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An Algorithm for the Treatment of Curved 
Metallic Laminas in the Finite Difference 

Time Domain Method 
C. J. Railton 

Qbstracf-The Finite Difference Time Domain (FDTD) method, 
implemented in Cartesian coordinates, is well proven as an 
enicient technique for the electromagnetic analysis of a wide 
variety of microwave structures. The standard FDTD method 
is, however, less efficient if the structure under investigation 
has boundaries which are not parallel to the coordinate axes. 
Techniques designed to overcome this problem such as locally or 
globally deformed grids, or the use of nonorthogonal coordinate 
systems have been reported but these impose a penalty in compu- 
ta tional effort or in flexibility. In this contribution, an alternative 
te8:hnique is described whereby the standard Cartesian grid is 
maintained, and the existence of the material boundaries is 
accounted for by the use of special finite difference equations 
for the affected nodes. These equations take account not only of 
the position of the boundaries but also of the asymptotic field 
bchavior in their vicinity. This technique results in a flexible, 
a(atrate, and efficient, implementation which is applicable to a 
vide range of MMIC and antenna structures. 

I. INTRODUCTION 
ANY STRUCTURES such as printed antennas [l], IM circuit elements [2], [3] ,  and scatterers for which elec- 

tromagnetic analysis is desired contain metal boundaries which 
can not all be made parallel to a set of Cartesian or other 
cxthogonal coordinate axes. Whereas the standard Finite Dif- 
fxence time Domain (FDTD) technique is well proven as 
a n  efficient method of analyzing structures whose bound- 
aries are all parallel to the coordinate axes, the accuracy 
and efficiency deteriorates if the structure under investigation 
contains boundaries at arbitrary angles. Several methods have 
tleen proposed in the literature to overcome this problem, the 
>implest being to resort to the use of a very fine mesh [2]. 
. ’his approach, however, is likely to yield a computationally 
inefficient solution to the problem and often leads to a formu- 
lation which does not converge to the correct answer no matter 
how fine a mesh is used [4]. More sophisticated solutions 
include the use of “deformed” grids in the neighborhood of 
-he material boundary. Here the Cartesian mesh is retained 
over the majority of the problem space but, in the vicinity 
if material boundaries, it is made to conform to them. This 
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approach has been successfully used in [5] for the analysis 
of scattering from a smooth surface. As an alternative, several 
researchers have investigated the use of conformal grids which 
use nonorthogonal coordinate systems [6]-[9]. While good 
results have been obtained using this method, the computation 
time is stated to be much longer (of the order of 3 times) 
than the equivalent algorithm using Cartesian coordinates. I i 
addition there is the associated problem of generating a suit- 
able nonorthogonal mesh which is, in itself, a difficult proces!,. 
A combination of Cartesian and Cylindrical coordinates has 
been used for the analysis of coaxial waveguide structures 
in [lo], and this treatment is one of the few in which the 
singular field behavior is accounted for. In this contribution, 
a different approach is described in which the Cartesian grid 
with its inherent efficiency and simplicity is maintained, but in 
which use is made of special Finite Difference (FD) equations 
in the vicinity of material boundaries. Special algorithms 
for electrically small structures have been previously used 
with success in the cases of slots [ l l ] ,  [12], and wires 
[13]. The analysis of irregularly shaped planar structures his 
also been addressed in a two-dimensional formulation [ 141. 
Recently, we have demonstrated the incorporation of static 
field solutions into the FDTD algorithm, which include the 
effects of the singularities in the field distribution, in order to 
analyze isolated edges [15] and narrow microstrip where the 
edges are closer than or comparable to the mesh size [16]. A 
major advantage of this scheme over the use of nonorthogonal 
coordinate systems is that the amount of extra computer t ine 
required is very small. Moreover, this small penalty is amply 
compensated by the ability to reduce the density of the mesh 
while maintaining accuracy. In addition, the generation of the 
FD equations is an easily automated process which does riot 
introduce the difficulties associated with the generation of a 
nonorthogonal mesh. This work is now extended to the me  
of static solutions for the case of metal laminas with curved 
boundaries such as are often found in microstrip circuits 
and antennas. The approach is more flexible than the grid 
deformation approach and, in addition, the field behavior in 
the region of edges and corners is automatically included. Thus 
the unit cell size need to be chosen only by consideration of 
the wavelengths of interest and not be constrained by the size 
or position of the laminas. This greatly eases the process of 
mesh generation and leads to a more computationally efficient 
formulation. The technique may readily be extended to scrlid 
objects and objects with edges, corners, or points. 

0018-9480/93$03.00 0 1993 IEEE 
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SECTION THROUGH E IhTEGRATION SURFACES only action which need be taken is to set the H ,  node to zero. 
For the former case and referring to Fig. 1, we see that there 
can never be less than two (or more than four) E field nodes 
outside the metal. From the magnitude of the E field at these 
nodes we estimate the magnitudes of the components of the 
E field normal and tangential to the metal edge. 

Denoting the component of the E field tangential to the edge 
as ET and the component normal to the edge and in the plane 

(10) ........ .e......... 
: E d :  

:(q w * 

of the metal as E N ,  we expand the field function as follows: 
f d  
' /  

POSSIBLE POSITIONS OF THE METAL EDGE Hy5 

Fig. 1 .  FDTD grid for calculation of E,, E z ,  and H,. (fl) 

11. DEFINITION OF THE MATERIAL BOUNDARY 

In Fig. 1, we see the edge of a curved metal lamina lying in 
the x-z plane which cuts the FDTD mesh. Following standard 
practice, in order to calculate the new value of the H ,  nodes 
w; need the surface integral of H, and the line integrals of 
I . ,  and E,. If we approximate the edge cutting the mesh by 
a straight line which makes an angle 0 with the (G axis we 
c ~ n  make use of the known assymptotic forms of the field 
components tangential and normal to the edge, in order to 
e\ aluate the integrals. Thus, we may calculate the coefficients 
of the FDTD equations which will be functions of both the 
position of the edge and the angle of the target to the edge. 

We define a curved planar lumina by the following 
functions: 

1) Normuldist ( 2 ,  z ) :  returns length of the normal from the 
point (z, z )  to the edge of the lamina projected into the plane 
of the metal. 

2 )  Tungentdist (z, z ) :  returns distance along the edge of the 
intersection of the normal from the point ( 2 ,  z )  with the lamina 
with respect to a suitable origin. 

3) Tungentungle (z): retums the angle of the tangent to the 
lamina at point z. 
4) Inside ( z , y , z ) :  true if the point ( z , y , z )  lies on the 

lamina or false otherwise. 
A 3 an example, consider a disk of infinitesimal thickness 
whose centre is at coordinates ( z~ ,yo ,zo)  and of radius a. 
T i e  functions for this case are given by (1). 

Kormaldist (z, z )  = .\/(z - 2 0 ) ~  + ( z  - Z O ) ~  - a 

Tangentangle = &Sin-' - ( ;xo) 

111. THE CALCULATION OF dH,/dt 
IN THE PLANE OF THE METAL 

Depending on the relative position of the edge of the lamina 
ar d the grid, a number of different cases must be identified and 
dc alt with. We consider all H y  nodes whose associated surface 
of integration intersects the metal lamina as requiring special 
treatment. ' h o  different cases within this category are then 
identified, depending on whether the H ,  node is on the metal 
or not. These cases are shown in Fig. 1. In the latter case, the 

where n is the length of the normal to the edge of the metal 
defined by the function Normaldist ( 2 , ~ )  and t is the tangential 
distance along the edge referred to a suitable origin. It is noted 
that the values of n and t are independent of the value of y 
The functions PEN and PET are the static E field functions 
associated with a metal edge. They are given by consideration 
of the Green's function for a slab loaded waveguide and the 
well used approximation to the current distribution across a 
microstrip line as carried out in [17]. If we consider distances 
from the edge which are electrically small, which an FDTI) 
cell must be, the field distribution is independent of frequent!.. 
Under these conditions, it has been found that the assymptotic 
form of the field pattern, denoted E" in [17], is a good 
approximation to the actual field distribution. Since, at this 
stage, we are concerned only with the fields in the plane clf 
the metal, we set y to zero. 

/ \ 

PET = 

)' Re( @og( y + j ( n  + u) + Ju2 + (j(n + w,) + y ) 2  ) 
U 

where, if the edge is a part of a strip, the parameter u is 
its half width. For other cases, such as a large or irregularly 
shaped patch where a width is not simply defined, we let 11 

approach infinity yielding equations (6) and (7) which express 
the well-known asymptotic field behavior near a single edge. 

P & -  = Red-. 

The Cartesian components of the fields are then expressed as 

E, = ET Cos 0 - EN Sin 0 
E, = ET Sin 6' + EN Cos 6' 

( E 9  
(5') 

We can then express the magnitudes of the fields at each 
node on the integration surface in terms of the normal and 
tangential components as follows: 

Ex1 = k1712PET(n2) C O S  6 + k ~ P ~ ~ ( 7 2 2 )  C O S  0 
- k 3 t 2 P ~ ~ ( n 2 )  Sin 0 - kqPEN(n2) Sin 6' (1Cl) 



R4[ ,TON: ALGORITHM FOR CURVED METALLIC LAMINAS 1431 

where the subscripts refer to the positions of the nodes and the 
comers of the integration surface as shown by the numbers in (19) 

HYi JJ PHY (n)  dz d z  /I  Hy dz d z  = 
brackets in Fig. 1. PHY (715) 

For the nodes which are on the petal, the associated 
equations degenerate to the trivial case of zero = zero. 

Since we have four unknowns and may have as few as two 
nontrivial equations, we must assume some of the k’s  to be 
zero. To maintain congruence with the basic FDTD algorithm 
w: do so as follows: if we have three nodes we set k l  to zero, 
i f  we have two nodes then we set k l  and 

Equations (10)-(13) can be expressed in matrix form as 
fc llows: 

to zero. 

_- - A k = E  (14) 

where the matrix A is given by (15) below. And the vectors 
k and E are given by(k1k2k3k4)T and (Ex1Ex2Ez1Er2)T, 
rtspectively . 

If some of the nodes lie on the metal then the corresponding 
rows and columns of the matrix are removed. For example, if 
three nodes on the surface of integration are outside the metal 
then we have a set of linear equations which relate k z ,  k3, and 
k 4  to the values of the E field nodes such as those shown 
in (16). 

) (i;) = (2) Ez2 

/PET(n4) Cos e -t4PEN(n4) Sin 8 -PEN(n4) Sin 8 
 PET(^^) Sin 8 tlPEN(n1) Cos 6  PEN(^^) Cos 8 

( P~T(713) Sin 8 t 3 P ~ ~ ( 7 2 3 )  Cos 8  PEN(^^) Cos 8 

(16) 

The line and surface integrals which we need in order to 
get the coefficients for the FDTD equation as shown in (17) 

where the function P ~ y ( n )  is the asymptotic behavior of the 
Hy field given by 

Making use of (17)-(19) the integral form of the FDTII 
equation can be expressed as (21) or in matrix form as (22) 
where the vector b is made up of the coefficients of k in (21) 
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rz2  \ 

Combining (14) and (22), we get the required equation for 
u3dating the Hyl node value: 

111 general, the matrix A and the vector b are of order n where 
I I  is the number of E field nodes on the surface of integration 
and which are not on the metal surface. The elements of the 
matrix ( A - l ) T b  are calculated during the setting up stage so 
that the time required by the main iteration algorithm is not 
i icreased. 

It is noted that, in the absence of a metal edge, the matrix 
r:duces to (24) which corresponds to the standard FDTD 
c quation 

In  Figs. 2, 3, and 4 examples are shown of the coefficients 
(If the special FDTD equations for a situation similar to that 
5hown in Fig. 1 for the case of an edge making an angle 8 
to the x axis and which passes through the point (0.5 a). 
-'he mesh size is set to unity in each direction. The situation 
for 8 = 0, is equivalent to the case treated in [15] and the 
c:oefficients for the nonzero nodes are equal to the "correction 
lactors" used there. It can be seen that the coefficients are 
t lifferent when the edge is sloping. The discontinuities which 
<ippear in Fig. 2 and Fig. 3 occur at the point where the edge 
ntersects the E22 node. 

Iv. THE CALCULATION OF a E , / d t  AND 
~ E , / ~ ~ - - C A S E  1, H y l  OUTSIDE THE METAL 

When the metal edge is not parallel to the coordinate axes, 
he FDTD equations for E,  and E, are not independent and 
nust be taken together. A way of doing this is to consider a 
xoss which is centered on the Hy node as shown in Fig. 1. In 
this case, we wish to use special FD equations for whichever 
3f the nodes Exl Ex2 E,1 and Er2 are not inside the metal. We 
make use of (14) in order to relate the values of the vector k 
for the surface under consideration to the nodes E x ~ E x 2 E z l  
and E,2 nodes which are outside the metal region. We also 
require extra parameters hl - hs which are defined in terms 

COEFFICIENT 

:: 
-2 om QOI ala a17 M 025 QZI 035 om 0.41 a& 0.4s 

am am ai1 0.15 a is  osa 017 RSI - o a  0.49 0.47 

ALPHA 
T H H A - 0  l H E l A - 2 0  THElA-ID THElA-60 THElA=W - ........... HH 

Fig. 2. Calculation of a H g / &  - coefficient for the E,  node. 

COEFFICIENT 

... 

........ I .......... 
0 5  

I 
o " " " " ' a  ' b ' ' ' " ~ ' a  " " * '  

0.01 0.05 0.09 0.13 0.17 021 025 029 0.33 097 OAi 0.45 0.40 
009 0.07 0.11 015 0.19 023 027 0.31 056 OS9 0.43 0.47 

ALPHA 
M E T A = O  THETA=20 T U E l A = U l  T n E T A = O  - ............ -- 

Fig. 3. Calculation of aH,/at  - coefficient for the E,1 node. 

COEFFICIENT 
0 ,  

t 
-15 1 
4111111111111(1111111111111 0.01 0.05 0.09 0.13 0.17 021 025 0.20 0.33 0.37 0.41 0.46 0.40 

0.03 0.07 011 0.15 0.19 023 027 0.31 0.36 OS9 0.43 0.47 

ALPHA 
TnETA=O TnErA=20 "A=Ul - ............ 

Fig. 4. Calculation of aH,/at - coefficient for the Ezz node. 

of the H field in the planes above and below the plane of lhe 
metal. First, we make the following definitions: 

(3) 6 
212 + ( j ( n  + u) + y>' 

PHN = Re 
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n here PHN is proportional to the component of the H field 
normal to the edge and PHT is proportional to the component 
tangential to the edge. We then expand the H field components 
normal and tangential to the edge and in the plane half a unit 
cell above the plane of the metal as: 

‘I he Cartesian components of the H field above and below the 
plane of metallization are then expressed as: 

!Zz(y-l) = h 5 n P ~ ~ ( y - 1 )  Sin 6 + hGPHT(y-1) Sin 6 
+ ~ ~ ~ P H N ( Y - I )  cos 6 + h g p ~ ~ ( Y - 1 )  cos 6 (33) 

Nhere the plane y = y1 is half a unit cell above the plane of 
:he metallization. 

Using (30)-(33), we can express the values of the H field 
nodes as follows: 

H = F h  - (34) 

(Y 1 )HZ2 (Y 1 ) H ,  1 (Y 1 )Hz2 (YI )Hz 1 (Y- 1 )HZ2 where H = 
(~-1)H~l(y-1)H~2(~-1))~, h is the vector made up of h l  - 
h8 and the matrix F are the coefficients of h taken from 
equations (30) to (33). The nodes Hzl, etc., are directly above 
and below the nodes E,1 etc. 

We now require the integrals given by (35) to (38) from 
which we can express the FDTD equations for E, and E, 
nodes 

E, dy dz =kl COS 6 nPET dy dz JJ 
+ k2 c o s  6 //PET dydz - k3 Sin 6 

. JJ tPEN dy dz - k4 Sin 0 PEN dy dz 

(35) 
/J 

/ H, dx = h l  Cos 6 / ~ P H T  dx + h2 Cos 6 1 PHT dx 

- h3 Sin 6 tPHN dx - h4 Sin 6 

(3 7) 
J 

+ h3 COS 6 / t P H N  dz + h4 COS 19 PHN d;: . 

(38) 
.I 

The FDTD equations for dEZ2/at  and aE, l /dt  are given ?y 
(39) and (40). Similar equations may be written down for the 
other two nodes 
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The previous section makes the assumption that the Hyl 

is zero, then we need to calculate the Ex2 and E,1 nodes 
- hs 1:'' PHN(~, I J -~ ,  z )  dz (39) node is outside the metal. If this is not the case, and this node 

making use of neighboring E nodes rather than the standard 

For the calculation of Ex2, we consider the surface which 
d k  1 5  Yl contains the Ez2 node but does not intersect the metal. In other 

words, the surface containing Ex2Ex3Ez3 and Ez4. We c a i  
write down the following equations: 

dkl x5 y1  FDTD technique of using the surrounding H nodes. sin I , ,  1-1 c ( 2 ,   WET dy da: 

+ Sin o$ I , ,  1-1 f(z, y)PET dydz 

+ cos eat l,, lPl f(z, y ) t P E N  dy dz 
dk3 x5 y 1  

Ex3 = k2PET(n10) Cos 6 - k3tlOPEN(n10) Sin 8 

dk  c- = LII, + Gh - = d t  - 

wiere the matrix C is made up of the coefficients of d k / d t ,  
th: matrix D are the coefficients of the Hy nodes, the matrix 
G are the coefficients of h in (39), etc. In general, matrix C 
is of order (n x n), matrix D is of order (n  x n)  + 1) and 
matrix G is of order (n  x 8) where n is the number of E field 
nodes outside the metal. 

Since the Hy nodes other than Hyl are farther from the edge 
ot the metal, we make the usual FDTD approximation that the 
vilue of Hy varies linearly over the limits of integration. 

Substituting from (14) and (34), we get the desired special 
FIITD equation for updating the E field nodes in the vector 
E as follows: 

We make use of the known values of Ex3Ez3 and Ez4 in order 
to calculate the values of k2 - 164. We then use equation (44) 
to calculate the value of Ex2. A similar procedure is used ta 
calculate the value of E,1. It is noted that, for edges parallel 
to the axis, this approach reduces to that used successfully 
in [16]. 

VI. CALCULATIONS OF aH, /d t  AND dH,/dt  ABOVE AND 
BELOW THE PLANE OF THE METAL 

Since the nodes H, and H, directly above and below the 
nodes for E, and E, makes use of the E nodes close t J  
the edge, they must also be dealt with. This is especially 
important when large values have been used for the Coefficients 
in equations for the other special FD equations. 

Corresponding to (14), we can write equations which ex- 
press the E field in the planes y = +/ - 2 above and below 
the plane of metallization as follows: 

(47) 

where the subscripts + and - indicate the planes one unit cell 
above and below the plane of metallization, respectively. 

In order to update the H nodes above and below the plane 
of the metal we require the integrals given by (49) to (5-25) 
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f ron  which we can express the FDTD equations for H,l(yl) 
ant1 Hz2(yl)  as (56) and (57) 

H ,  d y  dz = hi COS 0 nPHT d y  dz JJ 
+ h2 COS 0 JJ PHT dy dz 

- h3 Sin 0 // tPHN d y  dz 

- h4 Sin 0 11 PHN d y  dz 

JJ 

H, dx d y  = hl Sin 0 npHT dx d y  JJ 
+ h2 Sin 0 11 PHT dx d y  

+ h3 cos 0 I/ tPHNn dx dy 

+ h4 COS 0 JJ PHN dx dy 

JJ 
(49) 

1435 

1 -- 
pEY(6) / Y O  pEy d y  

(54) 
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Similar equations may be written for the other six H nodes. 
Vle may express these equations in matrix form as follows: 

u here the matrix K is made up of the coefficients of dhfdt, 
the matrix L is made up of the coefficients of the E, nodes, 
tlie matrix M are the coefficients of e in (56), etc. In general, 
niatrix K is of order (8 x 8), matrix L is of order (8 x 10) and 
niatrix M is of order (8 x 12). The vector e as 12 components 
a id is made up of contribution from the plane of metallization 
aid the planes above and below as follows: 

= (el e2 e3 e4 k l  I C ~  k3 k4 e5 e6 e7 e g ) * .  (59) 

Substituting from (14), (34), (47), and (48), we get 

- at = == F K-~(LE, _ _  + -- M AC'E) (60) 
d H  

where the A0 is the 12 x 12 matrix given by (61) and the 
\r:ctor E is 

VII. CALCULATION OF dE,fdt h O V E  AND BELOW 
THE PLANE OF THE METAL 

The situation for the calculation of E, is shown in Fig. 5. 
+.part from the exchange of roles for the E and H field, the 
c ilculation is similar to the procedure used for the calculation 
of H y .  The main difference is that the metal never cuts the 

f l  .................... ~,lNTEGRAllON 

0 Ey 0 (') 
Hz3 i( l4)  (4 )0  H* 

(1) i 

i. 
t ; ...........=........... : 

EDGE OF METAL ARC Hxl 

Fig. 5. FDTD grid for calculation of E, above and below the metal. 

integration surfaces. This means that all four k's and the 
associated coefficients are always nonzero. 

Corresponding to equation (14) the values of the H field 
nodes are expressed as follows: 

(62) 

where the matrix AH is given by ? and H = 
(Hz 1 ( Y  1 1 Hx3 ( Y  1 1 

by (64). 

Ht2(Yl)Ht3(yl))T . 
The FDTD equation is then given by (63) or in matrix form 
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a.6 

ad 

-1 

-12 

-1.4 

1437 

- 
................... .............. ..................... .............. ............. - -..-..-..-d.._..-.-.._l. -. ___________---------- - 
- 

~ I I I I ~ L I I ~ I ~ I ~ I I I I I I I I I I I  

COEFFICIENT 
1.41 

1.4 

1 1  

O d  

0.6 

1.2 1 

...................................... ....... ............. ............... ........ 
- 

... - 
YTIY' -.._..-..- .. -..-.-..-..-..- "- . -- _____-___------  ----n------ 

- 
- 

, 1 1 1 1 1 . 1 1 1 ~ 1 1 1 1 f i 1 f i 1 1 1 1 * 1  

I 

om 0.06 0.09 0.13 0.17 o m  01s o a  03 037 0.41 0.6 0.8 
0.03 0.07 0.11 0.16 0.1s OP on oai o s  o s  o.u  0.47 

o ~ ~ f " a " " a ' a " ' ' " "  ' ' 

ALPHA 
THETA=O THETA=% M A = 4 0  THETA=60 THETA=- - ............ -- ...... 

Fig. 6. Calculation of aEy/& - coefficient for the H,1 node. 

COEFFICIENT 
I 1 

OA 

........ ............ ........ .......... 
-1.4 - i-.y.* .....,..+.*..,.., ................. , , , , , , , , , , , , , , , , 

om 0% om 0.11 0.17 om ozs o a  w o s  o m  0.6 0 . e  
0.m om 0.11 0.15 0.10 o s  om oai o s  os 0 . u  om 

ALPHA 
THETA=O l l E l A = 2 0  THETA=- = A s 6 0  THETA=- - ............ -..-.. 

Fig. 8. Calculation of aE,/at - coefficient for the H,1 node. 

ALPHA 
THETA=O T+lErA=aO T + l E r A = Q  THETA=60 THETA=- - ............ - - ...... 

Fig. 9. Calculation of aEy/a t  - coefficient for the Hr2 node. 

In this technique, the efficiency and simplicity of the Cartesian 
mesh is retained over the whole problem space and special, 
precomputed, FD equations are used in the vicinity of the 
metal boundaries. This approach is computationally much 
more efficient than the staircasing approximation and more 
computationally efficient than the formulations which make 
use of nonorthogonal coordinates. In contrast to the local 
contour deformation method, the asymptotic field solutions are 
incorporated into the FDTD algorithm which allows the use of 
a mesh constrained only by the wavelengths of interest. The 
technique is readily extendable to the cases of solid objects 
which contain edges, corners or points. 
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