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Abstract 
A random set semantics is presented as a knowledge 
representation framework for learning linguistic 
prototypes. Within this framework a number of algorithms 
for learning prototypes are presented, based on grouping 
certain sets of attributes and evaluating joint mass 
assignments on labels. Such prototypes are then combined 
with a semi-Naïve Bayes classifier in order to determine 
classification probabilities. The potential of such linguistic 
classifiers is then illustrated by their application to a 
number of toy and benchmark problems. 

Keywords: Random Sets, Mass Assignment, 
Label Prototypes, Semi-Naïve Bayes. 

1 Introduction 
The concept of  “computing with words” in 
fuzzy logic was introduced by Zadeh [15]. He 
stated that fuzzy logic offered an intuitive 
method for modelling natural language where 
the meaning of words such as “small, medium 
and large” could be represented by fuzzy sets. 
This is a particularly appealing concept when 
dealing with real word problems where there is 
often imprecision and ambiguity. Zadeh’s idea 
was centred on using linguistic variables to 
represent linguistic constraints. This however 
generates a numbers of problems relating to both 
the semantics and computational complexity 
(see [12] for a discussion of these issues) 

Here we present an extension to an alternative 
method proposed by Lawry [11]. The method 
uses random sets as a way of choosing 
appropriate labels for a given variable. Further 
more it builds on the ability of fuzzy sets to 
partition a domain into linguistic descriptions 
coupled with a new label semantics to give a 
feasible and consistent linguistic inference 
mechanism (see [8] and [10]). The method uses 
mass assignments on labels to provide a measure 
of the appropriateness of a given label for a 
particular value. Classification is performed 
using prototypes, consisting of a vector of mass 

assignments on labels, giving the 
appropriateness of words as labels for the 
feature values for a certain class. These are then 
used in conjunction with a Naïve or Semi-Naïve 
Bayes classifier (see [6] and [7]). As such the 
prototypes provide an aggregated linguistic 
description of the examples of that class in the 
database. 

This paper introduces techniques that can be 
applied to counter the “the curse of 
dimensionality”[4]. It also provides a method for 
solving non-decomposable problems such as 
XOR, by introducing Semi-Naïve Bayes to 
weaken the independence assumption of Naïve 
Bayes [7]. 

2 Label Semantics 
Consider an attribute describing a universe of 
discourse �, assumed in this context to be a 
closed interval of real numbers. A finite set of 
labels LA is defined over � to form a linguistic 
covering. For example, in the classification of 
diabetes the diastolic blood pressure may be 
recorded. From reading this data a doctor may 
conjecture, “The measured blood pressure is 
very high”. This would mean that an appropriate 
label for describing blood pressure would be 
very high � LA. More formally, for each label    
l � LA a fuzzy set �l is defined, representing it’s 
meaning. Any value x then generates a mass 
assignment (see Baldwin [1]) on labels as 
follows: 

Let be ordered such 
that then the mass assignment 
generated by x is: 
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It is assumed that the distribution is on a random 
set Ex describing the set of labels deemed as 
appropriate for x, as it varies across some 
population of voters and is denoted . (See 
[11] and [12]) 

x
mE

In practice, it is undesirable to have mass 
associated with the empty set; hence the further 
assumption is made that . 

Here this is accomplished using trapezoidal 
fuzzy sets with a 50% overlap, as in figure 1: 
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Figure 1: Trapezoidal Fuzzy Sets With 50% Overlap 

3 Label Prototypes for Modelling     
Classification Problems 

Consider a classification problem where a 
prototype is generated from a set of attributes 
X1,…,Xn, describing the classes C1,…,Ck,. In this 
case a finite set of labels LAj is defined over 
each of the variables Xj. The database is 
partitioned into subsets corresponding to each 
class as follows:  

Consider a training set of examples 
� �NiixixDB n ,...,1|)(),...,(1 ��  where each 

example i has associated class C(i). From this 
database a set of sub-databases can be obtained 
for each class, � �jnj CiCixixDB �� )(|)(),...,(1 . 

The attributes X1,…,Xn are now partitioned into 
subsets S1,…,Sw where w � n and for each Si a 
joint mass assignment mi,j is determined as 
follows: Suppose, w.l.o.g.  then 
the joint mass assignment is: 
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Section five describes how to automatically 
learn groupings of attributes for each class. 

4 Estimating Classification Probabilities 
From Prototypes   

We now give details of how to estimate class 
probabilities using label prototypes, which then 
can be incorporated into a Bayesian framework. 

In machine learning it is common to make the 
“Naïve Bayes assumption” (see [7]) that all 
variables are conditionally independent given a 
class. This assumption is weakened in our case 
as the prototype describing a class may contain 
joint mass assignments; hence the classifier 
described is based on Semi-Naïve Bayes [6]. 

Bayes theorem states that for a vector of 
attribute values nxx ,...,1 , the class probability 
can be expressed as follows: 
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This can be simplified to the following estimate, 
for the purpose of classification: 
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There now remains the problem of how to 
estimate the density function p(x1,….,xn|Cj). In 
the current context it is assumed that the 
prototype for each class can be used to estimate 
the density function, as follows: 

Consider the joint mass assignment generated 
for the attribute grouping Si given class Cj. Then 
if we assume that there is a uniform prior 

distribution on then the prior mass 

assignment on is given by: 
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Where u(x1,…,xv) is the uniform distribution on 
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r) the uniform distribution on �r. 

From this the density function for Si based on 
is given by: 
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Hence taking p(x1,…,xv |Cj) � p(x1,…,xv |mi,j) an 
estimate of the class probability is: 
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5 Grouping Methods 
We now consider methods for finding attribute 
groupings that increase discrimination in the 
model. For a given problem it is impractical to 
search the complete space of all attributes 
groupings and then partition to see if 
discrimination can be increased, as the search 
space would be exponential. For example, 20 
attributes would generate a search of order 20! 
comparisons for a search limited to attribute 
groupings of two variables. Instead a heuristic 
search strategy is adopted. It is proposed that the 
search be guided by a measure of importance for 
each Si, defined as follows: 

5.1 Definition (Importance Measure) 
Let the joint mass assignment for Si given Cj be 
denoted . For any input vector  the 
probability of class C

jim , iS

j can be estimated using 
Bayes theorem where: 
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Hence mi,�j denotes the mass assignment for Si 
given �Cj. The importance measured of group Si 
for class Cj is then defined by: 

�

�

�

�

�

DBk
ij

DBjk
ij

ij kSC

kSC
SIM

))(|Pr(

))(|Pr(
)(  

Careful limits must be set on the maximal size 
for groupings when running this algorithm, since 
as dimensionality increases the number of data 
points per focal element of the joint mass 
assignment decreases exponentially. The use of 
fuzzy sets in this context allows us to partially 
overcome this problem by trading off 
granularity against dimensionality and vice-
versa. Two search strategies have been 
developed based on this measure. 

5.2 Guided Breadth First Search 
Consider a breadth first search where the most 
important current grouping Si is combined with 
all the other current groupings to see if the 
combination significantly increases 
discrimination. Next the second most important 
unused grouping is tested with the remaining 
unused groupings and so on. At the next stage 
the new groupings produced are tested in a 

similar manner and this continues until a 
terminating condition is satisfied. This method 
provides a fairly extensive search of the space of 
the partitions, but does limit the structure of the 
groupings generated. 

5.3 Guided Depth First Search 
Alternatively, consider a depth first search 
where the most important grouping Si is tested 
with all other groupings to see if the 
combination increases discrimination. Next any 
new grouping produced is tested with the unused 
groupings to see if discrimination is further 
increased. This continues until some termination 
condition is satisfied. Next the process is 
repeated with the next most important unused 
grouping and so on, until all unused grouping 
have been tested. This allows for a richer 
structure of groupings but has the disadvantage 
that some important groupings may be missed. 

We now consider two ways of determining 
whether a pair of attribute groupings should be 
combined. The first is based on a direct measure 
of correlation and the second on a measure of 
the change in importance resulting from the 
grouping. Before we can define the above 
mentioned correlation measure we must first 
define what is meant by the focal sets for a mass 
assignment . 
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5.4 Definition (Focal Sets) 

Let the focal sets, F, of be given by: 
x
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5.5 Definition (Correlation Measure) 
Let F1 be the focal sets for S1 and F2 the focal 
sets for F2. Now let m1,2,j be the joint mass of    
S1 ��S2 given Cj. 
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Here a threshold must be used to determine 
whether attributes should be grouped. The 
nearer the correlation measure gets to 1 the 
higher the correlation between attribute groups. 



An alternative to measuring correlation is to use 
the importance measure, as a guide to whether 
attribute groups should be combined, by trying 
to maximise the importance of any new 
grouping formed. 

5.6 Definition (Improvement Measure) 
Suppose we have two subsets of attributes S1 and 
S2 then the improvement in importance obtained 
by combining them can be calculated as follows: 
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Like the correlation measure a threshold is 
required, and in this instance the closer the 
improvement measure is to 0 the more likely 
that the attribute groups will be combined. 

6 Performance On Model and 
Benchmark Problems 

In this section we present a number of examples 
showing how the methods described in section 5 
perform on model and real world problems. 

6.1 Example (Non-Decomposable Model 
Problem) 

In this example a figure of eight shape is 
generated according to the parametric equations 

 and  
where  as is illustrated in figure 2.  
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Figure 2: Figure Eight Classification Problem 

A point on the [-1.6,1.6]2 domain is classified as 
legal if it is contained within the figure and 
illegal if contained outside.  The database 
contained 961 training examples of the X and Y 
co-ordinates and their associated class. 

The prototypes obtained were generated from 
placing 5 labels over both attributes universes 
the meanings of which corresponded to 

uniformly distributed trapezoidal fuzzy sets. As 
there are only two attributes in this problem the 
choice of search method is arbitrary, as both will 
obtain the same results. For the correlation 
method a threshold of 0.005 was set, producing 
the following attribute groupings: Legal =       
{x, y}, Illegal = {x}{y}. For the improvement 
measure a threshold of 0.895 was set and the 
following groupings were generated: Legal =  
{x, y}, Illegal = {x, y} 

Caution must be taken here as the thresholds 
used are not optimised for the problem and 
could suggest why the correlation method 
chooses slightly different grouping to the 
improvement measure. We can, however 
intuitively see why these groupings were 
chosen. If this problem is thought of as an XOR 
problem then clearly only a grouping of {x, y} 
for the legal class is required for adequate 
classification. 

From the groupings obtained it is possible to 
plot the posterior distributions learned from the 
data. Figure 3 shows these for the improvement 
measure approach. These suggest an inverse 
relationship between the legal and illegal 
distributions as would be expected. 

 

Figure 3: The Posterior Distributions Learned 

The classifiers were then tested on a test set of 
2119 unseen examples using the distributions 
for both the grouping methods and the following 
classification results were obtained: 

Correlation Measure: 

 Predicted 
Accuracy 

Test 94.61248 
Training 94.58897  

Improvement Measure: 

 Predicted 
Accuracy 

Test 95.93573 
Training 96.46202  

Here slightly better results are obtained by using 
the improvement measure against the correlation 



method. It should be noted that if the Naïve 
Bayes independence assumption is used to 
classify then substantially poorer classification 
accuracy is obtained: 

 Predicted Accuracy 
Test 85.0662 

Training 84.5994 

6.2 Example (Sonar Data) 
This problem is taken from the UCI online 
repository [14] and contains 208 examples 
obtained by bouncing sonar signals off metal 
cylinders and rocks. Each of the patters contains 
a set of 60 numbers in the range [0,1], which 
represent the energy within a particular 
frequency ban, over a certain time period. The 
integration aperture for high frequency occurs 
later in time, since these frequencies are 
transmitted later during the cipher. 

It should be noted that the data used is for the  
“aspect-angle dependent experiment”. Here the 
data set is split into training and test sets of 104 
examples, where this split takes into account the 
aspect angle (see [9]). The data set was also 
normalised so that all attributes shared the same 
mean and standard deviation. Each attribute in 
the database had 2 labels placed over their 
domains in a non-uniform manner. This is 
performed by using a percentile method to 
obtain a crisp partition with an equal number of 
data point falling within each crisp set and then 
projecting trapezoidal fuzzy sets over this 
partition. 

The depth and bread first search methods were 
applied with the two combination techniques 
and the following result were obtained: 

Breath First Search Results: 
Table 1: Correlation Measure Results 

 Predicted Accuracy 
Test 76.92308 

Training 98.07692 
Threshold = 0.005, Max Grouping = 4 

Table 2: Improvement Measure Results 

 Predicted Accuracy 
Test 90.38462 

Training 99.03846 
Threshold = 0.895, Max Grouping = 4 

Tests Confusion Tableau: 

Predicted 
Class/True 

Class 
Rock Metallic 

Cylinder

Rock 95.2381 4.7619 
Metallic 
Cylinder 12.90323 87.09677

 

Training Confusion Tableau: 

Predicted 
Class/True 

Class 
Rock Metallic 

Cylinder

Rock 98.18182 1.81818 
Metallic 
Cylinder 0 100 

 

Depth First Search Results 
Table 3: Correlation Measure Results 

 Predicted Accuracy 
Test 91.34615 

Training 97.11538 
Threshold = 0.005, Max Grouping = 4 

Tests Confusion Tableau: 

Predicted 
Class/True 

Class 
Rock Metallic 

Cylinder

Rock 88.09524 11.90476
Metallic 
Cylinder 6.45161 93.54839

 

Training Confusion Tableau: 

Predicted 
Class/True 

Class 
Rock Metallic 

Cylinder

Rock 98.18182 1.81818 
Metallic 
Cylinder 4.08163 95.91837

 
Table 4: Improvement Measure Results 

 Predicted Accuracy 
Test 93.26923 

Training 99.03846 
Threshold = 0.895, Max Grouping = 4 

Test Confusion Tableau: 

Predicted 
Class/True 

Class 
Rock Metallic 

Cylinder

Rock 97.61905 2.38095 
Metallic 
Cylinder 9.67742 90.32258

 

Training Confusion Tableau: 

Predicted 
Class/ True 

Class 
Rock Metallic 

Cylinder

Rock 98.18182 1.81818 
Metallic 
Cylinder 0 100 

 
 

These results demonstrated that in both the 
breadth and depth first searches the 
improvement measure obtained the best 
classification, with the depth first method 
slightly out performing the breadth first method 
for both correlation and improvement measure. 
If these results are then compared with those 
obtained using Naïve Bayes, as presented in 
table 5, then it can be seen that apart form the 
correlation method, using bread first search gave 
an increase in classification accuracy of a 
maximum of 12.5%.  

Table 5: Naïve Bayes Results 
 Predicted Accuracy 

Test 80.76923 
Training 82.69231 

 
Test Confusion Tableau: 

Predicted 
Class/True 

Class 
Rock Metallic 

Cylinder

Rock 88.09524 11.90476
Metallic 
Cylinder 24.19355 75.80645

 

Training Confusion Tableau: 

Predicted 
Class/ True 

Class 
Rock Metallic 

Cylinder

Rock 85.45455 14.54545
Metallic 
Cylinder 20.40816 79.59184

 

Test Confusion Tableau: 

Predicted 
Class/True 

Class 
Rock Metallic 

Cylinder 

Rock 80.95238 19.04762 
Metallic 
Cylinder 25.80645 74.19355 

 

Training Confusion Tableau: 

Predicted 
Class/ True 

Class 
Rock Metallic 

Cylinder

Rock 98.18182 1.81818 
Metallic 
Cylinder 2.04082 97.95918

These results also highlight the trade off 
between granularity and dimensionality as good 
classification results are observed using only 
two labels on the 60 attributes. 



These results can be comparable with Gorman 
and Sejnowski [9] who experiment with a back 
propagation neural network with 60 inputs and 
up to 24 hidden nodes, which are illustrated in 
table 6 and those of Frie�, Cristianini and 
Campbell [5] who used a Kernel Adatron 
Algorithm obtaining a classification accuracy of 
95.2%. 

Table 6: Gorman and Sejnowski 

Hidden Nodes 0 2 3 6 12 24 
Accuracy on 
Test Set % 73.1 85.7 87.6 89.3 90.4 89.2 

6.3 Glass Identification Database 
This problem is taken from the UCI online 
repository [14] and is constructed by forensic 
scientists. The database contains 214 examples 
of 7 different types of glass fragments found at 
the scenes of crime, which if correctly identified 
can be used as evidence. The attributes supplied 
are as follows: 

1 RI: Refractive index 

2 Na: Sodium (unit measurement: weight percent in 
corresponding oxide, as are attributes 4-10) 

3 Mg: Magnesium 
4 Al: Aluminium 
5 Si: Silicon 
6 K: Potassium 
7 Ca: Calcium 
8 Ba: Barium 
9 Fe: Iron 

Type of glass: 
1 Building windows float processed 
2 Building windows non-float processed 
3 Vehicle windows float processed 
4 Vehicle windows non-float processed (no examples) 
5 Containers 
6 Tableware 
7 Headlamps 

Here, splitting each sub-class evenly in the 
problem produced a test set of 109 examples and 
training set of 105 examples. Both search and 
grouping methods were applied, with each 
attribute having 3 labels place over their domain 
in a non-uniform manner and with attributes 8 
and 9 being discarded. The experiment was 
repeated 100 times with randomly generated 
data sets constructed in the same manner and the 
following average classification accuracy 
obtained: 

Breath First Search Results: 
Table 7: Correlation Measure Results 

 Average Upper 
Bound 

Lower 
Bound Variance Uncertain

Test 65.33945 76.14679 55.9633 4.84518 1.76147 
Training 87.66667 95.2381 80.95238 3.12223 0 

Threshold = 0.005, Max Grouping = 4 

Table 8: Improvement Measure Results 

 Average Upper 
Bound 

Lower 
Bound Variance Uncertain

Test 67.11927 77.98165 59.63303 4.40887 3.51376 
Training 91.60952 98.09524 86.66667 2.39309 0 

Threshold = 0.895, Max Grouping = 4 

Depth First Search Results: 
Table 9: Correlation Measure Results 

 Average Upper 
Bound 

Lower 
Bound Variance Uncertain

Test 65.75229 77.06422 54.12844 4.7371 2.87156 
Training 90.09524 95.2381 83.80952 2.62208 0 

Threshold = 0.005, Max Grouping = 4 

Table 10: Improvement Measure Results 

 Average Upper 
Bound 

Lower 
Bound Variance Uncertain

Test 66.24771 75.22936 57.79817 4.22675 4.00917 
Training 91.50476 97.14286 86.66667 2.18293 0 

Threshold = 0.895, Max Grouping = 4 

These results show that the breadth first search 
slightly outperformed the depth first search in 
both the correlation and improvement measure 
even thought the differences are not significant. 
Further we can make a comparison with the 
standard Naïve Bayes classifier, the results of 
which are presented in table 11. These results 
illustrate that now the breadth first search is 
obtaining the highest classification accuracy 
with an improvement from Naïve Bayes of 
3.3%.  

Table 11: Naïve Bayes Results 

 Average Upper 
Bound 

Lower 
Bound Variance Uncertain

Test 63.78899 75.22936 52.29358 4.86404 0 
Training 76.60952 83.80952 68.57143 3.04559 0 
 

Using this database a direct comparison can be 
made with results from Baldwin, Lawry and 
Martin (see [2]), who split the database into two 
equal training and test sets of 107 examples. 
Here using a breadth search with the 
improvement measure and setting the threshold 
to 0.895 with a max grouping of 4 attributes a 
classification accuracy of 71.03% can be 
obtained on the test set and 92.52% on the 
training set. This compares well with the results 
of 71% on the test set using a mass assignment 
prototype method [2] and a test set accuracy of 
68% using a mass assignment ID3 system [3].  

7 Conclusion 
This paper shows that it is possible to obtain 
good classification accuracy using the Semi-
Naïve Bayesian framework presented. These 



results also highlight a theorem due to Wolpert 
and Macready entitled “No Free Lunch 
Theorems For Search” [13], who suggested that 
no search can in general obtain optimum 
classification result for all problems. This is 
apparent if a comparison is made between the 
sonar data results section 6.2, were the depth 
first search method given the best classification 
accuracy, against the glass database, section 6.3, 
were the best classification result are obtained 
by using a breadth first search.  

It has also been demonstrated that correlation is 
not always a good discriminator between 
classes. A better approach is to directly measure 
the improvement in discrimination obtained by 
any particular grouping of variables, whilst 
balancing granularity and dimensionality in the 
problem. 

The methods described here represent an 
ongoing development of the proposed 
framework and further work is needed to 
optimise classification performance. 
Furthermore, the potential power of using  
“natural language querying” in such a 
framework has still to be investigated. 
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