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ABSTRACT 

Content-based retrieval is ultimately dependent on the fea- 
tures used for the annotation of data and its efficiency is 
dependent on the invariance and robust properties of these 
features. For texture based features an important form of 
invariance is rotational invariance. In this paper novel rota- 
tionally invariant texture based features are introduced that 
are extracted from a Polar Fourier Transform (PFT). The 
PFT is similar to the Discrete Fourier Transform in two di- 
mensions but uses transform parameters radius and angle 
rather than the Cartesian co-ordinates. The PFT is discre- 
tised appropriately across the angular and radial frequency 
space with the transform magnitudes forming the rotation- 
ally invariant features. These features although rotationally 
invariant, capture the angular distribution together with the 
radial distribution of frequency within texture. Preliminary 
results show the method to give better results than rotation- 
ally variant and invariant Gabor filter schemes. 

1. INTRODUCTION 

The ability to effectively retrieve images or video accord- 
ing to their content is still an unfulfilled goal for multimedia 
applications and therefore a currently active research area. 
Content-based retrieval is dependent on the features used 
for the annotation of data and its efficiency is dependent on 
the ability of extracted features to facilitate meaningful re- 
sponses to a range of queries. For texture based features, 
this ability is to a large extent, dependent on the invari- 
ance and robust properties of the features. These proper- 
ties include the invariance to scale, rotation, illumination 
transforms and robustness against noise. Inclusion of these 
properties should ensure that the features capture a more ab- 
stract representation of the texture separate from the circum- 
stances in which it is found. This paper focuses on texture 
features that have been developed to be invariant to a trans- 
formation of a texture by rotation. Rotational invariance of 
texture features can be separated into two different classes: 
Isotropic and Anisotropic. Isotropic rotational invariant fea- 
tures are formed from averaged measures of some property 
(such as frequency content) in all directions. This is the 
most obvious way of obtaining rotationally invariant fea- 
tures. However in order to produce a richer representation 
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the angular distribution of such a property can be charac- 
terised whilst remaining rotationally invariant. This type of 
rotational invariance is known as anisotropic. 

2. REVIEW 

Several methods have been proposed to extract rotation- 
ally invariant texture based features without using spatial- 
frequency analysis including circularly symmetric autore- 
gressive (CSAR) models [ 11 and iterative morphological de- 
compositions [2]. However, most attention has been fo- 
cused on spatial-frequency analysis methods such as wavelet 
and pyramid decompositions as in general they have pro- 
duced the best results. The steerable pyramid [3, 4, 51 is 
a spatial-frequency decomposition that has been utilised to 
produce isotropic and anisotropic rotationally invariant tex- 
ture based features. It has the advantage over a normal 
wavelet type decomposition in that the output subbands can 
be adjusted to analyse many different orientations at each 
scale. Unfortunately this transform has the disadvantage of 
being considerably overcomplete with the amount of over- 
completeness increasing with the number of analysed ori- 
entations. The more common dyadic wavelet decomposi- 
tions used in many compression applications have also been 
used to extract texture features that are rotationally invari- 
ant. This has been done by simple combinations of subband 
energy measures [6] or by the modelling of the variation 
in the energy of each subband using Markov models [7]. 
These methods however lack the directional selectivity of 
the steerable pyramid. Wu and Wei [SI have used a clas- 
sical dyadic wavelet decomposition on a spiral-resampling 
lattice. The phase (and therefore the rotation) of the spi- 
ral is removed in the decomposition thus enabling rotation- 
ally invariant measures to be produced from the resulting 
subbands. The filter separability and iterative nature of the 
dyadic wavelet transform necessary for computationally ef- 
ficient decomposition produces frequency analysis in octave 
bands. This may be considered to be too coarse for accurate 
texture analysis. Non-separable wavelets have been used [9] 
to produce more flexible isotropic and anisotropic rotation- 
ally invariant features over greater radial frequency ranges. 

This paper is organised as follows. Initially the proper- 
ties of the Polar Fourier Transform are investigated together 
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a) 2D Fourier Transform b) Polar Fourier Transform 

Fig. 1. Spatial visualisations of positions in FFT and PFT transform space 

with visualisations of the analysis functions. The texture 
classification experiments using the developed features are 
then described together with the experimental results. 

3. THE POLAR FOURIER TRANSFORM (PFT) 

The traditional discrete Fourier transform in two dimensions 
takes the form shown in equation 1. The parameters map- 
ping the transform domain are the vertical and horizontal 
Cartesian frequency parameters and figure l a  shows the real 
parts of several two dimensional spatial basis functions and 
their corresponding position in transform space. This trans- 
form domain can therefore be considered as analysing the 
frequency content in lerms of such orientated complex si- 
nusoidal gratings. 

1 *--l 
F ( W z , W y )  = N2 1; f ( G Y ) e z P [ - j 2 n ( w z z  + W y Y ) I N l  

x=l) 
(1) 

The parameters that map the transform domain of the 
PFT are the frequency parameters relating to the angular 
and radial frequency i.e. w,. and w e  in equation 2. Points in 
the transform space therefore correspond to complex spiral- 
type basis functions as depicted in figure lb. The magnitude 
of the complex output of the PFT can be used to form ro- 
tationally invariant texture based features. However, when 
applied directly to the spatial domain, the PlT is not invari- 
ant to translations. The PET transformation is only applied 
after an initial FFT is performed on the texture in order to 
remove translation dependence. 

1 N-l 
F(wl-9 w e )  = ~2 f(z, y ) e w  [-j(r x wrr/N + wee)] 

(2) 
The features are therefore extracted as represented by 

figure 2. i.e. the features are formed from the magnitudes 
of the PFT output after an FFT transformation. When dis- 
cretising the parameters, we only needs to take even val- 
ues as the frequency plane is symmetric. The discretisa- 
tion of the w,. parameter is discretionary but would be ex- 
pected to produce the best results when considering an even 
or logarithmic spread. The best results were in fact pro- 
duced from an empirically derived and small set (see sec- 
tion 4). These features are not only rotationally invariant 
but also characterise the angular frequency distribution of 
the texture i.e. they have anisotropic rotational invariance. 
A similar method is used in pattern recognition called the 
Fourier-Mellin transform [ 101 where the rotational invari- 
ance is achieved by resampling on a log-polar lattice in be- 
tween two FFT transforms. However, developing texture 
features obtained directly from the PFT obviates the need 
for the interpolation necessary for the translation to log- 
polar (or just polar) coordinates. This interpolation may be 
considered to introduce unnecessary errors due to the nec- 
essary averaging operations and also the variations in cov- 
erage for different radii. 

2=0 

4. EXPERIMENTAL RESULTS 

Sixteen textures were taken from the Brodatz texture al- 
bum [ l l] to test the classification performance of the de- 
veloped features. These textures (shown in figure 3) were 
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Fig. 2. Extraction of texture features from the Polar Fourier Transform 

chosen to represent textures that contained a range of peri- 
odic, stochastic and directional elements. The textures were 
scanned as eight-bit raw grey level images of size 256 x 256 
pixels. 

Fig. 3. 16 Brodatz textures used in texture classification 
experiments 

One version of each texture class was used for training at 
angles of 0", 30", 45" and 60". Seven different versions of 
each texture were used for classification and presented at an- 
gles 20", 70", go", 120", 135" and 150'. This gave 42 clas- 
sifications per texture arid 672 in all. Each training texture 
was tiled into 16 x 16 squares with feature values being ex- 
tracted from the PFT decomposition of each tile leading to 
a mean vector and covariance matrix for each texture class. 
The four angles of training were used to enable the mean 
feature vector and the covariance matrix to be properly es- 
timated under texture rotation. Similarly, the mean feature 
vectors were extracted from the test textures from the PFT 
transform of tiled 16 x 16 squares. Textures were classified 

Feature 
Vector 

Table 1. Classification performance of wavelet features on 
rotated images: decomposition on 16 x 16 areas, best per- 
forming feature sets for each method. 

5. CONCLUSION 

Traditional texture based features for retrieval often do not 
exhibit rotational invariance as can be seen from the results 
for the rotationally variant Gabor filters in table 1. Con- 
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versely, many rotationally invariant texture based features 
do not characterise the angular distribution of frequency con- 
tent within the texture i.e. they have isotropic rotational in- 
variance. The features here developed from the PFI’ are not 
only rotationally invariant but also characterise the angular 
frequency content of the texture i.e. they have anisotropic 
rotational invariance. However, one disadvantage of using 
the magnitude of the PFT output (as described above) is the 
removal of radial phase information that would provide ex- 
tra useful information for classification. Indeed although 
the PFT magnitude output does produce rotationally invari- 
ant features in general it does not capture an intuitively un- 
derstandable representation of frequency content. This may 
not prove to be a disadvantage but may have implications for 
content based retrieval of natural images where there will be 
a significantly higher number of textures to distinguish. It 
does however effectively characterise the frequency content 
of the image / texture in a rotationally invariant fashion as 
is demonstrated in the above results. The classification per- 
formance in the conducted tests of a feature vector formed 
from rotational harmonics extracted from a PFT decompo- 
sition was over 5% better than an alternative rotationally in- 
variant method based 011 circularly symmetric Gabor filters. 
Using the PIT within this type of method may be extended 
into an analogous transform of the Fourier-Mellin transform 
where by the axes of thle PFT are not just polar but log po- 
lar. Theoretically this s’hould produce scale and rotationally 
invariant texture based features. This should be a valuable 
extension to this work. 

Experience has shown that classification results can be 
extremely dependant on the choice of test conditions and 
image set. It is therefcre difficult to claim a definitive im- 
provement on previous rotational invariant characterisation 
methods. However the PFT method provides a flexible ap- 
proach for generating aniostropic rotationally invariant fea- 
tures that could be potentially integrated with scale invariant 
features. 
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