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Abstract 
To effectively dimension and rollout a cellular network, accurate site-
specific field strength predictions are required. Traditionally, opera-
tors make use of high-speed statistical propagation models for each 
proposed base site. Today’s advanced cellular networks place a 
greater emphasis on urban microcellular deployment. It is well 
known that statistical models perform poorly in such environments. 
To overcome these limitations, the use of deterministic propagation 
modelling is common. However, although such models enhance pre-
diction accuracy, they also require excessive computation time.  
In this paper a new hybrid statistical/deterministic field strength pre-
diction model is proposed that combines the speed of a statistical 
model with the site-specific accuracy of a deterministic ray model. 
Results indicate that the new hybrid model can produce very accurate 
field strength prediction grids with computing times reduced by one 
to two orders of magnitude. For the example considered in this paper, 
the computing time for a one square kilometer grid comprising 
10,000 points (100 by 100) has been reduced from 20 mins to just 
over 4 minutes (running on an 800MHz Pentium III). For more com-
plex ray models and/or higher grid densities, even higher speed-up 
factors can be achieved.  

 I.  INTRODUCTION 
A propagation model is a set of mathematical expressions and 
algorithms used to predict radio channel characteristics for a 
given environment. Prediction models can be empirical (statis-
tical), theoretical (physical), or some combination of the two. 
Empirical models are based on measurements in the environ-
ments of interest, whereas theoretical models apply the fun-
damental principles of radio wave propagation to a given envi-
ronment. Empirical modelling techniques have dominated the 
industry for the last 20 years and lie at the heart of today’s 
commercially available planning tools. These models have the 
advantage of unquestionable accuracy for the environments 
and locations in which measurements were taken. However, to 
form a propagation model the data must be generalized for 
different carrier frequencies, environments and antenna con-
figurations. While useful empirical models exist for macrocel-
lular environments, for microcells the required process of gen-
eralization is impractical (mainly due to the statistically small 
number of buildings involved).  
Deterministic models combine physical modelling with site-
specific environmental databases. Once appropriate building, 
terrain and foliage properties have been determined for the 
frequency of interest (normally through additional measure-
ments), predictions can be generated for any environment and 
antenna configuration. Generality for deterministic models is 

not a problem and over the last 10 years a range of authors 
have demonstrated the accuracy of these techniques [1-8]. 
However, in order to achieve these high quality predictions, 
long run times are required (compared to empirical models). 
Commercially, the speed of deterministic models is often re-
duced by lowering the complexity of the algorithm (i.e. reduc-
ing the order of reflection/diffraction considered). Speed is 
now increased at the expense of prediction accuracy.    
In this paper a hybrid propagation model is proposed that 
combines the processes of deterministic and statistical propa-
gation modelling. This new approach enables high-speed field 
strength prediction grids to be generated in either micro-
cellular or macro-cellular environments. While the partial use 
of statistical modelling implies that accuracy cannot be as high 
as a fully deterministic prediction, results indicate that they are 
dramatically superior to unaided statistical propagation mod-
els. More importantly, depending on the model settings and 
grid resolutions used, run times can be reduced by one to two 
orders of magnitude – making the model ideally suited for 
commercial radio planning applications [9-10].   
Section II describes existing statistical and deterministic 
propagation modelling techniques. The newly proposed hybrid 
technique is explained in section III. The use of grid 
segmentation and local statistical parameter fitting is 
introduced. Analysis and comparison of prediction grids is 
used to further optimize key parameters in the hybrid model. 
In section IV the results of the hybrid model are compared 
with those of the full ray-tracing model and the COST 231 
version of the Walfisch-Ikegami model. The paper concludes with 
a number of observations drawn from the work performed to date. 

II.   EXISTING MODELLING TECHNIQUES 

A.  Statistical Modelling Techniques 
Statistical models have the key advantage that all environ-
mental influences can be implicitly taken into account regard-
less of whether they can be recognized individually [11]. On 
the other hand, the accuracy of these models depends not only 
on the accuracy of the measurements, but also on the quality 
of the generalizations made and the similarities between the 
measurement environment and the environment under test.   
In this paper one of the most widespread statistical propaga-
tion models, namely the COST 231 version of the Walfisch-
Ikegami model (COST 231-WI) [11], is studied. This model 
has been extensively used in suburban and urban environments 
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where building heights are assumed to be quasi-uniform. The 
model utilizes the theoretical Walfisch-Bertoni model [12] to 
obtain multiple screen forward diffraction losses for high base-
station antenna heights. For low basestation antenna heights, 
the model uses parameters based on measurement data. The 
model considers free space path loss together with street losses 
based on diffraction and street orientation. However, in our 
implementation, site-specific street orientation data was not 
available and a fixed default value was applied. Steep transi-
tions of path loss occur when the base station antenna height is 
close to the height of the surrounding building rooftops. 
Hence, the height accuracy of the base station antenna is espe-
cially significant if large prediction errors are to be avoided.   
Figure 1 shows the predicted power grid for the test area of 
interest. The basestation (BS) was mounted on the top of the 
University’s Engineering building. The overall grid covers a 
service area of 1km by 1km with a resolution of 10m (i.e. 
10,000 prediction points are calculated across the total service 
area). A carrier frequency of 1.8 GHz was assumed together 
with a fixed transmit power of 30 dBm. Vertically polarised 
dipole antennas were used at both the transmitter and receiver.  

 
Figure 1: Power grid prediction (dBm) using the COST 231 – 

Walfish-Ikegami model at 1.8 GHz 

 
Figure 2: Power grid prediction (dBm) using the RCS deter-

ministic propagation model at 1.8 GHz 
Figure 1 shows the fairly crude field strength prediction grid 
obtained over the entire service area. Predictions can clearly 

be seen to fall into Line-of-Sight (LoS) and Non-Line-of-Sight 
(NLoS) regions. Prediction accuracy in the NLoS regions is 
generally poor (and generally badly underestimated) with no 
obvious relationship with site-specific details. The overall per-
formance of the Walfisch-Ikegami model was found to be par-
ticularly poor when the base station antenna was mounted be-
neath the rooftop heights of adjacent buildings. 
Due to the nature of statistical modelling techniques, the com-
putation time for this model was relatively small when com-
pared with deterministic methods (around 3 minutes on an 
800MHz Pentium III using Matlab 5.3). A full discussion of 
the comparative run-times is given in section IV. 
B.  Deterministic Modelling Techniques 
Deterministic models are based on well-established physical 
principles and can be applied to different environments with-
out significantly affecting their accuracy [1-8]. In practice, the 
implementation of a deterministic model requires a sizeable 
database of environmental characteristics. For ray tracing 
models, detailed building, foliage, terrain and land usage data-
bases are often required. The three-dimensional data shown in 
figure 1 was obtained via the photogrammetric analysis of 
stereo aerial photography [13]. Given the complexity of the 
algorithms and data involved, it is not uncommon for point 
predictions to take several seconds to compute. 
For coverage plots requiring many thousands of point predic-
tions, long run-times have prevented the widespread commer-
cial application of deterministic models. In practice, these 
models are often simplified to achieve more acceptable run 
times; often with disastrous accuracy implications. In this pa-
per our choice of deterministic model can be applied to both 
micro and macro-cellular environments.  The model takes the 
form of a fully three-dimensional Radar Cross Section (RCS) 
scatter model with full support for multiple off-axis build-
ing/terrain scatter and diffraction [3]. However, the proposed 
hybrid solution can operate with any type of deterministic 
propagation model. Similar results could have been generated 
in combination with our previous and current microcellular 
models [1-2][8].  
In general, work reported in the open literature indicates that 
carefully implemented deterministic propagation models offer 
exceptional accuracy [1-8]. For dense urban environments and 
locations with low mounted base sites, the accuracy of a well 
developed deterministic model is far higher than that of a well 
developed statistical model. 
Computation times for deterministic models are generally ex-
ponentially related to the level of detail in the databases. 
Hence, the degree of detail influences both the computation 
time and the overall accuracy. Using the proposed hybrid 
model, only a small number of point-to-point predictions are 
required. This enables a complex deterministic model to be 
used together with a highly detailed database without seriously 
effecting the overall run time. In many deterministic models 
the level of database detail and/or the number of reflections 
and diffractions are sacrificed as a trade-off to improve run 
time (thus reducing the accuracy of the resulting predictions). 

BS 

BS 
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Figure 2 shows the resulting field strength prediction grid us-
ing the deterministic RCS model. As in Figure 1, the base site 
was assumed to lie on top of the University’s Engineering 
Building. The model was applied to an identical grid of 10,000 
points. All other parameters remained constant, thus allowing 
a direct comparison between Figures 1 and 2. It can be seen 
that the results of Figure 1 dramatically under predict the re-
ceived field strength for all locations in the service area. Given 
that previous work [3] has already demonstrated the accuracy 
of the RCS model, this implies that serious errors are gener-
ated using the statistical model. The predictions seen in Figure 
2 are substantially superior to those of the unaided statistical 
model, however the computation time increased from around 3 
minutes (Figure 1) to 20 minutes (Figure 2). We conclude that 
the RCS model is accurate but requires long computation 
times, whereas the statistical model is fast but offers poor pre-
diction accuracy. Network operators require fast and accurate 
models for cell planning and site optimisation [9-10]. This 
conclusion provides clear motivation to develop a more accu-
rate hybrid statistical/deterministic propagation model.  

III. HYBRID TECHNIQUE 
The hybrid model operates by locally tuning two received 
power versus distance statistical models, one for LoS and one 
for NLoS points. To improve accuracy, the coverage grid in 
automatically split into a number of local segments.  Statistical 
models are then generated for each segment using data sam-
ples produced from the deterministic model.  

A. LoS/NLoS Estimation  
For each grid point, the algorithm must determine the appro-
priate segment number and whether LoS exists. This is per-
formed using a topographic database containing terrain and 
building heights. The topographic database can be thought of 
as a two-dimensional array. In this array, each element corre-
sponds to a certain point in the service area and its contents 
represent the building/terrain height above sea level. Using 
this database, the model reconstructs the ground profile infor-
mation along the radial joining the Tx to the Rx. Since the 
radial may not pass through discrete data points, interpolation 
is used to determine the approximate heights involved.  

 
Figure 3: a) Top view of interpolated map and line between Tx 

and Rx, b) Side view showing reconstructed terrain profile. 
Figure 3 shows a top down view of the interpolated map to-
gether with a typical reconstructed radial ground terrain pro-

file. If the difference between the height of the line joining the 
Tx and Rx antennas from the height of the ground profile for 
each point along the radial is found to be positive, it is con-
cluded that a LOS path exists [14]. This process is repeated for 
all points in the service area. 

B. Fitting of Equations  
The hybrid technique locally fits a straight-line approximation for 
the LoS and NLoS received power versus distance using a small 
number of accurately generated point-to-point deterministic predic-
tions. Given only a small number of points are required, the deter-
ministic model should be configured to run in its most accurate 
mode (i.e. a complex database and taking into account a large num-
ber of reflections and diffractions). The model fits straight-line ap-
proximations in each grid segment using the following equations: 

                            P C n dLOS LOS LOS= + log             (1) 

                       P C n dNLOS NLOS NLOS= + log           (2) 

where PLOS and PNLOS represent the received power for LoS 
and NLoS points respectively, CLOS and CNLOS represent the 
intercept for the LoS and NLoS best fit equations respectively, 
and nLOS and nNLOS represent the gradient for the LoS and 
NLoS best fit equations respectively.  
Equations 1 and 2 are now used to statistically predict the sig-
nal strength for each point in the service area. Although it is 
possible to fit equations 1 and 2 to the entire service area, this 
would ignore local factors such as building densities and 
heights, terrain variations, foliage densities, street widths and 
orientations. To incorporate this information, the coverage 
area is broken down into a number of local segments. Equa-
tions 1 and 2 are now optimised to fit a number of NLoS and 
LoS deterministic predictions in each segment. The determi-
nistic model therefore considers local topographical informa-
tion, which is then used to locally optimise LoS/NLoS power 
versus distance equations in each segment. The segmentation 
algorithm is described in more detail in the following section. 

C. Segmentation of the total service area  
The performance of the hybrid model is significantly improved by 
segmenting the total service area into a number of smaller regions. 
Smaller regions enable local factors to be tuned during the equation 
fitting process. Hence, best-fit equations for LoS and NLoS are 
produced separately for each segment in the service area. For sim-
plicity, the desired coverage area is divided into a number of square 
segments. For comparison purposes, 1, 25 and 100 segments are 
considered here. Table 1 shows the standard deviation of the hybrid 
model (compared with the full deterministic model) for different 
segmentation sizes. In all cases, 800 point predictions (from a total 
of 10,000) were obtained using the deterministic model. The 800 
prediction points were evenly distributed over the segments. 
Analysis of Table 1 implies that 25 segments results in the lowest 
standard deviation compared with the full 10,000 point determinis-
tic prediction. A single segment clearly does not allow sufficient 
local tuning of the hybrid model. While 100 segments enables a 
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high degree of local tuning, given that only 800 deterministic points 
were computed, this translates to just 8 predictions per segment (4 
for LoS and 4 for NLoS). With such a small number of predictions 
per segment, the equation fitting process becomes unreliable.  

TABLE I 
PERFORMANCE OF VARIOUS SEGMENTATION SCHEMES 

Number of 
Segments Size of Segment 

Number of total 
ray-tracing points 

per segment 

Standard 
Deviation 

(dB) 

1 1km by 1km 800 7.75 

25 200m by 200m 32 6.55 

100 100m by 100m 8 10.65 
 

Assuming 25 segments over a 1km by 1km coverage area, each 
segment covers an area of 200m by 200m. If more deterministic 
prediction points were generated, a smaller segmentation size 
would result in a lower standard deviation.  

D.  Optimization of Key Model Parameters   
In this section the trade off between segment size and the number of 
deterministic prediction points is explored further. Figure 4 shows 
the standard deviation of the hybrid model as a function of 
segment number and deterministic prediction point number.  
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Figure 4: Standard deviation versus segment number and 

maximum ray traced prediction points 

Not surprisingly, the lowest variance (3.4 dB) was observed 
when the largest number of ray-traced points was used to-
gether with the largest number of segments (i.e. 4,000 points 
or 40% of the total grid area spread over 100 segments). How-
ever, from Figure 4 it can be seen that excellent performance 
is also observed for 25 segments and 2,000 ray traced points 
(4.3dB). The speed of the hybrid model is obviously a function 
of the number of ray tracing predictions performed. When just 
400 ray-traced points are used (4% of the grid area) the result-
ing predictions are relatively poor (10 dB for 25 segments). 
However for 800 points (8% of the grid area) and 25 segments 
the hybrid model achieves a respectable standard deviation of 

6.3 dB. Figure 5 shows the resulting prediction grid for the hybrid 
model. Close inspection of Figure 5 reveals that much of the de-
tailed structure (see figure 2) is still present. 

 
Figure 5: Power grid prediction (dBm) using the hybrid model 

at 1.8 GHz (800 ray-traced points, 25 segments) 

Figure 4 shows that the accuracy of the hybrid model can eas-
ily be adjusted by increasing the number of deterministic pre-
dictions performed. However, as more deterministic points are 
considered, the run time of the hybrid model increases. The 
speed improvement of the hybrid model will increase as the 
desired grid resolution is reduced (since the additional points 
can be entirely computed using the fast statistical model). 

VI. COMPARATIVE RESULTS 
For comparison purposes, results obtained using the hybrid model 
and the COST 231 Walfisch-Ikegami model are compared with 
those of the full ray-tracing model for an identical configuration. 
The hybrid model was configured using 800 points and 25 seg-
ments. Table II compares the run times and standard deviation of 
the models. For the case of the hybrid model, the processing time 
includes the time required by the deterministic model to calcu-
late the required LoS and NLoS points. 
The statistical model offers a fast run time (which could be further 
improved via implementation in ‘C’), however the accuracy is ex-
tremely poor, and almost certainly unacceptable for planning pur-
poses. The ray-tracing model produces a detailed output, however a 
run time of 20 minutes is required (increasing to well over an hour 
using the model’s most complex settings).  

TABLE II 
PERFORMANCE OF STATISTICAL AND HYBRID MODEL 

Model Processing Time  Standard Deviation 
(dB) 

COST 231-WI 3 minutes 40 seconds 20.71 

Hybrid Model 4 minutes 10 seconds 7.53 

Ray-Tracing Model 20 minutes N/A 

BS 

0-7803-7005-8/01/$10.00 (c) 2001 IEEE



The hybrid model achieves a visually similar result to the determi-
nistic model and is a vast improvement on the statistical approach. 
Run time for the hybrid model is now approximately 5 times less 
than that of the full deterministic model. Further speed enhance-
ment could be obtained by coding the statistical portion in ‘C’.  

 
Figure 6: Cumulative distribution function of Received Power 

in the Service Area for the three models 
Figure 6 shows the cumulative distribution function of received 
power in the service area for the three models concerned. The full 
deterministic and hybrid models have near identical statistics, how-
ever the COST 231-WI model consistently and seriously under 
predicts the received power. The use of a small number of determi-
nistic points can correct for errors in the statistical model, greatly 
improving the overall prediction quality. 

V.  CONCLUSIONS 
In this paper a new hybrid field strength prediction technique has 
been reported for macro and microcellular environments. The 
model segments the total coverage area and then fits simple LoS 
and NLoS equations for power versus distance using a small num-
ber of deterministically generated points. For a dense urban micro-
cellular environment, the COST 231-WI model is shown to offer a 
poor level of prediction, with a standard deviation relative to the 
deterministic model in excess of 20dB. For the hybrid model, good 
results were obtained when the ray tracer was used to predict ap-
proximately 4-8% of the grid points. These points were evenly dis-
tributed over 25 segments and further constrained to have an equal 
number of LoS and NLoS predictions. The resulting hybrid model 
prediction closely matched that of the full deterministic model with 
a computation time of approximately 4 minutes. With careful con-
figuration, the hybrid model combines the accuracy of the determi-
nistic approach with the speed advantages of a statistical model.  
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