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Abstract
This paper suggests a framework for modelling with words using
label prototypes. The underlying methods are based on a random set
label semantics together with the voting model interpretation of
fuzzy sets. The potential of this methodology will be illustrated by
its application to classification problems.
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1 Introduction
The phrase "computing with words" was introduced
by Zadeh (see [13]) to capture the idea of computation
based on natural language terms rather than numerical
quantities. Zadeh's formulation was centred on the
idea of linguistic variables [12] and with the extension
principle motivating many of the proposed inference
mechanisms. Unfortunately, many of these are
extremely computationally expensive. Furthermore,
the focus of much of the research into computing with
words has been on the development of inference
methods from linguistic information rather than on the
learning of linguistic models for (potentially) complex
systems. The latter research area can be referred to as
modelling with words.

In this paper we outline a new approach to
computing and modelling with words. Instead of
linguistic variables we introduce the idea of a random
set allocating the set of appropriate labels for the value
of an underlying variable. The semantics of this
approach is based on the voting model interpretation
of fuzzy sets (see [4] and [5]). The method described
can be used both for inference and for induction of
linguistic models. It is this latter application area on
which we will focus in the sequel. Specifically, we
shall introduce a method for prototype induction
where a prototype is defined to be a tuple of mass
assignments, each over the sets of appropriate labels
for their corresponding variable. In the context of
classification problems, a prototype will be learnt for
each class and together these can be used for class
prediction given new data.

Intuitively, we view prototypes as describing a
collection of similar objects all sharing certain
properties. For instance, a bank might be interested in
prototypes describing customers with certain income
and borrowing characteristics. As such, prototypes
correspond to descriptions or amalgams of objects

rather than individual objects. This is a different view
than is taken in the psychology literature (see [8])
where prototypes are viewed as single objects that are
in someway descriptive of the whole class.

In the following we describe a random set
based framework for modelling with fuzzy labels. This
is an alternative to the approach described in [1] and
[2] where prototypes are tuples of fuzzy sets on labels.

2 Label Semantics
Suppose we have some domain of discourse Ω that we
will assume either to be finite or correspond to a
closed interval of the real numbers. The idea of label
semantics is that we define some fixed (finite) set of
words, LA, with which to label the elements of Ω. For
instance, the elements of Ω might correspond to the
possible values of the height of some individual, say
Bill. In this case a statement such as Bill is tall, where
  tall ∈LA is taken to mean that tall is an appropriate
label for the element of Ω corresponding to Bill's
height.

The meanings of the words in LA are defined
by fuzzy sets on Ω, where the membership degree of a
value x in label l, denoted   µ l , is taken as quantifying
the degree to which l is deemed an appropriate label
for x. Conceptually, this can be modelled according to
a voting semantics ([4],[5]) as follows: Each voter is
asked to provide the subset of words from the finite set
  LA  which are appropriate as labels for the value x.
This generates a mass assignment on   2

LA  giving the
distribution of the appropriate label random set,
denoted APL. The membership degree of x in l is then
taken to be the probability that 

  
l{ }⊆ APL . In other

words, it is taken to be the proportion of voters who
include l in their set of appropriate labels for x. In
practice, we would give fuzzy set definitions for the
terms in LA and use these to find the mass assignment
on APL corresponding to any element   x ∈Ω .

Definition 2.1 (Label Descriptions)
The mass assignment on APL for a value x is referred
to as the (label) description of x and is given by:



        

mdesx[ ] = l1 ,L , lk{ } : µ lk
x( ) ,L , l1 ,L ,l i{ } :µ l i

x( ) − µ li+ 1
x( ) ,

L , l1{ } : µ l1
x( )− µl2

x( ),∅ :1− µl1
x( )

where 
      

l1 ,L , lk{ } = l ∈LAµ l x( ) > 0{ } and the ordering

is such that 
  
µ li

x( ) ≥ µli+1
x( ) for       i= 1,L ,k −1.

In many cases it is desirable that 
  
mdesx[ ]  is a

normalised random set for all x. (i.e.

    
∀x ∈Ω  mdes x[ ] ∅( ) = 0 ). This holds if LA satisfies the

following property:

Definition 2.2 (Linguistic Covering)
A set of fuzzy sets       µ1 ,L ,µn  forms a linguistic
covering of Ω  if and only if

        
∀x ∈Ω  max µ1 x( ) ,L ,µn x( )( ) =1

Hence, we require that 
  

µ l l ∈LA{ } forms a linguistic

covering of Ω .
We can extend the idea of a label description of

a value to obtain a label description of a database of
values. This will correspond to a mass assignment
representing the probability that a particular subset of
LA will be the set of appropriate labels for an element
of the database.

Definition 2.3

Let 
      
D = x i( )i = 1 ,L , N{ }  be a single variable

database then the label description of D is a mass

assignment on   2
LA  defined by:

    
∀S ⊆ LA md e s D[ ] S( ) =

1

N
md e s xi( )[ ] S( )

i = 1

N

∑

3 Label Prototypes for Modelling Classification
Problems
Consider a standard classification problem where
instances or objects from a certain problem domain
can be categorised, each as belonging to one of the
classes       C1 ,L ,Ck . A number of features or attributes
of instances can be measures and these are represented
by the variables       X1 ,L ,Xn . The value of variable   X j

for instance i is denoted 
  
x j i( ) . For each variable   X j

we define a finite set of labels   LAj .
Now suppose we have a training database

        
D = x1 i( ) ,L , xn i( )  i =1,L ,N{ } of N instances for

which all n features have been measured. We are also
told to which of the k classes each instance belongs.
The class of instance i is denoted 

  
C i( ). Now consider

the sub-database of instances with class   C j .

      
D j = x1 i( ),L , xn i( ) C i( ) = C j{ }

Further consider, the projection of this database so that
only the values of variable   X r  are included.

    
Dr , j = xr i( )C i( )= C j{ }

Now the label description of class   C j  based on

the variable   X r  can be taken to be the label
description of the sub-database     Dr , j , 

    
mdesD r, j[ ] . Hence,

we can view the tuple 
      

md e s D1 , j[ ] ,L , mdes Dn, j[ ]  as a

decomposed label model of the class. Alternatively,
this tuple provides amalgamated information regarding
all the data points of class   C j  in D and can be view as
a prototypical description of this class.

Clearly, the above model is decomposed and in
situations where significant correlation exists between
the variables for some particular class decomposition
errors are likely to result. There are a number of
possible approaches to this problem.

One idea would be to include compound feature
in the model composed of the cross product of highly
correlated subsets of       X1 ,L ,Xn . For instance, we

might include t subsets of   nt  variables

      
X i1

,L ,X in t
{ }for       i= 1,L , t . In this case we have a

prototype of the form:

      
mdes1 , j

,L ,mdest, j

where 
    
mdesi , j

 is the joint mass assignment of variables

      
X i1

,L ,X in t
for class   C j .

An alternative approach is to look for subsets of

  D j for which the values of       X1 ,L ,Xn  are sufficiently
similar to enable a purely decomposed model to be
used. For instance, a standard clustering algorithm
could be used to partition   D j into c sub-databases

      D j
1( )

,L ,Dj
c( ) . The mass assignment for the description

of these sub-databases can then be found for each

variable giving c prototypes, 
      

mdes1 ,r , j
,L ,mdesn ,r, j

 for

      r = 1,L , c  where 
    
mdesi ,r , j

 is the label description of

    Di , j
r( )  (see for example [3]).

4 Conditional Distributions from Label Prototypes
In many situations we may only have statistical
information regarding APL taking the form of a mass
assignment   mdes. In this case it is desirable that we
have some means of estimating the distribution of the
underlying variable X. In other words, we require a
means of evaluating a posterior density given the
information that APL is distributed according to   mdes.



Definition 4.1 (Posterior Density from Labels)

  

p x APL = S( ) =
mdes x[ ] S( ) p x( )

mdes x[ ] S( ) p x( )p x( )dx
Ω
∫

and assuming a uniform prior distribution on Ω gives

    

∀x ∈Ω  p x APL = S( ) =
md e s x[ ] S( )
md e s x[ ] S( )dx

Ω
∫

This can then be used to obtain a density on Ω
conditional on a mass assignment   mdes.

    
∀x ∈Ω  p x mdes( ) = mdes

S ⊆ LA
∑ S( ) p x APL = S( )

This expression can be rewritten as

    

 p x mdes( ) = p x( ) mdes S( )
m S( )S ⊆ LA

∑ mdesx[ ] S( )
where

    
∀S ⊆ LA m S( ) = p x( )

Ω
∫  md e s x[ ] S( ) dx  and can be

viewed as a prior mass assignment on LA. Notice that
in the case where 

    
∀S ⊆ LA mdes S( ) = m S( ) then it

follows that 
    
∀x ∈Ω  p x mdes( ) = p x( ) . This is intuitive

since if the mass assignment   mdes provides no new
information then we would not expect the conditional

density 
  
p x mdes( ) to differ from the prior 

  
p x( ).

Given the conditional distribution of a mass
assignment then we can clearly obtain a point estimate
for the underlying variable by taking its expected value
according to this distribution. Such distributions can
also be used in classification problems as is described
in the following section.

5 Using Label Mass Assignments to Estimate
Classification Probabilities
We now give the details of two cases where label mass
assignments can be used to estimate class probabilities
in classification problems. In the first case we make
the naïve Bayes assumption (see [4]) that variables are
conditionally independent given their associated class.
Secondly we consider the situation where it is possible
to calculate a joint mass assignment.

Suppose we encounter an instance for which the
measured attribute values are given by the vector

      x1 ,L ,xn . Now in order to predict the class to which

this instance belongs we need to calculate the

probability 
      
Pr C j x1 ,L ,xn( )  for       j = 1,L , k .

According to Bayes theorem we have that

      
Pr C j x1 ,L ,xn( ) =

p x1 ,L ,xn C j( )Pr C j( )
p x1 ,L , xn( )

The naïve Bayes assumption is that

      
p x1 ,L ,xn C j( ) = p x i C j( )

i=1

n

∏

giving

      
Pr C j x1 ,L ,xn( ) =

Pr C j( ) p xi C j( )
i =1

n

∏
p x1 ,L , xn( )

We now make the further assumption that the density

values 
  
p xi C j( )  can be estimated from the linguistic

prototype(s) for   C j . More specifically, given the

prototype 
      

md e s D1 , j[ ] ,L , mdes Dn, j[ ]  we take

 
    
p xi C j( ) ≅ p x i mdesD i , j[ ]

 
 

 
  from which we obtain that

        
Pr C j x1 ,L ,xn( ) = k x1 ,L , xn( )D j  p x i md e s Di , j( )

 
 

 
 

i= 1

n

∏
For the joint mass assignment model we

consider only the case where we have two measurable
attributes X and Y. It is trivial to generalise from this to
the n-dimensional case. For each class   C j  we generate

a joint mass assignment 
      
mdesD j[ ] : 2LA1 × LA2 → 0 ,1[ ]

such that   ∀S × R ⊆ LA1 × LA2

      
 mdes D j[ ] S ,R( ) =

1

N
mdesx i( )[ ] S( )

i∈D j

∑ mdes y i( )[ ] R( )
Assuming a uniform prior distribution on Ω1 ×Ω 2then
the prior mass assignment on   LA1 × LA2  is given by

    

m S ,R( ) = mdesx[ ] S( )mdes y[ ]
Ω2

∫
Ω1

∫ R( )u x, y( )dxdy

= mdes x[ ] S( )
Ω1

∫ u1 x( )dx × mdes y[ ] R( )u2 y( )
Ω2

∫ dy

= m1 S( )m2 R( )
Hence the conditional distribution generated by

  
mdesD j[ ] is given by

    

p x ,y mdesD j[ ]
 
 

 
 =

u x, y( )
md e s Dj[ ] S ,R( )
m1 S( )m2 R( )S × R

∑ md e s x[ ] S( )md e s y[ ] R( )
From this we can obtain an estimate for 

    
Pr C j x , y( )

from Bayes theorem by taking

    
p x , yC j( ) ≅ p x ,y mdesD j[ ]

 
 

 
 .

6 Classification using a Decomposed Model
In this section we will describe two decomposable
benchmark machine learning problems. We will then
show how they can be modelled effectively using the



type of prototypes described above incorporated with a
Naïve Bayes classifier.

Example 6.1 (Pima Diabetes Problem)
This is a benchmark classification problem (see [10])
taken from the UCI repository [11]. The problem
relates to incidents of diabetes mellitus in the Pima
Indian population living near Phoenix Arizona. The
diagnostic, binary-valued variable investigated is
whether the patient shows signs of diabetes according
to World Health Organisation criteria. The database
contains details of 768 females all of which are older
than 21. This was split into a training and test set each
containing 384 instances. There are eight measured
attributes:   X1: number of times pregnant,   X2 : plasma
glucose concentration,   X3  : diastolic blood pressure,

  X4 : triceps skin fold thickness,   X5 : 2-hour serum
insulin,   X6 : body mass index,   X7 : diabetes pedigree
function,   X8 : age
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                 Figure 1 : The linguistic covering for attribute X1

For each variable a label set was defined for
which the associated membership functions were
trapezoidal and formed a linguistic covering of the
underlying universe. The trapezoids were generated
using a simple percentile method to obtain a crisp
partition with equal numbers of data points falling
within each set and then superimposing trapezoidal
membership functions over this partition. A set of five
labels was used for each variable although attributes

  X4  and   X5  were emitted since their values across the
database were not sufficiently distinct for the
percentile method to be applied. The linguistic
coverings were generated so that, at most, two labels
overlapped at anyone time (see figure 1). Hence, if we
interpret the five labels as very small, small, medium,
large and very large then the possible focal elements
for mass assignments on labels are {very small}, {very
small, small}, {small}, {small, medium}, {medium},
{medium, large}, {large}, {large, very large} and
{very large}. Also notice from figure 1 that each fuzzy
set overlaps exactly half the core region (i.e. region of

elements with membership one) of its neighbours. We
refer to such fuzzy sets as having a 50% overlap.

For each attribute mass assignments on label
sets were learnt for both diabetic and not diabetic as
described in section 4 (figure 2). For each mass
assignment we can then generate a conditional
distribution (figure 3).
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       Figure 2: Label mass assignments for diabetes and not diabetes
                       classes for X1

Using the naïve Bayes approach and estimating
class probabilities according to the method discussed
in section 5 we obtain an accuracy of 77.34% on the
training set and 75.78% on the test set with the
following confusion table.

 Predicted Class/
    True Class

Diabetes Not
Diabetes

         Diabetes         64.2% 35.8%
Not Diabetes 16.5% 83.5%

These results are comparable with more composed
algorithms (e.g. decision trees, around 76%, and feed-
forward neural networks, around 79% [9])

0

0.05

0.1

0.15

0.2

de
ns

ity

0 5

10 15

X1

Figure 3: Conditional density for X1 given the diabetes
                            mass assignment



Example 6.2 (Wisconsin Cancer Problem)
This database originates from a study carried out by
Wolberg [8] into cancer diagnosis via linear
programming. The data relates to 699 breast tumours
and the class variable takes values benign or
malignant. This was split into training and test sets
containing 322 and 377 elements respectively. The
associated variables are:  X1: clump thickness,   X2 :
uniformity of cell size,   X3 : uniformity of cell shape,

  X4 : marginal adhesion,   X5 : single epithelial cell size,

  X6 : bare nuclei,   X7 : bland chromatin,   X8 : normal
nucleoli,   X9 : mitoses

Initially three labels were allocated to each
variable where the associated membership functions
were uniform trapezoids. The label mass assignments
generated for each variable then have the form shown
in figure 4.
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          Figure 4: Mass assignments for benign and malignant
                           classes using  three labels on X1

 Using these mass assignments to estimate
classification probabilities we obtain an accuracy of
97.2% on the training set and 96.55% on the test set.

0

0.2

0.4

0.6

0.8

m
as

s

(s
)

(s
 l) (l

)

subsets of labels

not cancer

cancer

      Figure 5 : Mass assignments for malignant and benign using
                        two labels on X1

We then experimented with lowering the number of
labels to two for each attribute giving label mass
assignments of the form shown in figure 5. This
reduction in the number of labels only brings about a
marginal reduction in predictive accuracy to 96.58%
on the training set and 95.23% on the test set.

7 Classification using a Joint Mass Assignment
Model
In this section we consider an example of composed
modelling using joint mass assignments. The problem
discussed is a two-dimensional model problem based
on a sin function.

Example 7.1
In this example a figure eight shape was generated
according to the parametric equation

    
x = 2−0 .5 sin 2t − sin t( )  and 

    
y = 2−0.5 sin 2 t + sin t( )

where 
    
t ∈ 0 ,2π[ ]  (see figure 6).

legal

legal

                   Figure 6: Figure eight classification problem

Points in 
  
−1.6 ,1.6[ ]2

are classified as legal if they lie

within the figure and illegal if they lie outside. The
database consisted of 961 vectors 

    
X ,Y  generated

from a regular grid on 
  
−1.6 ,1.6[ ]2

.

A linguistic covering of five uniformly spaced
trapezoidal fuzzy sets was generated for each attribute.
These had an overlap degree of 40%. A joint mass
assignment was then learnt for each class. The joint
mass assignment obtained for legal is shown in the
following table and in histogram form in figure 7.

{vs} {s, vs}   {s}  {s, m}  {m}  {m,l}   {l}  {l,vl} {vl}
 {vs}    0     0     0 0.0039 0.017 0.0019    0     0    0
{s,vs}    0     0     0 0.0078 0.036 0.019 0.0063    0    0
  {s}    0     0     0  0.005 0.047 0.036 0.041 0.0063   0
{s,m} 0.00390.00780.0054 0.001 0.026 0.026 0.036 0.019 0.0019
 {m}  0.017 0.036 0.047 0.026 0.038 0.026 0.047 0.036 0.017
{m,l} 0.0019 0.019 0.036 0.026 0.026 0.001 0.00550.00780.0039
  {l}    0 0.0063 0.041 0.036 0.047 0.005   0     0    0
{l, vl}    0    0 0.0063 0.019 0.036 0.0078   0     0    0
 {vl}    0    0    0 0.0019 0.017 0.0039   0     0    0



Classification based on the posterior distributions from
the two joint mass assignments gives a predictive
accuracy of 96.25% on the training set and 96.65% on a
denser test set of 2116 elements.
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Figure 7: Histogram of the joint mass assignment for legal.

The following scatter plot (figure 8) shows those points
correctly classified as legal together with false positives
and false negatives.
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          Figure 8: Scatter plot showing classification accuracy
                           for the figure eight problem

5 Conclusion
Prototypes consisting of mass assignments on subsets
of labels have been shown to provide a framework for
data analysis in classification problems. More
specifically, a methodology has been proposed
whereby such label mass assignments can be used to
estimate class probabilities. The potential of this

approach has been demonstrated by its application to a
number of benchmark and model problems.
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