=2: w + 2 + 1=2) components at
the coarse to FG transition plane.

Fig. 3. Partial 3-D grid discontinuity equivalent circuit. The gyrators and ca-
pacitors connected to the CG boundary magnetic-field node and FG boundary
electric-field nodes.

clarity. In Fig. 3, however, an enlarged view of one CG
magnetic field node in which the gyrators and the capacitors,
which are connected to the boundary FG electric field nodes,
are shown. In the case of three dimensions, the gyrator
values are the product of the interpolation coefficients and
splitting coefficient. The interpolation coefficients determine

Fig. 4. Linear interpolation in the direction normal to the CG magnetic field
at the transition plane.

Fig. 5. Length splitting in the direction tangential to the CG magnetic field
at the transition plane [19].

the contribution of the CG boundary magnetic field in the
direction normal to the field component, whereas the splitting
coefficients determine the contribution of the CG boundary
magnetic field in the direction tangential to the field component
[19]. The value of the splitting coefficient depends on the
common integration path and permeability distribution.

The linear interpolation coefficients in the normal direction
are shown in Fig. 4. The splitting coefficients in the tangential
direction have been shown in the Fig. 5. The dotted CP of the
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TABLE I
VALUES OF GYRATORS, g1!15; THAT ARE CONNECTED BETWEEN TYPICAL BOUNDARY CG AND FG NODES IN THE TRANSITION PLANE [SEE (3)]

FG magnetic field is common to of the CG magnetic field.
Similarly, the small dashed and big dashed CP’s also have
common path of of a CG magnetic-field component. In this
configuration, the value of the splitting coefficient becomes

. The resultant gyrator values that are connected to a typical
CG boundary magnetic-field node
are shown in Table I.

In this case, the entire transition plane electric-field compo-
nents have to be calculated as opposed to just a line in two
dimensions. Since the FG is embedded in the CG, has
been used as the CG coordinate system and for the
FG coordinate system for ease of understanding. The exact
update equations for the FG boundary electric field and CG
boundary magnetic field are given so that they can be directly
plugged into the existing codes with little or no modification. A
typical CG node are indicated by the symbol and a typical
FG node are indicated by the symbolin Figs. 1(b) and 2(b).
CG and FG fields are also distinguished by suffixand .

To update the FG boundary electric field, at least one
FG magnetic-field component willalways be outside the
FG boundary. This outside FG boundary magnetic field is
calculated by interpolation and splitting of the CG boundary
magnetic field.

The FG boundary electric field, e.g.,
in Fig. 1, cannot be updated in the usual way because

the required FG magnetic-field component
does not exist. The nonexistent FG magnetic-field com-

ponent is obtained by linearly interpolating the CG magnetic
field in the normal direction (Fig. 4). The same CG magnetic

field coupled with its neighbors is used to update the remaining
eight other i.e., , by splitting the magnetic field
in the tangential direction at the transition plane. This way, all
the nonexistent FG magnetic-field components are evaluated
all over the transition plane. Now the update equation for the

node is shown in (1) at the bottom of this
page, where

obtained from Table II

chosen such that the standard FDTD update equations for the
FG are recovered.

In the above equation, represents the unmodified FG
gyrator value and represent the gyrator values in the
equivalent circuit of the grid discontinuity. The similar up-
date equation can be easily obtained for the other tangential
boundary electric-field component at the transition plane.

Now consider the update of a typical CG boundary magnetic
field shown in (2) at the bottom of
the following page. It would be natural to use just the co-
located FG . If it is so, in (2)
becomes . In this case, the update equation
for would not depend on any of the other nodes
at the transition plane. This leads to a nonreciprocal situation
in which, for instance, depends on

, but not vice-versa.

(1)
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TABLE II
BOUNDARY CG MAGNETIC-FIELD CONTRIBUTIONS TO A TYPICAL TANGENTIAL FG BOUNDARY ELECTRIC-FIELD COMPONENT

As mentioned earlier, in terms of an equivalent-circuit
approach, this situationcannotbe achieved with purely pas-
sive components and must be avoided, otherwise late time
instability is likely. By replacing the grid discontinuity with
an equivalent circuit, which is shown partly in Fig. 3, it can
be seen that, for reciprocity, the must be the sum of
contributions from all 15 (for this case) nodes, as shown
in (3) at the bottom of this page, where

obtained from the Table II

chosen such that the standard FDTD update equations for the
CG are recovered.

In this equation, is the unmodified CG gyrator value and
represent the gyrator values in the equivalent circuit.

At the transition plane, a tangential CG boundary magnetic-
field component is coupled to 15 or 12 or ten or eight or six
FG boundary electric-field components and three CG electric-
field components, depending upon its location in the transition
plane. Only one case has been shown in Fig. 2(b). This
algorithm can easily be implemented when there is more than
one SG in the problem domain and can also be implemented
recursively without any modifications. The stability of this
new scheme is demonstrated by performing many thousands
of iterations for a loss-free resonant structure.

III. T HE NOVEL TIME INTERPOLATION

The commonly used leapfrog time-integration scheme can
easily be applied to the new subgridding algorithm. Inside
each grid, we perform a common time integration where the
time step is limited by the well-known Courant–Levy stability
criterion. The Courant–Levy criterion states that the maximum
stable time step inside the CG and FG to be different by the

(2)

(3)
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Fig. 6. The time-flow graph. Leapfrog time integration with novel time interpolation.

grid ratio, i.e., three. Maximum efficiency can be achieved by
updating the fields in the FG three times while performing one
time step in the coarse mesh. The boundary CG magnetic field
is interpolated in time, between and , to get
the CG magnetic field at time . This is used along
with the existing FG magnetic field to update the boundary
electric field at time . The magnetic field at

has to be stored to carry out this time interpolation.
To calculate the boundary electric field at , we need
the CG or FG magnetic field at . However, this
is not existing at the start of the iteration cycle. This is created
by using the CG magnetic field at , FG boundary
electric field at , and time interpolating the CG
electric field at time , as shown in the time-flow
graph of Fig. 6. This newly created CG magnetic field is used
to update the boundary electric field at time .

In this novel method, we have time interpolation of the
magnetic field once and the electric field once in which
the time reciprocity of interpolation has been taken care of
automatically. The time-integration steps are schematically ex-
plained in the time-flow graph shown in Fig. 6. This procedure
yields the following stable and efficient algorithm presented
in Section IV.

IV. THE ALGORITHM

We propose a new algorithm in this section. Its stability
and accuracy is demonstrated for 3-D problems. The steps
involved in the algorithm is succinctly explained with the aid
of the time-flow graph shown in Fig. 6 along with a set of
15 steps [see (4)–(14b)]. The leapfrog time-integration steps
are shown in the time-flow graph (Fig. 6), which explains the

algorithm in a succinct manner. The numbers on the time-flow
diagram corresponds to the equation numbers. The equation
numbers ending with “b” corresponds to the following bound-
ary updates:

(4)

(5)

(6)

(6b)

(7)

(8)

(8b)

(9)

(10)

(11)

(12)

(12b)

(13)

(14)

(14b)

The leapfrog time stepping can be described as follows (the
numbers in the brackets corresponds to the above equations).
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TABLE III
THE FIELD COMPONENTS AT THESTART AND END OF THE ITERATION CYCLE

Step 1) Update the CG electric field (4).
Step 2) Update the FG electric field (5).
Step 3) Do the time interpolation of the CG boundary

magnetic field to get the CG field at FG time
interval, . Note that the CG magnetic
field is not available at the FG interval at the
beginning (6).

Step 4) Update the FG boundary electric-field components
by utilizing the CG magnetic field that was calcu-
lated in Step 3 (5b).

Step 5) Update the FG magnetic field (7).
Step 6) Update the FG electric field (8).
Step 7) Update the FG boundary electric field using the

space interpolated CG boundary magnetic field.
Note that no time interpolation is required at this
time level (8b).

Step 8) Update the FG magnetic field (9).
Step 9) This time, do the time interpolation of the CG

boundary electric field to obtain CG boundary
electric the field at time, .

Step 10) Create the CG boundary magnetic field at time
using the FG and CG electric-field

components. Here, the CG electric-field compo-
nents are those obtained in Step 9 (11).

Step 11) Update the FG electric field (12).
Step 12) Update the FG boundary electric-field components

by utilizing the CG magnetic field that was ob-
tained in Step 10 (12b)..

Step 13) Update the FG magnetic field (13).
Step 14) Update the CG magnetic field (14).
Step 15) Update the CG boundary magnetic field (14b).
Step 16) Cycle.

The starting and ending field iterations are tabulated in
Table III, which shows the fields that are available at the
start and end of one cycle.

V. NUMERICAL RESULTS

In order to demonstrate the stability and accuracy of this
new scheme, 3-D problems are selected such that there will
be a field gradient in one, two, and finally, three directions.
These problems fully represent the general complexity that
the FDTD method came across. We have applied a 3-D
version of this algorithm to calculate the resonant frequencies
of arbitrarily filled inhomogeneous resonators (Fig. 7) and a
finline resonator (Fig. 8). The SG covers the dielectric block
and extends by one CG in each direction. The results for the
case cm have been compared using a
CG only, FG only and coarse FG’s i.e., the SG in Table IV.
The results from the SG agrees very well with FG results

(a)

(b)

(c)

Fig. 7. 3-D inhomogeneous resonators analyzed.

Fig. 8. Finline cavity.

and are shown in Table IV. Runtimes, using an unoptimized
code, for the FG and SG were 56 and 47 min, respectively.
It is expected that greater savings in computer time would be
obtained if the code were optimized.

In order to ascertain the disturbance caused to a wave prop-
agating through a uniform waveguide in which a subgridded
region has been included, the following test was carried out.
A parallel-plate waveguide having a width of 16.2 mm, height
of 10.8 mm, and length of 180 mm was considered. The SG
region dimensions are 7.2 3.6 9 mm and is centrally
located such that all six interface reflections can be observed.
The coarse spatial step is 0.9 mm and the grid ratio is three.
Magnetic-wall boundary conditions were applied to the sides
of the waveguide and electric-wall boundary conditions were
applied to the top and bottom. The guide was made long
enough so that the ABC’s at the ends did not affect the results.
Fig. 10 shows the reflection coefficient for the TEM mode,
which can be seen to be less than30 dB for frequencies up
to 20 GHz.
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TABLE IV
RESONANT FREQUENCIES OFARBITRARILY FILLED DIELECTRIC RESONATORS

Fig. 9. Hairpin resonator.

Fig. 10. Reflections in a parallel-plate guide with a subgridded region in a
homogeneous section of line. The SG is centrally located in the waveguide.

TABLE V
RESONANT FREQUENCY OF HAIRPIN RESONATOR CALCULATED

USING CG ONLY, FG ONLY, AND BOTH

Finally a hairpin resonator, shown in Fig. 9, is analyzed. The
dimensions used are: 1) mm; 2) mm;
3) mm; 4) mm and 5) mm. In this
case, the FG also encloses the metallization in all directions
by one CG. It can be seen from Table V that the resonance
frequency calculated using an SG and FG is in excellent
agreement. The runtime for the SG was 1200 min and the
memory used was 670 kbytes, whereas for the FG solution,
the runtime was 14000 min and the memory requirement was
5.67 Mbytes.

VI. CONCLUSIONS

We have presented a stable subgridding algorithm with a
novel time interpolation. We have implemented this algorithm
in three dimensions to demonstrate its stability and accuracy in
dealing with three practical applications. One is to characterize
arbitrarily filled dielectric waveguide and the others are the
calculation of resonance frequencies of the arbitrarily filled
dielectric resonators, fine-line resonator, and hairpin resonator.
We have showed that the 3-D discontinuities can be modeled
accurately and efficiently.
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