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Abstract 
This paper presents a fast  matching pursuits algo- 

rithm. In addition to  a fast  implementation, the al- 
gorithm also allows the ef ic ient  use of non-separable 
dictionary basis functions.  The use of non-separable 
components allows basis functions which provide a bet- 
ter  match t o  diagonally orientated image features. In 
order to  demonstrate the proposed method, a simple 
dictionary is  developed and used. Even without any 
sophisticated entropy coding, the proposed s:ystem gives 
performance exceeding that of H.263. 

1 Introduction 

Matching pursuits was originally proposied by Mal- 
lat and Zhang [l], and later used for coding motion 
compensated video signals [2, 31. Matching pursuits 
provides an effective and flexible method for low-bit 
rate coding. 

The concept of matching pursuits lies in describing 
a signal X ( X )  as a linear combination of a number of 
shifted and scaled basis functions (or atoms) g k ( x )  
from a pre-defined dictionary 2). 

M 

q x )  = aigk,  (x + di) (1) 
i=l 

Thus a coded signal ?(x)  can be represented by a set 
of M code-words ci = {a, ai, d ; }  comprising a dictio- 
nary index k; ,  magnitude a; and shift d;. The decoder 
can reconstruct the coded signal 2(x) quickly and sim- 
ply using the above equation. 

However the task of encoding, is considerably more 
difficult, since the encoder needs to determine a good 
set of code-words to efficiently represent the signal. 
For any given dictionary, an optimal solutijon to this 
problem is extremely difficult. Instead, an iterative 

procedure is used, which involves repeatedly finding 
the best code-word, providing the best match (maxi- 
mum correlation) to the residual error e ( x )  = X ( X )  - 
2(x). Assuming that the dictionary functions are nor- 
malized, this can be represented as: 

maxk,d l F e ( X ) g k ( x + d ) l  (2) 

The encoding algorithm is summarized in figure 1, 
and is seen to consist of an iterated loop containing 
a search stage, and an update stage. The number of 
code-words used is determined according to a termina- 
tion criterion. This can be selected either to achieve a 
fixed target bit rate, or to maintain a desired quality. 

Matching pursuits is particularly useful for data 
consisting of a sparse set of important features, such 
as motion compensated residual error signals. The ad- 
vantages of the technique lies in the use of an oversam- 
pled set of basis functions which allows a description 
with many fewer code-words. The main disadvantage 
of matching pursuits is the computational complex- 
ity required at the encoder in order to repeatedly find 
the best basis function. The complexity of the search 
process is approximately 1731 multiplications and 
additions per atom, where ID[, IS1 and ii are the size 
of the dictionary, the size of the search region and 
average number of non-zero points in the dictionary 
basis functions. For example the dictionary proposed 
in [2] contains 400 functions with an average of 210.25 
non-zero points, giving a total complexity (for a non- 
separable implementation) of 84100(SJ multiplies and 
additions per atom. On top of this there is also the 
complexity of the update stage which is approximately 
f i  additions. Clearly the complexity of the search pro- 
cess significantly outweighs the complexity of the up- 
date stage. 

Search complexity can be reduced in several ways. 
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Calculate initial prediction l i (x) .  
Calculate initial residual error e(x)  = X ( X )  - ii(x). 
FOR each code-word i, 

Choose local search area S .  

Update error e(x)  = e(x)  - agk(x + d). 
Find maxkcD,desI E, e(x)gk(x + d)l. 

END 
Figure 1: Truditionul Matching Pursuits Algorithm. 

Firstly the size of dictionary (ID\) can be limited. 
However this can significantly reduce the performance] 
since the encoder may need to use more atoms to code 
the same feature. Secondly the encoder can use a 
dictionary with smaller basis functions (reducing f i ) .  
However, this limits the ability of the encoder to cope 
with large features. Thirdly the search area (SI can 
be reduced. This can be achieved by first finding the 
local maximum (or maxima) of some activity mea- 
sure (such as local mean squared error) and then lim- 
iting the search to that vicinity. Finally, for multi- 
dimensional signals, the complexity can be further re- 
duced by using separable basis functions [2]. Using 
this approach the complexity is reduced to approxi- 
mately ([Dl + m ) I S l &  adders and multipliers per 
atom (see [2] for a more complete analysis which yields 
a slightly larger figure). For example the dictionary 
proposed in [2] this comes to more than 60901SI mul- 
tiplies and additions per atom. However, using only 
separable basis functions, limits the encoders ability 
to cope with diagonally orientated features. 

2 Fast Matching Pursuits Algorithm 

In this paper we shall present an alternative ap- 
proach to constructing the dictionary, and perform- 
ing the search, which both significantly simplifies the 
search process, and allows the use of non-separable 
basis functions. The approach is motivated by the 
observation that the correlation process of equation 
2 is essentially a linear filtering operation. The aim 
is to remove this complex filtering operation from the 
matching pursuits loop, so that it only needs to be per- 
formed once, to initialize the system. To achieve this, 
a bank of N normalized filters f j ( x )  are used to pro- 
duce N filtered error signals ej(x)  = E, fj(x-p)e(p). 
The algorithm updates these error signals after each 
atom, thereby avoiding having to repeat the filtering. 

Choosing an N element dictionary 27 comprising 
the N filter functions, allows the search process to 
be written as maxk,d(ek(d)l (without the correlation). 
The update stage is then modified to update each of 

Calculate initial prediction 2(x). 
Calculate initial residual error e(x) = Z(X) - li(x). 
Calculate N filtered error signals: 

FOR each code-word i, 
e j  (4 = c, f j ( X  - P ) e ( P )  

Choose local search area S. 

Update the N error signals: 
Find mskCD,dESI yk,nfjk,,(d + dk,n)l* 

e&) = ~ ( x )  - a: C:I:k ~ k , ~ c i , j ~ , ,  ( x  + d + dk,d. 
END 

Figure 2: Fast Matching Pursuits Algorithm. 

the N filtered error signals. Since the basis functions 
are linear, this can be re-written as the addition of a 
pre-defined correlation function to each signal: 

e j w  = f j ( X  - P) (4P) - W k ( P  + 4) 
P 

= ej(x)  - acj ,k (x  + d) (3) 

where c j , k  = Cpf j (x  - p)fk(p)  is the pre-defined 
correlation function. 

Using this approach, the search complexity is sig- 
nificantly reduced (by eliminating the correlations), 
at the expense of a complexity increase for the update 
stage. The proposed approach also requires an ex- 
tra pre-filtering stage to generate the N filtered error 
signals ej ( x ) .  However, for effective compression, the 
dictionary size 1271 = N needs to be relatively large, 
which implies a large memory requirement to store N 
filtered error signals, and the N ( N  -t 1)/2 correlation 
functions. Both the initial filtering, and the update 
stage also becomes increasingly complex as the num- 
ber of filters is increased. 

To overcome these problems, we propose a compro- 
mise, using a small set of N filters, and a much larger 
dictionary. Each dictionary function is composed from 
the weighted sum of n k  filtered samples: 

n=nk 

g k w  = Yk,nfjL.+ ( x  + dk,n) (4) 
n=l 

where n k  is a small number (e.g. n k  5 4 for the results 
presented). 

The search stage now requires a sum of n k  compo- 
nents for each candidate: 

Using this approach, the search complexity is reduced 
to approximately (271 ISlfik multiplications and addi- 
tions (where f i k  is the mean number of elements n k  
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per dictionary function). Since f i k  << f i ,  the search 
complexity is significantly reduced. This is achieved 
at expense of a higher complexity for the update pro- 
cess, which requires Nnk correlation functions to be 
subtracted. Note, that the update complexity is not 
a function of the search area or the dictionary size, 
but will vary according to which atom is chosen. The 
algorithm also requires the extra initialization stage 
comprising N filtering operations. For a large dic- 
tionary and search region JDIJS1, the reduction in 
search complexity significantly out-weighs the increase 
in both initialization and update complexity. Figure 
2 summarizes the proposed fast matching pursuits al- 
gorithm. 

The searching process can be further ,simplified if 
the values 7k,n are chosen to provide simple multipli- 
cations. For example in the system presented below 
~ k , ~  = 1 for all elements, and thus the search pro- 
cess requires no multiplications. The complexity can 
be reduced even further by calculating each dictio- 
nary function relative to a previous dictilonary func- 
tion. E.g. each function is determined by a previous 
function with one extra value: 

gk (x) = gk’ (x) -k %fj, (x + dk) (6) 

However, these approaches upset the relative normal- 
ization of the dictionary code-words. Thus, the maxi- 
mization should find the best position for each dictio- 
nary code-word, and then normalize these maxima to 
find the overall maximum. Thus the search complex- 
ity becomes IDllSl additions and comparisons (to find 
the 1271 maxima), and a further /Dl multiplilcations and 
comparisons to find the overall maximum. 

3 Example Video Coding System 

The system described above has been used for 
coding motion compensated frame difference images 
within a video codec. In order to provide a reasonable 
set of dictionary elements which represent a variety 
of features at differing scales, we have used a set of 
8 filters with sizes (1x1, 3x3, 5x5, 7x7, 11x11, 15x15, 
23x23,31~31). To keep the filtering cost down, the fil- 
ters are implemented as separable 1D filters. In order 
to avoid both blocking and ringing artifacts the filters 
chosen had a raised cosine shape. 

A dictionary consisting of 128 functions has been 
used (as shown in figure 3). The dictionary func- 
tions have been chosen to approximate line segments 
with various widths. Each function contaiins at most 
4 equal valued elements ( n k  5 4), and differs by only 
1 or 2 extra elements from other dictionary functions. 

Thus, all of the above complexity saving methods can 
be employed. Note that this dictionary has been de- 
signed heuristically, with no attempt made to optimize 
it. We anticipate, that significant improvements may 
be achievable by optimizing and/or enlarging the dic- 
tionary. The search complexity for the proposed ap- 
proach is found to be less than 2 x 1281S( adders, and 
a further 128 multipliers per atom. This compares fa- 
vorably with the value of over 60901SI multiplies and 
additions per atom for the separable dictionary used 
in [2]. 

For the results presented in this paper we have used 
a simple coding system comprising fixed length code- 
words. This choice was motivated partly by the de- 
sire to develop a system which exhibits good error re- 
silience, although this property is not considered here. 
The code comprises one bit for each 16x16 block de- 
termining if the block has a non-zero motion vector. If 
this bit is set, then the motion vector is coded as two 
5 bit code-words. The matching pursuit code-words 
are considered to comprise 7 bits to specify the dictio- 
nary index, and 4 bits to specify the quantized gain 
ai. Assuming that these code-words are randomly dis- 
tributed over the image, the position information di 
can be efficiently coded using the error resilient posi- 
tional code (ERPC) of [4]. The ERPC can be consid- 
ered as using a comma code for each block. The total 
number of bits for a frame can now be determined as: 

Nblk f 10NVeC (motion vectors) 
Nblk f 2oNIIlp (residual error) 

where Nblk is the number of 16 x 16 blocks, Nvec 
is the number of non-zero motion vectors, and Nmp 
is the number of matching pursuit code-words. The 
value of 20 is a result of 7 bits for dictionary index, 4 
bits for the magnitude, 8 bits specifying the position 
within a 16 x 16 block, and a comma bit specifying 
whether the block has another code-word. 

The proposed system has been compared with 
both H.263, and alternative matching pursuits sys- 
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tem based on the use of the separable dictionary of 
[a]. It should be noted that both these systems use 
more sophisticated entropy coding for both the motion 
vectors and the scale and index part of the matching 
pursuit code-words. Since the main interest here is 
the inter-frame coding, all three systems use the same 
intra coded first frame (obtained using H.263). 

Figure 4 shows results obtained for coding a sub- 
QCIF sequence 'Silent Voice' at 8.33 frames/s and 10 
kbit/s. The average PSNR values for the inter-coded 
frames were found to be: 29.89 dB for the fast non- 
separable matching pursuits system, 29.65 dB for the 
separable matching pursuits system, and 29.58 dB for 
H.263. Figure 5 shows results obtained for coding a 
QCIF sequence 'Silent Voice' at 12.5 frames/s and 20 
kbit/s. The average PSNR values for the inter-coded 
frames were found to be: 30.51 dB for the fast non- 
separable matching pursuits system, 30.35 dB for the 
separable matching pursuits system, and 30.29 dB for 
H.263. Figure 6 shows the final frame (298) of the 
QCIF sequence coded using each system. 

The results presented demonstrate that the fast 
non-separable matching pursuits system exhibits a sig- 
nificant performance improvement compared to both 
H.263 and the separable matching pursuits system. 
Visually the matching pursuits systems give much 
less apparent blocking artifacts (and better subjective 
quality) than the DCT based H.263 codec. Note that 
there are still some blocking artifacts which are a re- 
sult of the block based motion compensation method. 
These could be reduced by using an overlapped mo- 
tion compensation method. The matching pursuits 
systems both exhibit significant variations in both ob- 
jective and subjective quality. This is primarily due to 

MP wnh Separable dclionav. '1 
! I  
!\i MP With non-separabie dictionary. 

.- 
I 

50 100 150 200 250 300 
28.5' 

Frame number 

Figure 5: Performance comparison f o r  QCIF 'Silent 
Voice' coded at  12.5 frames/s and 20 kbit/s. 

their fixed rate nature, while H.263 is inherently a vari- 
able rate system. If a constant quality were desired, 
then it is feasible to change the matching pursuits ter- 
mination criterion to be quality dependent rather than 
bit-rate dependent. However, for a fixed rate, low de- 
lay system, matching pursuits offers significantly sim- 
pler rate control. 

4 Conclusions 

This paper has presented a fast matching pursuits 
algorithm. The use of this algorithm has allowed the 
use of non-separable diagonally orientated dictionary 
functions. The algorithm also allows a greater search 
area for a given complexity. 

An example system has been presented with re- 
sults exceeding those of both H.263, and a separable 
matching pursuits system. The results could be fur- 
ther improved by employing entropy coding for both 
the motion vectors and the shape and value parts of 
the matching pursuit code-words. 

Since the dictionary used has been chosen heuristi- 
cally without optimization, it is anticipated that, re- 
sults may also be improved by optimizing and/or en- 
larging the dictionary. 

The proposed approach also leads to a convenient 
compact method for defining dictionary basis func- 
tions (since each function consists of a few n k  ele- 
ments). This in turn could be used within a system 
in-which the dictionary is chosen by the encoder and 
transmitted prior to the signal. 
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Figure 6: Frame 298 of QCIF 'Silent Voice' coded a t  12.5 frames/s and 20 kbit/s. a) Original. b) H.263 30.30 
dB, c) Separable matching pursuits 31.16 d13 d)  Non-separable matching pursuits 31.17 dB. 
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