

Parsing Using the Role and Reference Grammar Paradigm

 Elizabeth Guest
Innovation North, Leeds Metropolitan University

Leeds, LS6 3QS, UK

ABSTRACT

Much effort has been put into finding ways of parsing natural
language. Role and Reference Grammar (RRG) is a linguistic
paradigm that has credibility in linguistic circles. In this paper
we give a brief overview of RRG and show how this can be
implemented into a standard rule-based parser. We used the
chart parser to test the concept on sentences from student work.
We present results that show the potential role of this method
for parsing ungrammatical sentences.

Keywords: Role and Reference Grammar, Parsing,
Templates, Variable word order flexibility, Natural
language processing

1. INTRODUCTION

Role and Reference Grammar (RRG) [7][8] is a promising
theory for extracting the meaning from sentences from a
computational viewpoint. It posits multiple projections where
various aspects of a sentence can be dealt with separately. For
example, words that modify other words are removed from the
constituent projection and placed in an operator projection. As a
result, only the main constituents of a sentence have to be
parsed, simplifying the parsing process. RRG has a strong link
with semantics, and the grammatical constructs are designed
both to be cross-linguistically valid and to make the meaning
relatively easy to extract. The grammatical constructs are based
on templates rather than rules. This means that more
information can be encoded into the grammatical construct,
which in turn makes the meaning easier to extract.

However, there are aspects of RRG that make it harder to
implement. It is much harder to parse with templates than with
rules; RRG templates are particularly hard because lines are
allowed to cross and the parse trees are not simply made up of
parents and children, but nodes can have modifiers (such as
PERIPHERY) attached to them. In addition, although RRG says
nothing explicit about word order constraints, they are implicit
in the templates in that the theory contains examples from many
languages that include fixed and free word order, and varieties
in between.
We describe how modifications can be added to the chart
parsing algorithm to extend its functionality to variable word
order flexibility and templates. These extensions should be
applicable to any rule based parsing algorithm, thus making
parsing according to this paradigm feasible. We believe that this
would make RRG a better alternative to HPSG [9] [5] [6] and

Dependency Grammar [2][4][1] which are currently the most
popular parsing paradigms.

RRG posits algorithms to go from syntax to semantics, and
semantics to syntax. The main contribution is the use of parsing
templates and the notion of the CORE. A CORE consists of a
predicate (generally a verb) and (normally) a number of
arguments. It must have a predicate. Everything else is built
around one or more COREs. Simple sentences contain a single
CORE; complex sentences contain several COREs.

The fact that RRG focuses on COREs, means that the semantics
is relatively easy to extract from a parse tree. You just have to
look for the PRED and ARG branches of the CORE to obtain
the predicate (PRED) and the arguments (ARG). Who did what
to whom will depend either on the ordering of the ARG
branches (in the case of English), or on their cases, or both.

Figure 1: Example RRG parse tree
This diagram shows the constituent projection. Words that
belong to the operator projection are linked to the words on
which they operate.

RRG makes extensive use of templates. These templates consist
of whole trees and are thus harder to use in a parsing algorithm
than rules. The templates can easily be reduced to rules, but
only at a loss of much important information. The example in
Figure 1 consists of one large template that gives the overall
structure and some simple templates (which are equivalent to
rules) so that elements such as NP and PP can be expanded. An
NP is a noun phrase and in this theory consists of a noun,
pronoun or question word. Templates are required to parse
complex noun phrases, such as those with embedded clauses. A
PP is a prepositional phrase and consists of a preposition
followed by a NP. Clearly, if we reduce the large template in the
example in Figure 1 to the rule CLAUSE → NP V1 DEM V2
NP, a lot of the information inherent in the structure of the
template is lost. A further feature of RRG is that the branches of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leeds Beckett Repository

https://core.ac.uk/display/29018892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SENTENCE

the templates do not have to have a fixed order and lines are
allowed to cross. The latter is important for languages such as
German and Dutch, where the adverb that makes up the
periphery normally occurs within the core.

In English, there is a strict word order to the constituents of the
CORE: subject, verb, object. In questions, the object comes first
if this is the subject of the question. For example, if we have the
sentence “John ate pizza”, we can ask the questions: “What did
John eat?” and “Who ate pizza?” In the latter question, there is
no change within the CORE. “Who” is the subject and we just
need to fill in that slot. In the first question, however, “what”
appears at the start of the sentence. As in English, this is the
object and would normally appear at the end of the sentence;
RRG theory says that this is outside the CORE. Since it is still
really part of the CORE it goes in a ‘pre-core slot’ (PrCS). The
PrCS simply tells us that something that is normally found
within the CORE has been moved outside. This is useful
information because we can then investigate why it has been
moved outside and discover, for example, that we have a
question.

The other RRG constituent that is important for English is the
‘left detached position’ (LDP). We can say “John ate pizza
yesterday” and “Yesterday, John ate pizza”. In RRG theory, the
first sentence gives us the canonical form and the fact that the
position of “yesterday” has changed in the second sentence is
signalled by putting it in a left detached position. This is useful
for working out the emphasis of a sentence. Note that
“yesterday” is not considered to be part of the CORE, but is
peripheral information. It therefore goes in a PERIPHERY.

The concepts of PrCS and left detached position (LDP) are
illustrated in Figure 2. Other languages (such as Japanese) have
Post Core Slots and Right Detached positions.

Figure 2: RRG tree showing the use of the left detached
position (LDP), pre-core slot (PrCS) and PERIPHERY

2. Methods

2.1 Outline of the parsing algorithm:

Tagging is an important part of parsing, for this work tagging
has been done semi-automatically using “toolbox”, a program
available from SIL. This was so that it was possible to
experiment with the tags. However, once the tags have been
finalised an appropriate automatic tagger can be used, or written
using standard techniques. The main things to bear in mind
when designing a tagging schema for RRG are:

1) It should be easy to separate the operators from the
constituents.

2) It should be easy to distinguish between different classes
of operators.

3) Words denoting discourse features is words that link
sentences together, need to be handled in a sensible way as
these do not feature in the standard RRG description.

As long as these conditions are met any tagging schema would
work with RRG. Once the text has been tagged, there are three
parts to the parsing algorithm:

1) Strip the operators. This part removes all words that
modify other words. It is based on a correct tagging of
head and modifying words. This stage uses methods from
dependency grammar and the end result is a simplified
sentence.

2) Parse the simplified sentence using templates. This is done
by collapsing the templates to rules, parsing using a chart
parser and then rebuilding the trees at the end using a
complex manipulation of pointers. The chart parser has
been modified to handle varying degrees of word order
flexibility. This is done by working out all the possible
combinations of the ordering using breadth first search.
These options are then built into a complex data structure
in such a way that relevant parts are deleted as parsing
progresses, leaving the correct option according to the
data.

3) Draw the resulting parse tree.

2.2 Parsing templates

The reason for parsing with templates rather than rules is that
templates contain a lot more information. In addition, RRG
contains peripheries and links that do not fit into trees in the
normal way but via arrows, as illustrated in Figure 3, which
shows an automatically generated parse tree. Also, by using a
template, it is easier to ensure that in sentences with a pre-core
slot (PrCS), for example, an argument really is missing from the
CORE. However, parsing with templates is much harder than
with rules.
 LDP CLAUSE
Templates are parsed by collapsing all the templates to rules and
then rebuilding the correct parse tree once parsing is complete.
This is done by including the template tree in the rule, as well as
the left- and right-hand sides. When rules are combined during
parsing, we make sure that the right-hand side elements of the
instantiated rule, as represented in the partial parse tree, point to
the leaves of the appropriate rule template tree. This is
especially important when the order of the leaves of the
template may have been changed. The reference number for the
rule that has been applied is also recorded so that it can be
found quickly.

Modifying nodes, such as PERIPHERY, cause problems with
rebuilding the tree. This is because such nodes can occur
anywhere within the template, including at the root and leaf
levels. Also, if we are dealing with a sub-rule whose root node
in the parse tree has a modifying node, it is not possible to tell
whether this is a hangover from the previous template, or part of
the new template. To solve this problem, modifying nodes have
flags to say whether they have been considered or not. There is
a potential additional problem with repeated nested rules: if
processing is done in the wrong order, the pointers to the rule
template tree get scrambled. To overcome this problem, each
leaf of a template is dealt with before considering sub-rules.
The algorithm for building the tree is:

1) Get the appropriate rule and rule template tree.
2) If the rule tree is of depth 1 and has no embedded

modifying nodes (that is modifying nodes that point to a

ADV

Yesterday,

PrCS

WH

what

CORE PERIPHERY

ARG NUC ADV/PP

PP

P

in

NP

library?the

NP

PN

John

PRED

V3

show did

ARG

PP

P NP

to Pat

node other than the root), then simply continue by looking
at each of the children in turn, starting at step 1.

3) If the rule tree is of depth greater than 1 or there are
embedded modifying nodes, then make the rule template
tree point to the appropriate places in the parse tree. This is
done using the links made from the parse tree to the rule
template tree during parsing. Note that the parse tree will
consist of simple rule structures of depth 1 and modifying
nodes will show up as children.

4) Clear all the children in the parse tree. This will have the
effect of removing any embedded modifying nodes.

5) Copy all the children of the template tree and copy into the
appropriate place in the parse tree.

6) If the template has modifying nodes, copy that part of the
template tree and insert into the appropriate place in the
parse tree.

7) Replace the leaves of the copied template trees with the
original leaves. This is possible because the template
leaves are pointing to the original leaves (step 3).

8) Consider each leaf in turn, modifying the parse tree as
above (start at step 1 for each leaf).

2.3 Parsing with fixed, free and constrained word order

There were two main problems to solve in order to modify the
chart parser to handle varying degrees of word order flexibility:
• Working out a notation for denoting how the word order

can be modified
• Working out a method of parsing using this notation.

The first was achieved by the following notation on the ordering
of the leaves of the template, treating the template as a rule:
• Fixed word order: leave as it is [N V N].
• Free word order: insert commas between each element [N,

V, N]. (Note that case information is included as an
operator so that the undergoer and actor can be identified
once parsing is complete.)

• An element has to appear in a fixed position: use angular
brackets: [N, <V>, ADV] this means that N and ADV can
occur before or after v, but that V must occur in second
position. Note that this is second position counting
constituents, not words.

Other kinds of variation can be obtained via bracketing. So, for
example, [(N, V) CONJ (N, V)] means that the N’s and V’s can
change order, but that the CONJ must come between each
group. If we had [(N,V),CONJ,(N,V)] Then the N’s and V’s
must occur next to each other, but the group do not have to be
separated by the CONJ, which h can occur at the start, in the
middle or at the end, but which cannot break up an [N,V] group.

2.4 Modifications to the parsing algorithm

Parsing was achieved via a structure that encoded all the
possible orderings of a rule. So, for example, the rule
CORE→N, V, N would become:

This means that N or V can occur in any position, and N has to
occur twice. The lines between the boxes enable the “rule” to be
updated as elements are found.

Using this schema, SENTENCE→(N,V) CONJ (N,V) would
become:

In this case, the CONJ in the middle is by itself because it has to
occur in this position as the grouping word order is fixed. The
groupings of N’s and V’s show where the free word ordering
can occur.

To apply a rule, the first column of the left-hand side of the rule
is searched for the token. Any tokens that do not match are
deleted along with the path that leads from them. In the first
example, after an N is found, we would be left with:

In the second example, after an N is found we would be left
with:

Note that in order for the rule to be satisfied, we must find a V
and then a CONJ: there are no options for position 2 once the
element for position 1 has been established.

In this way, we can keep track of which elements of a rule have
been found and which are still to be found. Changes in ordering
with respect to the template are catered for by making sure that
all instantiated rules point back to the appropriate leaves of the
rule template, as described above.

The different possibilities for each rule are obtained via a
breadth first search method that treats tokens in brackets as
blocks. Then the problem becomes one of working out the
number of ways that blocks of different sizes will fit into the
number of slots in the rule.

3. Results

The above algorithm was tested on student texts that formed
part of a statistics assignment. The task was to identify biases in
a certain scenario and to suggest a less biased way of collecting
data. There are over 100 of these texts, but as tagging is fairly
time consuming, to date only 15 of these texts have been
considered. Some texts were discarded because they had some
formatting in them, such as bulleted lists. Of those texts we
could use, we used the first 45 sentences (six complete texts) to
design a set of templates to parse these sentences. Note that this
is the first attempt to use RRG theory to parse texts. We
managed to parse all but one sentence, and this sentence has

ungrammaticality in it, which is hard to work around. We then
applied these templates to the next six texts (47 sentences) to
see how well our current set-up works. Of these sentences, 15
were parsed correctly. This is about 32%, or 36% if you
discount the ungrammatical sentences that did not parse. Many
of the sentences that did not parse did not do so because their
structure had not been modelled. This is not a surprise given
that the templates had only been determined using six texts.

In addition, the lengths of sentences vary from seven words to
63 words, and the distribution can be seen in the graph in Figure
5, which shows the frequency of the number of words in the
sentences. This shows that most of the sentences are long and
thus have a high degree of complexity.

Although, the preliminary results of applying these algorithms
to student texts are very promising, some issues have been
highlighted. The method parses relatively simple sentences
correctly, and the main arguments and verbs are found. In
addition, some very long and complicated sentences are parsed
correctly, and many kinds of grammatical errors do not cause
any problems.

Frequency

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
More

Figure 3: Graph showing the frequency of sentence lengths
in the analysed texts. Sentence lengths are along the x-axis.

An example of a correctly parsed sentence is: “I would target
main areas populated by students and would attend the same
place at different times and during the day.” The parse tree for
this example is given in Figure 6. Note that the complex object
“main areas populated by students” has been parsed correctly
and that the tree attaches the qualifying phrase to “area” so that
it is clear what is being qualified. An important source of
ambiguity in English sentences is caused by prepositional
phrases, and this is a main cause of multiple parses of a
sentence. In this example, the phrases “at different times” and
“during the day” are placed together in the periphery of the
CORE, although arguably they should have a different structure.
This is a design decision to limit the number of parses. This
kind of information needs semantic information to sort out what
attaches to what. This cannot be obtained purely from the
syntax.

An example of an ungrammatical sentence that is correctly
parsed is: “Results from the observations would be less bias if
the sample again was not limit the students in the labs between
9:30 and 10:30 on a Thursday morning.” (The parse tree for
which is given in Figure 7.) This sentence parses correctly
because the affix that should be on “limit” is an operator and the
correctness of the operators is not checked during the parsing
process. The word “bias” is labelled as a noun and gets attached

as the second argument to “would be”, although it should be
“biased”, which would get it labelled as an adjective. Despite
these errors, the meaning of the sentence is clear and the parse
will enable the meaning to be deduced.

The following sentence produces two parses (one correct and
one incorrect): “Therefore, asking only the students present on a
Thursday morning will exclude all the students that either have
no lessons or are not present.” The incorrect parse breaks up
“Thursday morning” to give two clauses: (1) “Asking only
students present on a Thursday” and (2) “Morning will exclude
all the students that either have no lessons or are not present.”

In the first clause, the subject is “asking only students”, the
main verb is “present” and the object is “on a Thursday
morning”. This does not make sense, but it is syntactically
correct as far as the main constituents are concerned. Similarly,
the second clause is also syntactically correct, although it does
not make sense. There are two ways of eliminating this parse.
The first is to do a semantic analysis; the second is to not allow
two clauses juxtaposed next to each other without punctuation
such as a comma. However, students tend to not be very good at
getting their punctuation correct. The current implementation of
the parsing algorithm ignores all punctuation other than full
stops for this reason. In fact, there is a trade-off between
allowing the system to parse ungrammatical sentences and the
number of parse trees produced. More flexibility in grammatical
errors increases the number of parse trees.

An issue that makes parsing problematic is that of adverbs.
These tend to be allowed to occur within several places within
the core and some, such as “yesterday”, modify groups of words
rather than a single word. The best solution, given their relative
freedom of placing and the fact that sorting out where best to
put them is more a meaning than a syntactic issue, would be to
remove them and work out where they belong once the main
verb and arguments have been identified.

Most of the above issues have to be left to an analysis of
meaning to sort out the correct parse. There is no clear division
between syntax and semantics. However there is another issue
that has been highlighted to do with grammar and punctuation.
How tolerant of errors should the system be? We have shown
that errors in the operators do not cause problems for the parser,
and errors in the placing of adverbs are relatively easy to deal
with, but errors in the main constituents are not handled. For
example, the phrase “the main people you need to ask will not
be in the labs so early unless that have got work to hand in”
occurs in one of the texts. The current algorithm will not handle
these kinds of mistakes. Should the system be able to handle
these kinds of mistakes, or should students be encouraged to
improve their writing skills?

SE
NT

EN
CE

CL
AU

SE
CL

AU
SE

PE
RI

PH
ER

Y

CL
AU

SE
CL

AU
SE

LN
K if

CO
RE

CO
RE

PE
RI

PH
ER

Y

AD
V/

PP
AD

V/
PP

PPPP

PP in

NPNP

CO
RE

-N
CO

RE
-N

la
bs

th
e

PPPP

PP

be
tw

ee
n

NPNP

CO
RE

-N
CO

RE
-N

NU
C-

N
NU

C-
N

NU
C-

N
NU

C-
N

NN 9:
30

NU
C-

N
NU

C-
N

LN
K

CO
NJ

CO
NJ

an
d

NN

10
:3

0

PPPP

PP on

NPNP

CO
RE

-N
CO

RE
-N

NU
C-

N
NU

C-
N

NN

Th
ur

sd
ay

a

CO
RE

-N
CO

RE
-N

NU
C-

N
NU

C-
N

NN

m
or

ni
ng

.

AR
G

AR
G

sa
m

pl
e

th
e

NU
C2

NU
C2

PR
ED

2
PR

ED
2

V2V2 lim
it

ag
ai

n
wa

s
no

t

AR
G

AR
G

NPNP

CO
RE

-N
CO

RE
-N

NU
C-

N
NU

C-
N

NN

stu
de

nt
s

th
e

CO
RE

CO
RE

AR
G

AR
G

NP
1

NP
1

CO
RE

-N
CO

RE
-N

NU
C-

N
NU

C-
N

Re
su

lts

PPPP

PP fro
m

NPNP

CO
RE

-N
CO

RE
-N

NU
C-

N
NU

C-
N

NN

ob
se

rv
at

ion
s

th
e

NU
C

NU
C

PR
ED

PR
ED

V-
AU

X
V-

AU
X

BEBE be
wo

ul
d

AR
G

AR
G

NPNP

CO
RE

-N
CO

RE
-N

NU
C-

N
NU

C-
N

NN bi
as

le
ss

SE
N

TE
N

CE

CL
AU

SE
CL

AU
SE

CO
RE

CO
RE

AR
G

AR
G I

N
UC

2
N

UC
2

PR
ED

2
PR

ED
2

V2V2

ta
rg

et
w

ou
ld

AR
G

AR
G

N
P

N
P

CO
RE

-N
CO

RE
-N

PE
RI

PH
ER

Y

CL
AU

SE
CL

AU
SE

CO
RE

-M
IN

CO
RE

-M
IN

PE
RI

PH
ER

Y

PP
-B

Y
PP

-B
Y

P-
BY

P-
BY by

N
P

N
P

st
ud

en
ts

N
UC

2
N

UC
2

PR
ED

2
PR

ED
2

po
pu

la
te

d
po

pu
la

te
d

N
UC

-N
N

UC
-N

NN

ar
ea

s
m

ai
n

CO
RE

-M
IN

CO
RE

-M
IN

LN
K

CO
N

J
CO

N
J

an
d

PE
RI

PH
ER

Y

AD
V/

PP
AD

V/
PP

PPPP

PP at

N
P

N
P

CO
RE

-N
CO

RE
-N

tim
es

di
ffe

re
nt

PPPP

PP

du
rin

g

N
P

N
P

CO
RE

-N
CO

RE
-N

N
UC

-N
N

UC
-N

NN da
y.

th
e

N
UC

2
N

UC
2

PR
ED

2
PR

ED
2

at
te

nd
w

ou
ld

AR
G

AR
G

N
P

N
P

CO
RE

-N
CO

RE
-N

N
UC

-N
N

UC
-N

pl
ac

e
th

e
sa

m
e

le of a correctly parsed sentence Figure 4: An examp

Figure 5: An example of a correctly parsed ungrammatical sentence

4. Conclusions and future work

p to alleviate this
roblem as will some attention to semantics.

, however, this level of complexity really should
e handled.

s adds a significant level of
mplexity to the parsing problem.

more figurative sense, as in “I see that Jim has
one home”.

learly much
ork needs to be done before this aim is achieved.

5. References

[1].

rence CICLING): Seoul 15-21 Feb.

[2].
.ai.uga.edu/mc/dparser/dparser.pdf

[3]

[4].

rence TSD: Brno, Czech Republic, Sep 9-12,.2002 pp

[5].

Cybernetics: Tucson, AZ Oct 7-11.

[6].
Cybernetics: Tucson,

[7]. s

[8].
d Function. Cambridge, Cambridge University

[9]. of Speech-to-
Speech Translation. Berlin: Springer. 2000

Although, the initial results are promising, a lot more work
needs to be done before this work can be included in an
automatic marking system. Determining a good set of templates
according to RRG theory is hard, and it is extremely difficult to
keep the number of parses down to a small number. However,
the use of statistical approaches should hel
p

One particularly difficult aspect of parsing has been the noun
phrases and the forms of arguments of verbs. When an
argument is a straightforward noun phrase, parsing is
straightforward, but we have numerous examples where the
arguments are very complex noun phrases or another complex
structure. An example of a complex noun phrase is: “possible
sources of bias introduced into finding out students clubbing
habits by asking those in the labs between 9:30 and 10:30 on a
Thursday morning”. This noun phrase is parsed correctly, but so
far other kinds of complex arguments are not, such as “by
randomly selecting an equal amount of students out of each year
on varying courses by using their student ID email and sending
them a questionnaire or just asking at popular locations within
the campus, keeping a tally in order to meet the specification of
the sample”. All the latter is a single argument to “This could be
done”. Clearly the sentence would be easier both to parse and
for other people to understand if it was broken up into several
sentences. If the computer is to be able to handle any text
automatically
b

One line of attack to handle complexity would be to compare
these examples with texts where (unlike for these examples)
students are given marks for presentation and grammar. It may
be that these texts are much easier to parse, and if this is the
case, then we may be able to put some constraints on the
complexity of sentences that students are allowed to input to an
automatic marking system. One constraint that it would be
useful to add would be to constrain the formatting that students
are allowed to use. Formatting in the form of bulleted lists,
especially of paragraphs, is a topic we have not even
considered. It should be possible to handle other types of
formatting such as simple lists or the use of colons, which are
not handled at present, but even thi
co

At present, verbs are simply categorised depending on how
many arguments they take. Parsing may be easier if we could
take into account the kind of arguments they take. For example,
the verb “eat” is generally found with relatively simple
arguments, whereas “suggest” or “recommend” generally take
much more complex arguments. In the future, we plan to use
this work as the first stage in a system that uses a new semantic
framework, ULM (Universal Lexical Metalanguage) [3] to
compare the meaning of student texts with a (single) model
answer. A core part of ULM is to link syntactic structure and
semantics together, and part of this is to specify the types of
arguments in more detail along with the syntactic structure that
goes with them. For example, the verb “see” takes simple
arguments when used with standard simple sentence structure
(such as “I see lots of trees”), but more complex arguments
when used in a
g

The ultimate aim of using ULM would be to enable us to
convert text to a meaning representation. The aim is to build up
a meaning representation from several sentences and then

compare the meaning of the student text with the model answer
– even when the words used are not the same. C
w

 Chung, H. and Rim, H.-C. “Unlexicalized Dependency
Parser for Variable Word Order Languages based on Local
Contextual Pattern”, Lecture Notes in Computer Science:
Computational Linguistics and Intelligent Text Processing
(5th International Confe
2945, 2004 pp 112-23.
 Covington, M. A. “A Free Word Order Dependency Parser
in Prolog”. http://www
[last accessed Sep 2008]

. Guest, E. and R. Mairal Usón, “Lexical Representation
Based on a Universal Metalanguage”. RAEL, Revista
Española de Lingüística Aplicada, 4: 2005 pp. 125-173
 Holan, T. “Dependency Analyser Configurable by
Measures”.Text, Speech and Dialogue 5th International
Confe
81-8.
 Hou, L. and Cercone, N. “Extracting Meaningful Semantic
Information with EMATISE: an HPSG-Based Internet
Search Engine Parser”. IEEE International Conference
on Systems, Man, and
vol 5, 2001 pp2858-66.
 Kešelj, V. “Modular HPSG”. IEEE International
Conference on Systems, Man, and
AZ Oct 7-11.vol 5, 2001 pp 2867-72.
 Van Valin, R. D. J. Exploring the Syntax-Semantic
Interface. Cambridge: Cambridge University Press. 2005
 Van Valin, R. D. J. and LaPolla, R.Syntax: Structure,
Meaning an
Press. 1997
 Wahlster, W. Verbmobil: Foundations

	Conf_coversheet
	Leeds Metropolitan University Repository

	RRGParsingEGuest
	 Elizabeth Guest
	ABSTRACT
	Much effort has been put into finding ways of parsing natural language. Role and Reference Grammar (RRG) is a linguistic paradigm that has credibility in linguistic circles. In this paper we give a brief overview of RRG and show how this can be implemented into a standard rule-based parser. We used the chart parser to test the concept on sentences from student work. We present results that show the potential role of this method for parsing ungrammatical sentences.
	1. INTRODUCTION
	2. Methods
	2.1 Outline of the parsing algorithm:
	Tagging is an important part of parsing, for this work tagging has been done semi-automatically using “toolbox”, a program available from SIL. This was so that it was possible to experiment with the tags. However, once the tags have been finalised an appropriate automatic tagger can be used, or written using standard techniques. The main things to bear in mind when designing a tagging schema for RRG are:
	2.3 Parsing with fixed, free and constrained word order
	2.4 Modifications to the parsing algorithm

	3. Results
	5. References
	[1]. Chung, H. and Rim, H.-C. “Unlexicalized Dependency Parser for Variable Word Order Languages based on Local Contextual Pattern”, Lecture Notes in Computer Science: Computational Linguistics and Intelligent Text Processing (5th International Conference CICLING): Seoul 15-21 Feb. 2945, 2004 pp 112-23.
	[2]. Covington, M. A. “A Free Word Order Dependency Parser in Prolog”. http://www.ai.uga.edu/mc/dparser/dparser.pdf [last accessed Sep 2008]
	[4]. Holan, T. “Dependency Analyser Configurable by Measures”.Text, Speech and Dialogue 5th International Conference TSD: Brno, Czech Republic, Sep 9-12,.2002 pp 81-8.

	[5]. Hou, L. and Cercone, N. “Extracting Meaningful Semantic Information with EMATISE: an HPSG-Based Internet Search Engine Parser”. IEEE International Conference on Systems, Man, and Cybernetics: Tucson, AZ Oct 7-11. vol 5, 2001 pp2858-66.
	[6]. Kešelj, V. “Modular HPSG”. IEEE International Conference on Systems, Man, and Cybernetics: Tucson, AZ Oct 7-11.vol 5, 2001 pp 2867-72.
	[7]. Van Valin, R. D. J. Exploring the Syntax-Semantics Interface. Cambridge: Cambridge University Press. 2005
	[8]. Van Valin, R. D. J. and LaPolla, R.Syntax: Structure, Meaning and Function. Cambridge, Cambridge University Press. 1997
	[9]. Wahlster, W. Verbmobil: Foundations of Speech-to-Speech Translation. Berlin: Springer. 2000

