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ABSTRACT 

This paper considers the design of low complexity FIR 
filters. Complexity is reduced by constraining the filters to 
have integer coefficients, which can be efficiently imple- 
mented using primitive operator directed graphs (PODG). 
Genetic Algorithms (GAS) are used in conjunction with 
a heuristic graph design algorithm, to provide a solution 
set which represents different compromises between perfor- 
mance, complexity and filter order. 

Example results are presented for both one and two di- 
mensional filters, and are shown to provide both superior 
performance and complexity, compared to previous meth- 
ods. The main benefits result from the use of a joint opti- 
mization, rather than a separable 2-stage approach. The use 
of a PODG representation is shown to provide significant 
improvements over a canonic signed digit (CSD) or signed 
power-of-two (SPT) representation. 

1. INTRODUCTION 

Finite impulse response (FIR) digital filters have many ap- 
plications within a wide range of digital signal processing 
algorithms. Some of these applications (e.g. video pro- 
cessing) require the filter to operate at very high data rates, 
which gives rise to the need for dedicated high speed appli- 
cation specific integrated circuits (ASICs). 

Many filter design techniques (e.g. Parks and McClel- 
lan) yield filters with floating point coefficients, which in 
turn implies the need for high precision multipliers, high 
hardware complexity and high manufacturing cost. In order 
to reduce cost, it is desirable to design filters which have 
similar performance for a significant reduction in complex- 
ity. One method for achieving this is to round the floating 
point coefficients to finite precision integers. 

The integer coefficients can then be represented as the 
sum of a few signed power-of-two (SPT) terms. Thus float- 
ing point multipliers are replaced by a few integer adders 
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and power-of-two shifting operations. The minimum num- 
ber of SPT terms required for any given coefficient can be 
easily determined using a canonic signed digit (CSD) algo- 
rithm [ 11. The filter design problem can now be stated as 
that of finding an optimum set of coefficients and a corre- 
sponding SPT representation which optimize both perfor- 
mance and complexity. 

Further improvements can be made by implementing the 
set of integer coefficient multipliers, using a primitive oper- 
ator directed graph (PODG) representation [2]. The graph 
consists of, a set of two-input nodes representing adders, 
and edges with signed power-of-two (SPT) scaling values. 
For example, the set coefficients 9 and 13 can be represented 
as 92 = 8z+a:, 13a: = (9a:) +40. The task of finding a min- 
imum adder graph for a given set of coefficients is a difficult 
problem. Various heuristic approaches have been proposed 
[2, 31, which give optimal graphs for most practical exam- 
ples.' 

The above implementation methods lead to the follow- 
ing design strategy. Firstly an integer coefficient filter is 
designed, either by rounding a floating point design andor 
using a optimization technique such as linear programming. 
Secondly the filter can be implemented using either a CSD 
or PODG representation. This method yields designs which 
favor increased performance rather than decreased com- 
plexity. For the results shown in figures 1, 4 and 5,  this 
method would yield filters which lie to the right hand end of 
the various curves. 

A second design strategy, is to first constrain the im- 
plementation complexity, and then optimize the various pa- 
rameters to achieve optimal performance. For example var- 
ious authors [4, 5 ,  6, 7, 8, 9, 101 have designed filters by 
constraining them to consists of a finite number of coeffi- 
cients, each consisting of a finite number of SPT terms. In 
[ l l ,  121, the conditions were relaxed by constraining only 
the total number of SPT terms and allowing their distribu- 

'For the results presented in figure 1, at least 80% of the filters have 
a graph which is known to be optimal in the minimum adder sense. The 
remaining 20% lie towards the less important right hand side of the figure, 
and are known to be very close to optimal (within 1 or 2 adders). 
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Figure 1 : Tradeoffs between complexity, order and attenua- 
tion for an example low pass specification. 

tion to vary. This strategy is more difficult for filters using 
a PODG representation [ 131. The difficulties are due to the 
discrete, non-uniform, and non-linear nature of the search 
space. 

2. PROPOSED METHOD 

In this paper we propose a joint optimization of both com- 
plexity and performance. To achieve this we represent each 
candidate filter in the search space as a set of integer coeffi- 
cients. Thus for each candidate solution we need to eval- 
uate both the filter performance, and the implementation 
complexity. Since the graph design method of [3], is rel- 
atively quick compared to evaluating the filter performance 
(in the frequency domain), the approach doesn't require ex- 
cessive computational effort compared to previous methods 
(e.g. [ 11, 121). 

In this paper we use a Genetic Algorithm (GA) to per- 
form the optimization, since GAS have been proved suc- 
cessful, on a wide variety of discrete, non-uniform, multi- 
objective optimization problems. GAS use a population of 
candidate solutions to evolve towards an effective solution. 
Each candidate solution (individual) is described by a chro- 
mosome. The fitness of each individual is measured and 
used to control which individuals are selected to form the 
next generation. Between generations, various genetic op- 
erators (including crossover and mutation) are applied in 
order to search new regions of the solution space. GAS 
have been successfully used for low complexity filter de- 
sign problems including, cascaded FIR filters [14], IIR fil- 
ters [15] andSPTdesigns [11, 121. 

Figure 2: Graph structure for implementation of 24th order 
filter with 26 adders. 

In this paper, the GA is used to provide a non domi- 
nated set (NDS) of solutions which represent various com- 
promises between complexity and performance and filter or- 
der. Due to the nature of the search space, it is natural to use 
a GA with integer valued genes (one per coefficient) rather 
than the more usual binary coding. This approach maintains 
a close relationship between the chromosome structure, and 
the problem space. This in turn allows us to custom design 
the genetic operators to suit the particular problem. The op- 
erators used consist o f  

0 Uniform crossover. 

e Mutation of coefficients by randomly adding a signed 
power-of-two (SPT) value. 

e Mutation of an entire chromosome by scaling and 
rounding all the coefficients. 

The last form of mutation is particularly useful, since it 
allows the GA to easily search filters with similar perfor- 
mance, but significantly different coefficients. 

3. RESULTS 

To demonstrate the effectiveness of the proposed tech- 
niques, we have used them to design odd length linear phase 
filters, using a minimax criterion. 

The first example is a 1D low-pass filter with normalized 
pass and stop bands of 0 - 0.15 and 0.25 - 0.5 respectively. 
This example was chosen to allow comparison with previ- 
ous work [4,5,6]. 
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Figure 3: Comparison between CSD and Directed Graph 
Design Methods. 

Figure 1 shows the non dominated set (NDS) obtained 
for this design. This figure consists of a separate curve 
for each different filter order. Realizable filters lie on and 
abovehight of the curves, while an optimal compromise 
would be towards the lower left of the plot. It can be seen, 
that the optimal integer filters (no constraint on complexity) 
lie at the bottom right hand end of these curves, and require 
much higher complexity than other slightly lower perfor- 
mance filters. Thus, for a given filter order, the joint opti- 
mization allows filters with significantly lower complexity 
and only slightly lower performance, than an optimal inte- 
ger designs. Secondly, we can see that significant perfor- 
mance improvements (at a given complexity) can often be 
made by using a higher order filter. Thirdly we note that 
some filter orders (e.g. 10 and 20 for this example) are of 
little use. The reason for this, is that the corresponding coef- 
ficients are usually very small in the optimum minimax de- 
signs, and thus have little effect. These coefficients can be 
usefully approximated to zero. Finally, we note that there is 
an approximately linear trade-off between complexity and 
attenuation (measured in dBs). The gradient of this trade- 
off varies according to the design specifications. 

For comparison, we shall consider the 24th order exam- 
ple of [5], using 35 adders, and an attenuation of -43.8 dB. 
From figure 1, it can be seen that a 24th order filter with 
slightly improved attenuation (-43.92dB) can be achieved 
with only 26 adders. Figure 2 shows the graph based struc- 
ture used to implement this filter. The graph consists of 6 
adders to generate the values of 5, 7, 71, 251, 43 and 377. 
These values are then scaled by signed powers-of-two and 
summed in the shift register. Note that since 4 of the coe€- 
ficients are zero, only 20 instead of 24 adders are used in 
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Figure 4: Tradeoffs between complexity, order and attenua- 
tion for an example band pass filter specification. 

the shift register. The rectangular boxes represent possible 
locations for pipelining registers. 

Figure 1 also shows that another 24th order filter with 
34 adders and an attenuation of -45.45 dB can be designed. 
Note that this is very close to the optimal (24th order) float- 
ing point design (obtained using the Parks and McClellan 
algorithm) which has an attenuation of -46 dB. If we relax 
the constraint on the filter order, we can design a 28th order 
filter with 35 adders and an attenuation of -52.26 dB. Thus, 
for the same complexity we can achieve an improvement of 
8.4 dB over the CSD design of [ 5 ] .  

Note that the use of the GA does not restrict our con- 
sideration to designs using directed graphs. By replacing 
the graph design algorithm with a CSD algorithm, and re- 
peating the experimentation, we can gain a similar NDS for 
designs using CSD. Figure 3 shows a comparison of the two 
methods, from which it can be seen that for more complex 
filters, the directed graph method yields significantly better 
results. 

To demonstrate the flexibility of this approach, a band- 
pass filter, with transition bands 0.15-0.25 and 0.35-0.45, 
has been designed. Figure 4 shows the resulting NDS. A 
28th order filter with an attenuation of -50.96 dB can be 
designed with 31 adders. To design a comparable (com- 
plexity) filter with 2 SPT terms per coefficient (as in [6]) we 
must consider a maximum of 20th order2, which gives an 
attenuation of about -36 dB (from [6]). Note that even an 
optimal floating point 20th order filter only achieves -39dB. 

The method can also be used to design two-dimensional 
filters. Figure 5 shows results for the design of 2D linear- 

'A 20th order linear phase filter requires up to 20 adders in the shift 
register and 1 I coefficients with up to one adder each giving a maximum 
of 31 adders. 
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Figure 5: Example design for 2-D circularly symmetric low- 
pass filter. 

phase circular symmetric low pass filters with an annular 
transition band between 0.15 and 0.35. These results can 
be compared with those of [7, 8, 9, 10, 11, 121, and demon- 
strate filters with both superior complexity and performance 
for sizes of 5x5, 7x7 and 9x9. For example, in [11, 121, 
a 53 adder 7x7 filter with a maximum ripple of -28.8dB, 
was presented. Figure 5 shows that a slightly better perfor- 
mance (-29.0dB) can be achieved with only 48 adders. The 
improvement obtained by using larger filters becomes less 
significant in two dimensions, since an increase in size im- 
plies a much larger increase in complexity, due to the larger 
shift register structure. 

4. CONCLUSIONS 

This paper has examined the design of low complexity FIR 
filters using a primitive operator directed graph (PODG) 
representation. Genetic algorithms have been used to per- 
form a joint optimization of both filter performance and 
complexity. This method provides a range of filters cover- 
ing the various trade-offs between performance, complexity 
and filter order. 

Example minimax designs have been presented for both 
one and two dimensional linear phase filters, and shown to 
provide superior results to previous methods. The improve- 
ments are due to both the use of a PODG representation, 
and the joint optimization strategy. 
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