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Abstract 

In this paper, a non-uniform number representation and 
filter transformation techniques are used to increase the 
throughput rate of a Decision Feedback Equaliser (DFE). 
The DFE input data is non-uniformly quantised and 
represented by a signed power-of-two (SPT) number. 
Using this number representation, multipliers can be 
replaced with barrel shifters and adders. The mean 
quantisation noise power using SPT input data is 
examined. The Delayed Least Mean Square Algorithm 
(DLMS) is used for training the DFE. The delay in the 
filter coefficient update, together with transformation 
techniques, results in a DFE structure, realisable as the 
cascade of a series of modular sections. 

I. INTRODUCTION 

Numerous equaliser algorithms have been reported in the 
literature such as decision feedback equalisation and 
maximum likelihood sequence estimation [ 11. Decision 
feedback equalisation is often advantageous in channels 
with long impulse responses, where the complexity of 
maximum likelihood sequence estimation becomes 
prohibitive. Increasing data rates will inevitably lead to 
increased intersymbol interference in future TDMA 
systems. This is particularly true of high data wireless 
LANs such as HIPERLAN [2]. The HIPERLAN 
standard supports data rates of up to 2:3.5Mb/s which, 
even in indoor environments, can lead to very severe 
intersymbol interference. This presents a problem using a 
conventional DFE equaliser since the time available for 
performing the equaliser update is very small. Motivated 
by this, modified adaptive decision feedback equalisers 
(DFEs) are discussed in this paper, which provide 
significant increases in throughput rate compared to 
conventional realisations. 

A DFE can be realised, using either transversal filters, 
lattice filters or systolic arrays [l]. I[n [ l ]  adaptive 
equalisers were considered for application to TDMA 
based systems, which in some cases, impose severe 
tracking requirements on the equaliser. However, in the 
case of HIPERLAN, and generally in indoor 
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environments, reasonably stationary channel conditions 
can be assumed. The equaliser is trained using all, or 
part of, a 450-bit header packet and may then be fixed 
while the following data blocks (up to 49) are processed. , 
The comparatively long training sequence allows low 
complexity (slow converging) algorithms to be used for 
equaliser training. For this reason the LMS and DLMS 
algorithms have been considered here. 

' 

In this paper, two methods for improving the throughput 
rate of a transversal filter based DFE are described. The 
two methods are discussed in section 11. In section 111, 
the convergence and output mean square error 
characteristics of the DFEs are examined. 

11. ADAPTIVE TRANSVERSAL EQUALISER'S 

Two methods for increasing the throughput rate of a 
transversal filter based DFE are described in this section. 
The first method uses non-uniform quantisation (a signed- 
power-of-two (SPT) approximation) of the equaliser 
input data [3] as shown in figure 1. The SPT 
approximation is carried out following frame 
synchronisation. 

Figure 1 : DFE Using SPT Input Data 

The SPT quantisation is applied to the input data, as 
opposed to the filter coefficients, since the performance of 
the equaliser is largely unaffected by this approximation 
(see section 111). However, the complexity of the 
equaliser can be significantly reduced by exploiting the 
SPT representation of the input data. In addition, the 
non-uniform quantisation of the input data is required 
only once per input sample. In contrast, for SPT filter 
coefficients, it is necessary to non-uniformly quantise the 
coefficients following each update. This introduces 
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additional latency and complexity within the coefficient 
update loop. 

A transversal filter is a natural choice for the equaliser 
architecture, since it allows significant exploitation of the 
SPT representation of the input data. Using the LMS 
algorithm for equaliser training allows further 
exploitation of the SPT input data to reduce the 
complexity of the coefficient update recursion. 
Unfortunately however, adaptive transversal filters suffer 
from an inherent sampling rate limitation for a given 
speed of hardware. This is due to the feedback of the 
residual error necessary to adapt the filter coefficients, 
i.e. the whole residual error calculation must be 
completed before the coefficient update can be performed. 
However, this throughput bottleneck can be overcome 
using the DLMS algorithm 

The DLMS algorithm [4] (an approximation of the LMS 
algorithm) is used to realise a modular, high throughput 
filter structure with clock rate limited only by the delay in 
a single processing module. The modified structure also 
operates directly on the input data stream, again 
facilitating savings from using the SPT number 
representation. It is shown in section I11 that the 
degradation in performance when using the DLMS 
algorithm is not significant. It is however noted that the 
equaliser's stability becomes increasingly sensitive to the 
choice of step size as the delay in the coefficient 
adaptation is increased. 

A. Non- Uniform Number Representation 

A representation of a discrete-time: B-bit two's 
complement number x( m ) ,  in the signed power-of-two 
space [5] is given by 

N 

x N ( m )  = C s ( r ) 2 " 4 ,  s( r )  = - l ,O,  1 ( 1 )  
r=l 

where g(r) is the power of the rth power-of-two (POT) 
term and N is the number of POT terms used in the 
approximation. If x( m )  is an integer, then for N = r B / 2 1 ,  

all integers in the range -2B-1. . .2B-'  - I  can be exactly 
represented. However, for N < r ~ / 2 1 ,  not all integer 
values that x ( m )  may take, can be represented by x N ( m ) .  
This is illustrated in figure 2, where a fractional value in 
the range [0, 11 represented by a two's complement 
number, is approximated by the nearest 2-SPT term. 

Hereafter N-SPT, will be used to denote an 
approximation of a two's complement integer using N 
POT terms, each taking either positive or negative sign. 

10-bits 
x x xxx 

%bits 
x x x  

6-bits 
x - x m x  x x m  

0 0.2 0.4 0.6 0.8 1 
Value Represented 

Figure 2: Values Represented using a 2-SPT 
Approximation 

The area and or latency of a multiplier can be 
significantly reduced by using restricted-number 
representations for either the multiplier or multiplicand, 
i.e. using coefficients with a Himitation on the number of 
non-zero digits. The multiplier can then be replaced with 
shift and addition elements. Using a 2-SPT 
representation of the input data, as described above, 
allows the multipliers in botlh the transversal filter and 
coefficient update modules (for the LMS algorithm) to be 
replaced with a pair of barrel shifters and a single adder. 

By applying the N-SPT approximation to the output of a 
uniform ADC, it is possible to view the composition of 
the two processes as a non-uniform ADC, an N-SPT 
ADC. The: mean quantisation noise power of such an 
ADC is characterised in figure 3 for variable N and B [6]. 

IE-7 
I 2 3 4 S 6 

No. POT Terms in SPT Number 

Figure 3: Mean Quantisation Noise Power for 
an N-SFT ADC 
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It was noted above, that the representation of the 
feedback data samples was arbitrary. It is obviously 
advantageous (to minimise complexity) to represent them 
as POT terms. By adjusting the magnitude of the training 
data samples, the magnitude of the filter coefficients can 
generally be kept bounded by one. 

B. Pipelined DLMS DFE 

Previously, the DLMS algorithm has been employed to 
allow pipelining of the LMS algorithm for a linear 
structure [4]. This method is extended here to allow a 
modular high throughput DFE structure to be developed. 
The DLMS algorithm is given by equations (2) and (3) 
[4,71 

The elements of Y ( n )  are given by 

where y ,  ( n  - i) is the contribution to the current equaliser 
output from the feedback filter. Rewriting ( 5 )  gives 

1-1 

k=O I 

y, ( n  - i )  = c X f  ( n  - i - k)wS*(n - i - 1) + 

X f  ( n -  2i)w;* (n -  i-1) + y),(n- i) 

yl ( n  - i) = yl-l ( n  - i) + x j  ( n - 2i)w;* ( n  - i - 1) + y b  ( n  - i) 
(6) 

~ ( n )  = W( n - 1) + p e * ( n  - D ) X ( ~  - D )  (2) 

(3) e( n )  = d( n) -  wH(n - l ) x ( n )  

The W(t) and X ( t )  vectors are first partitioned into the 
feedforward and feedback sections respectively; (2) is 
then rewritten 

[ w,(n), W,,(n)] = [ W, (n - I ) .  W,,(n - I)] + pe*(n-  D)[ X, (n - D). X,,(n - D ) ]  

where 
(4) 

x , ( n ) = [ x , ( n )  x,(n-1) .. x f ( n - L + l ) ]  

and 

x, (E) = [ x, ( n )  x, ( n  - 1 )  . . . x, ( n  - L + l)] 

which is the vector of previously detected symbols i.e., 

X , ( n ) = [ d ( n - l )  d ( n - 2 )  ... d ( n - L ) ]  

The vectors of filter coefficients for the feedforward and 
feedback filters are defined as 

W f ( n ) = [ w ; ( n )  ... w f - ' ( n ) ]  and 

W/) (n)  =[wZ(.) ... w,"-'(n)] 

In a manner similar to [4], an output vector is defined as 

Initially we define y ,  ( n  - i) as 

L-1 

y,( n - i) = x, ( n  - i - k)W,k* ( n -  1 - k )  (7 a) 
k=O 

This can be interpreted as the transposed form of a 
transversal filter in figure 4. In obtaining (7a), the delays 
DL-, through Do are all fixed at z-' . The delay k, in the 
filter coefficient terms in (7a) is due to the delay in the 
output signal propagating along the filter structure. 

Transposed Transversal Filter 

' 0  I - - - -  . _ . _  I _ . _ . _ _  f . _ _ _ . . . . . . .  

_ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ . . . . _ . . . .  

Coefficient Update Processors 

Figure 4: An Adaptive Transposed Filter 

It is stressed that this is not a strict realisation of the 
DLMS algorithm. However, by inserting delays in the 
filter coefficient terms in (7a), a transposed filtei 
structure implementing the DLMS algorithm is obtainec 
i.e. the kth coefficient used in (7a) should be delayed b) 
an additional L- I-k sample periods, i.e. the delay element! 
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Dk are set to Dk = L - k .  In this case yh(n- i )  is now wl(n- ( L  - 1 .- i)) = w i ( n  - L+ i )  + pe*(n- 2 ~ +  1 + i)x,,(n - 2 ~ +  1) 

given by (9b) 

L-1 
yh(n - i) = c w,"*(n - k - 1 - ( L  - 1 - k))Xh ( n  - i - k )  

k=O 

L-1 
yh(n - i) = w;* ( n  - L ) X h  ( n  - i - k )  (7b) 

k=O 

The transformed data flow diagram for a (3,3) DFE using 
the DLMS algorithm is shown in figure 5 .  The structure 
consists of three identical processing modules (PMs). 
The latency in the output is 2L-1 sample periods. This is 
the time required for all the feedforward filter stages to 
fill and for the estimate of the desired response to 
propagate along the filter structure. 

dn-L+I) E 
Figure 5:  Transformed (3,3) DFE Structure 

It should be noted that the input to the feedforward filter 
enters from the left whilst the previous decision is input to 
all the feedback filter sections simultaneously. Note also 
that the index for the feedforward filter coefficients 
increases left to right, but for the feedback filter 
coefficients, it decreases left to right. 

The weight update for w ; . ( n - i )  requiired by ( 5 )  is 
obtained from (4) as 

wf. (n  - i) = wf ( n  - i- 1)  + pe*(n - L -  i ) x j  (n - L -  2i) (8) 

For the update of wL(n-1) there are two forms 
corresponding to equations (7a) and (7b). For (7a) the 
weight update is 

wL( n )  = wL(n - 1) + pe*(n - L)xh(n - -  L -i) (9a) 

For (7b) the weight update is given by 

In both (9a) and (9b) global communication is required; 
in (9a) the: same error term is fed back to all the 
coefficient update sections, whereas in (9b) the same data 
symbol is fed back. The forrn (9b) is attractive because 
the feedbaclk data is only a complex number of the form 
f l  f j .  In addition, because of the reversed order of the 
feedback fillter coefficients, the error term in (8) is the 
same as that required in (9b) and therefore this reduces 
the communication costs considerably. An individual 
processing section for the DLMS DFE structure is shown 
in figure 6 using the update (9b). 

L MS 

aj,(n-Z+I) 

Figure 6: Individual PM for the DLMS Algorithm 

The complexity of the proposed filtering structure differs 
from the LMS algorithm only in the additional pipelining 
latches. In addition, an N-SPT approximation for the 
input data can also be used to1 reduce the complexity, as 
described ablove for the LMS algorithm. In figure 6, the 
contributions to the estimate of the desired response, from 
the feedback and feedforward filter, are combined in each 
PM using adder A2. Instead the feedforward and 
feedback contributions can be propagated separately and 
summed in the last filter stage. Postponing the 
summation is of particular advantage if NM-SPT input 
data samples for the feedforwardfeedback filter stages 
are used, i.e. the summation of N+M 2C numbers with 
the data eslimate from the lower order stage can be 
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carried out once at the final PM. The data streams in the 
final PM can be combined using an adder tree to 
determine the estimate of the desired response. 

This structure also has the attractive feature that the use 
of different number representations for the feedforward 
and feedback input data streams, does not affect the 
regularity of the structure, i.e. the functionality of each 
processing module will be identical. For the conventional 
LMS algorithm, different feedforward and feedback filter 
structures would be required for the different number 
representations of the input data. This is particularly 
useful in an application such as HIPERLAN, where the 
use of a GMSK modulation scheme allows significant 
savings to be made in the feedback architecture [2]. 

111. CONVERGENCE & RESIDUAL MSE 

The effect of the non-uniform approximation of the input 
signal on the equaliser's performance is considered here. 
For comparison, a stationary channlel characteristic 
leading to an eigenvalue spread of 46 [7] is used to distort 
a QPSK signal. Additive noise is added (E,/N, = 20dB) 
and the signal is root raised cosine filtered. The 
convergence of a ( 3 , 3 )  DFE using the DLMS algorithm 
and 2-SPT input data (approximation obtained from a 
linearly quantised 8-bit input data stream) is compared 
with the LMS algorithm using the original 8-bit input 
data in figure 7. For clarity, only a small number of 
points have been plotted for the LMS algorithm. It can 
be seen that the effect of the algorithm approximation and 
non-uniform quantisation of the input data has had no 
significant effect on the convergence behaviour of the 
equaliser. The step size was chosen to be the same in 
both cases. 

0 
LMS with Uniformly Quantised Data 

-0.2 + 
-0.4 

Q -0.6 
2 
0' -0.8 

9 -1 
M 

-1.2 

-1.4 

IV. CONCLUSIONS 

This paper has discussed two methods to reduce the 
complexity and increase the throughput of adaptive 
transversal DFEs for applications such as HIPERLAN. 
In the first method, non-uniform quantisation of the 
feedforward input data stream was proposed. The input 1 
data was represented using a signed power-of-two 
number representation which allowed the multipliers to be 
simplified. In the second method, a new modular 
structure for implementing a pipelined DFE using the 
DLMS algorithm was described. The modified structure ' 
resulted in a throughput rate determined by a single 
multiplier, barrel shifter and adder. Using non-uniform 
quantisation of the input data in conjunction with this' 
structure allows the throughput rate to be improved still' 
further. 
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