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ABSTRACT 

This paper considers the problem of realising directed 
graphs using evolutionary optimisation methods. Graphs are 
constrained to have edge gains equal to powers of two and 
signal values at internal vertices are required to be weighted 
by elements of a given coefficient vector. The objective is to 
synthesise a graph with minimum complexity. The method is 
developed for the case of a single multiplicative coefficient 
using vertex cardinality as a measure of solution fitness and 
extended to the more general case of a multi-element 
coefficient vector with additional optimisation constraints. 
The potential of the approach is demonstrated using 
examples based on FIR digital filters. 

INTRODUCTION 
There has recently been increased interest in the application 
of genetic algorithms (GAS) [1,2] and related techniques to 
solving hard signal processing problems. These have 
included the optimisation of both fixed-function [3,4,5,6,7,8] 
and adaptive systems [9,10]. In the former cases however 
the objective has always been associated with the 
optimisation of quantised individual multipliers or with the 
satisfaction of predefined response requirements using an 
optimum cascade of simple filter sections. 
This paper considers the problem of efficiently realising 
algorithms of the forms shown in (l), where either a scalar, 
x[n] is multiplied by a fixed coefficient vector, a, to give an 
outer product, y[n] or an input vector, x[n], is multiplied by a 
vector, a, to produce an inner product, y[n]. 

y[n] = a.x[n] or y[n] =a. x [ n ]  (1) 

Such operations can be represented by a directed graph and 
are common to many signal processing functions including 
convolution and correlation. When the coefficient values are 
invariant, graph complexity can often be reduced by 
exploiting the redundancy in the coefficient-signal 
multiplication process, yielding a single directed graph 
comprising only primitive arithmetic operations (additions, 
subtractions and shifts). 
Previous work by Bull and Horrocks [ l l ]  has used a 
combined heuristic-dynamic programming approach to 
produce a reduced complexity directed graph from a given 

coefficient vector. It is proposed here that GAS can also 
offer an efficient and flexible vehicle for primitive operator 
graph synthesis. To support this we present results 
illustrating the potential of GA based methods for the 
synthesis of both single and multple output multiplier-free 
graphs. 

GRAPH SYNTHESIS 
Matrix representation 
A directed graph of the form considered here can be 
represented in matrix form (2): 

v[n]= F:v[n]+B x[n] (2) 

where: v[n] is a column vector representing the value of each 
vertex, Fc is a constant matrix containing gains for each edge 
of the graph and B is a column vector containing gains for 
each edge from a source vertex to each internal vertex. In 
addition, FCT must be lower triangular with zero diagonal to 
ensure a computable graph. 
We consider first the problem of forming the product of an 
input signal with a single coefficient value. For example the 
graph of figure 1 forms the product 59x[n]. This graph can 
be represented in matrix form (3), where the normalised 
vertex values (x[n]=l) are in this case: vl[n]=l, v2[n]=17, 
v3[n]=21 and vq[n]=59. Graph vertices in this case are 
restricted to comprise two input adders and graph edges are 
constrained to powers-of-two values, thus: 

f, E (k,2’ f k 2 2 J )  where k1,2 E {0,1} and i , j  E {0..-15} 

The goal of the optimisation process here is to obtain the 
target product value in the last vertex position of the vector, 
v[n] using the fewest vertices. 

Figure 1 Graph for generating yo[n]=59x[n] 
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Fitness function evaluation 
The fitness of a candidate solution, F, must depend on the 
validity of the solution and is defined as follows: 
i) if the value (V ) of the last vertex does not equal the target 
value (Vref) after repair then : 

with F = 0 if F IO ( 4 4  
ii) if the last vertex value equals the target value then : 

nt 
where nverten is the number of vertices used to compute the 
target value and nt, the total number of vertices in the matrix. 

Problem coding 
Candidate solutions are encoded using a 2-string 
chromosome. The first string codes the source vertices for 
the input edges to each vertex, in the form of two integers 
representing the indices. The second string codes the edge 
gains as powers-of-two, encoded with 5 bits including sign. 
For example, the chromosome representing the graph of 
figure 1 would be: 
stringl= (1,1,1,2,2,3) 
string2=(0,0,1,0,0 O,O,O,O,O i 0,0,0,1,0 ! O,O,O,O,O 

=( 24 : 1 : 22 i 1 

io,o,o,o,o: 0,0,0,0,1) 
i 1  i 2 )  

The genetic operators, crossover and mutation, are applied 
to both strings. These operators are defined as usual [2], 
except that, in the case of the first string, mutation must be 
applied in such a way that any resultant number must be 
lower than its index position. This ensures a lower triangular 
matrix and hence a computable graph. 
Parent selection for the reproduction phase is made via 
roulette wheel selection and, at each generation, the best 
individual is always propagated to the next generation. In 
addition to crossover and mutation, an operator, Repair, is 
also used which attempts to form a valid solution from a non- 
valid one. This operator tries to compute the target value by 
manipulating only those entries in the last row of the matrix 
but with edge gains limited to the range { -2,- 1 ,0, 1,2}. This 

198 

range was found to represent a good compromise between 
execution time and the chance of succesful repair. 

Results and statistics 
100 trials were executed using a crossover probability of 0.6 
and a mutation probability of 0.02 for both strings, with a 
range of multiplicative coefficients, for different matrix and 
population sizes. Performance results are summarised in fig 
2 for the case of a typical coefficient value, from which it can 
be seen that in over 85% of cases an optimum (4 adder) 
solution was found. These figures have to be compared with 
a random search (over 100,OOO individuals), which yielded a 
similar solution in only 0.08% of trials. An example solution 
found requiring 4 adders is the following: 

33 = 25.1+ 1 793 = 1 +Z3-99 
99=33+2.33 859=2.33+793 

W 4adden W Sadden 6adden E4 7adders 

100 1 

nvertex=ll nvetiex=20 nvertex=20 nvertex=15 
pop=80 pop=50 pop=50 pop=80 

Figure 2 Results of single output graph synthesis for a 
coefficient value of 859. 

MULTIPLE OUTPUT GRAPH SYNTHESIS 
The algorithm 
The procedure and representation developed in the previous 
section can be extended to the problem of forming a 
multiple-output directed graph using the minimum number of 
vertices. An iterative extension of the previous algorithm has 
been employed and is described as follows: 

a) Sort coefficient magnitudes in ascending order and 
associate each with an internal vertex of the graph. 

b) form each coefficient according to the algorithm of 
the section 2. 
After each generation, individual solutions are propagated 
using roulette wheel selection as before. However, only the 
best (valid) individuals are retained after each target 
coefficient value is formed. In addition, crossover and 
mutation are restricted to points which do not invalidate 
previously formed target vertices. The function Repair is 
invoked after a specified number of generations, only if the 
relevant target value has not been formed. 
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No. Add/ subs 
10 

Results 
Example 1: consider the coefficient set { 1,7,16,21,33}. We 
ran 300 trials for this example, using the same genetic 
parameters as used previously, with, and without, the 
function Repair. Performance results are summarised in 
figure 3. An example of the best solutions found with 3 
adders is : 

(7 = 23. 1 - 1; 16 = 24.1; 21 = 22.7 + 7; 33 = 2.16 + 1 

Example 2: an order 31 linear-phase high-pass FIR filter 
impulse response with the following 8 bit coefficients 
{ 1,2,3,5,6,9,10,14,30,49,70,90,107,120,127} [ l l ] .  Results 
using a support matrix of 35 vertices are shown in table 1 
(100 trials). An example of one of the optimum solutions 
with 10 adders is the following: 

95 (pop=75, gemnax=15) 
44 

2 = 2.1; 3 = 2 + 1 ;  4 = 2.2; 
5 = 1 + 4 ;  6 = 2.3; 9 = 22.1 + 5; 
10 = 2.5; 30 = 2.14 + 2; 

49=9+22 .10 ;  70=2.5+2.30;  90=2.10+70; 
107 =9+2 .49 ;  120 =22.30; 127 = 2.10 + 107 

14 = 5 + 9; 

12 I 13 11 13 3 I 
Example 3, coefficients for a video sub-band filter bank, is 
taken from reference [ 121 and has the following set of unique 
coefficients: { 10,19,62,171,218,256,5 12,644,659,683,1024, 
4096,4608,4703,4726,9 122,9558,9728,10240). Reducing 
the above set such that no coefficient is divisible by two and 
reordering yields the following: { 5,9,19,3 1,109,161,17 1,659, 
683,2363,4561,4703,4779). A support matrix with 50 
vertices was employed. An example of the best solution with 
14 adders is given below: 

5 = 22.1 + 1; 9 = 2.5 - 1; 

19 = 1 + 2.9; 31 = -1 + 25.1; 

109 =27.1-19; 161 =25.5+1;  

171 = 2.5 + 161; 

683 = -1 + 22 .171; 2363 = 683 - (-1680 ); 

-1680 =26.1-24.109; 4561 =-2.109 +4779; 

4779 = 212 . l +  683; 

659 = 19 + 27.5; 

4703 = 4779 - Z2.19 

B3addersB 4 5 6 "ked 
adders adders adders 

100 1 
80 

60 

40 

20 

0 
No Repair Repair 

Figure 3 Results of multiple output graph synthesis showing 
the percentage of solutions with a given number of vertices 

In terms of the number of vertices required, this last result is 
superior to the solution previously published in reference 
[ 121 and demonstrates the potential of the approach. 

HIGHER LEVEL CONSTRAINTS 
In filter implementation, for example, complexity is dictated 
not only by the number of graph vertices but also by 
precedence level relationships since these influence pipeline 
register requirements, and hence the area of the IC layout and 
latency. The fitness function described earlier has been 
modified in order to take in account these constraints by 
including an extra term, nr, which reflects the contribution of 
registers in a solution. 
We ran 100 trials maintaining the same genetic parameters as 
used previously on the test set for example 2. Results are 
given in figure 4 which shows solution distribution in terms 
of padding registers and adders with lines of constant fitness 
indicated. 

10 15 
number of adders 

Figure 4: Results for combined optimisation of 
both registers and adders 
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Band 
0 

UNCONSTRAINED GRAPH SYNTHESIS 
The aim of this section is to demostrate the potential for GAS 
in synthesising a graph-based (direct form) digital filter 
directly from a frequency domain template. The algorithm 
used is a modification of that described previously, again 
employing two chromosomes. In this case, the signal 
weighting at internal graph vertices has no direct 
significance. Each vertex is thus represented, not by a 
weight, but by a vector, embodying topological information 
of dimension equal to the number of filter coefficients. 
Mutation and two point crossover are used on both strings. In 
addition, during reproduction and initialisation phases any 
solution with more than half of its coefficients equal to zero 
are rejected to avoid premature convergence. 
The fitness function used is based solely on a measure of the 
error in the filter's frequency response compared with a 
template (the sum of the extrema1 errors in all stop and pass 
bands) and takes no account of graph complexity. 
Initial trials were ran with a filter having the specifications 
summarised in Table 2, a lowpass filter with 3 stop bands [3]. 
This filter was processed using the above algorithm with the 
same genetic parameters as used previously. The GA was 
executed for 50 generations with a population of 95. Figure 
5 shows an example response for a requiring 12 vertices and 
with coefficients { -64,0,0,96,4oO,128,0,-768,-1568,-2016). 
This compares with an equivalent 15th order equiripple 
design which required llbit coefficients to meet the 
specification. 

Bandedge frequencies 6p 6s 
0.00 0.10 0.1 

1 
2 
3 

0.15 0.20 0.3 
0.20 0.30 0.01 
0.30 0.50 0.1 

CONCLUSIONS 
The results presented in this paper have demonstrated the 
potential of genetic algorithms as a method of synthesising 
directed graphs for the purpose of digital filter realisation. 
Ongoing work involves extensions of the unconstrained 
synthesis techniques to incorporate factors such as latency 
and pipeline register overheads into the fitness function. 
This should eventually facilitate the automated design of 
systems which are globally optimum, not just in terms of 
algorithmic but also in terms of technological constraints. 
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