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Abstract 

Race walking is an Olympic event where no visible loss of contact should occur and the knee 

must be straightened until midstance. The purpose of this study was to analyse ground 

reaction forces of world-class race walkers and associate them with key spatiotemporal 

variables. Nineteen athletes race walked along an indoor track and made contact with two 

force plates (1000 Hz) while being filmed using high-speed videography (100 Hz). Race 

walking speed was correlated with flight time (r = .46, p = .049) and flight distance (r = .69, 

p = .001). The knee’s movement from hyperextension to flexion during late stance meant the 

vertical push-off force that followed midstance was smaller than the earlier loading peak (p < 

.001), resulting in a flattened profile. Athletes with narrower stride widths experienced 

reduced peak braking forces (r = .49, p = .046), peak propulsive forces (r = .54, p = .027), 

peak medial forces (r = .63, p = .007) and peak vertical push-off forces (r = .60, p = .011). 

Lower fluctuations in speed during stance were associated with higher stride frequencies (r = 

.69, p = .001), and highlighted the importance of avoiding too much braking in early stance. 

The flattened trajectory and consequential decrease in vertical propulsion might help the race 

walker avoid visible loss of contact (although nonvisible flight times were useful in 

increasing stride length), while a narrow stride width was important in reducing peak forces 

in all three directions and could improve movement efficiency. 

 

Keywords: biomechanics, coaching, endurance, kinetics, performance 
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Introduction 

Race walking is contested over 20 km (men and women) and 50 km (for men only) at the 

Olympic Games and all other major athletics championships. It is an abnormal gait dictated 

by a rule that states that no visible (to the human eye) loss of contact with the ground should 

occur and that the leg must be straightened from first contact with the ground until the 

‘vertical upright position’ (Rule 230.1) (IAAF, 2013). The consequential absence of knee 

flexion during early- and midstance in race walking does not occur in normal walking (Lee & 

Farley, 1998) and prior research on race walkers has found that race walkers’ knees are in 

fact usually hyperextended during midstance (Hanley, Bissas, & Drake, 2011; Hanley, 

Bissas, & Drake, 2013). It is possible that both this atypical movement of the knee and the 

need to avoid visible loss of contact have a considerable effect on ground reaction force 

(GRF) patterns that affect other gait variables. 

 

As an endurance event, it is crucial that the athlete can maintain a fast but 

submaximal speed that wastes as little energy as possible. The main spatiotemporal factors 

that the athlete has to consider in achieving higher speeds are increased stride length and 

stride frequency, the latter mainly through shorter contact times (Padulo, Annino, D’Ottavio 

et al., 2013). In addition, previous research has shown the importance to stride length of the 

foot position relative to the centre of mass (CM) at both initial contact and toe-off (Hanley et 

al., 2011), notwithstanding the crucial role played by any extra distance achieved during 

flight. It seems logical that placing the foot too far ahead of the CM could cause too great a 

braking impulse for the effective maintenance of race walking speed (Lafortune, Cochrane, 

& Wright, 1989), and an efficient race walking technique is therefore one where the decrease 

in velocity during the braking phase is minimised so that the effort required to recover 

velocity during the propulsion phase is also reduced. 
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Despite the prevalence of GRF measurements in normal and pathological gait 

analysis, very little has been conducted in race walking. Two early studies by Fenton (1984) 

and Cairns, Burdette, Pisciotta, & Simon (1986) were on non-elite athletes and conducted 

before 1995, when the current rule governing the knee’s movement was introduced. These 

early studies therefore do not reflect present-day elite race walking, and new research on this 

unique form of gait is required to describe the GRF patterns that occur in world-class athletes 

and to identify key kinetic variables (e.g. peak vertical loading force). Such research can aid 

coaches in identifying the importance of elements of high-quality race walking that normally 

are unavailable to them, such as braking and propulsive impulses. New research that 

combines GRF data with key spatiotemporal data (e.g. stride length and width) will therefore 

be useful to coaches who wish to have a sound empirical basis for their training practices. 

The purpose of this study was to describe and analyse GRF variables in world-class race 

walkers and relate them to key kinematic and spatiotemporal variables. 

 

Methods 

Participants 

The study was approved by the Faculty Research Ethics Committee and 19 race walkers of 

10 different nationalities gave written informed consent. The athletes comprised 11 men (25.8 

± 3.1 years, 1.79 ± .05 m, 66.3 ± 8.0 kg) and eight women (26.0 ± 4.2 years, 1.66 ± .05 m, 

55.1 ± 4.9 kg). All participants had competed at the Olympic Games or IAAF World 

Championships (which was part of the inclusion criteria). All 11 men had previously 

competed over 20 km (personal best time: 1:23:06 ± 2:16) with nine also competing over 50 

km (3:51:12 ± 8:02). The mean personal best time for the women over 20 km was 1:30:40 (± 

1:48). 
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Data collection 

Each athlete race walked along a 45 m indoor track at a speed equivalent to their season’s 

best time for 20 km or 50 km, dependent on specialism. A national race walking coach and 

qualified judge were present to ensure legal race walking technique was adopted. Timing 

gates were placed 4 m apart around two force plates (Kistler, Winterthur) that recorded both 

left and right foot contact phases and any flight time. Athletes completed at least 10 trials 

each and the three closest to the target time (within 3%) were analysed provided there was no 

evidence of conscious stride adjustment when contacting the force plates. The force plates 

recorded at 1000 Hz and were covered with a synthetic athletic running surface so that the 

testing area was flush with the rest of the runway (Bezodis, Kerwin, & Salo, 2008). 

Synchronised high-speed video data were collected at 100 Hz (Fastec, San Diego, CA). The 

shutter speed was 1/500 s, the f-stop was set at 2.0, and there was no gain; the resolution of 

the camera was 1280 x 1024 pixels. The camera was placed approximately 12 m from and 

perpendicular to the line of walking. Extra illumination was provided by 104 kW of overhead 

floodlighting. 

 

Data processing 

In addition to stride width, which was measured using the centre of pressure readings from 

the force plates, the three components of the GRF data (vertical, anteroposterior and 

mediolateral) were analysed during each contact phase. Contact time was considered to begin 

when the vertical force trace exceeded 5 N and to end when it decreased below 5 N; flight 

time was calculated as the time between successive steps. To account for differences in body 

size, all GRF data were normalised using the athletes’ weights and expressed as bodyweights 

(BW). Results for each individual were averaged for both contact phases over the three trials. 
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The video files were manually digitised by a single experienced operator to obtain kinematic 

data using motion analysis software (SIMI, Munich). Digitising was started at least 10 frames 

before the beginning of the stride and completed at least 10 frames after to provide padding 

during filtering (Smith, 1989). Each video was first digitised frame by frame and upon 

completion adjustments were made as necessary using the points over frame method 

(Bahamonde & Stevens, 2006). A cross-validated quintic spline was used to smooth the raw 

data before coordinate calculations (e.g. CM position) (Giakas & Baltzopoulos, 1997). 

Seventeen segment endpoints were digitised for each participant and a fourteen-segment 

body segment parameter model (de Leva, 1996) was used to obtain data for the CM and 

particular limb segments. The fourteen segments were the head, trunk, upper arms, forearms, 

hands, thighs, lower legs and feet.  

 

In order to ensure reliability of the digitising process, repeated digitising (two trials) of one 

race walking sequence at the same sampling frequency was performed with an intervening 

period of 48 hours. The same three statistical methods for assessing reliability were used: 

95% limits of agreement (LOA), coefficient of variation (CV) and intraclass correlation 

coefficient (ICC). The data for each tested variable were assessed for heteroscedasticity by 

plotting the standard deviations against the individual means of the two trials. If the data 

exhibited heteroscedasticity, a logarithmic transformation of the data (loge) was performed 

before the calculation of absolute reliability measures (Bland & Altman, 1986). The LOA 

(bias ± random error), CV and ICC (3,1) values for CM x-velocity were –0.01 ± 0.08 m·s
-1

, ± 

0.72%, and 1.00 respectively; for CM x-coordinate –0.001 ± 0.004 m, ± 0.05%, and 1.00 

respectively; for the right foot x-coordinate 0.000 ± 0.002, ± 0.03%, and 1.00 respectively; 

for the left foot x-coordinate –0.001 ± 0.006, ± 0.07%, and 1.00 respectively; and for knee 
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angle –0.3 ± 1.2°, ± 0.24%, and 1.00 respectively. These results thus showed minimal 

systematic and random errors and confirmed the high reliability of the digitising process. 

 

Data analysis 

With regard to vertical GRF data, the variables analysed were impact peak force, loading 

peak force, midstance force, and push-off peak force. The impact peak was identified visually 

as a distinct peak occurring normally within the first 30 ms of contact. The loading peak force 

was identified as the next peak in the vertical GRF trace and typically occurred between 50 

and 70 ms after initial contact. The midstance force value was measured at the instant where 

the anteroposterior force trace crossed zero (from the deceleration phase to the acceleration 

phase). The push-off peak force was identified as the maximum vertical force after 

midstance. 

 

The two shear GRF traces were analysed in a similar fashion. The anteroposterior 

GRF variables chosen for analysis were the maximum magnitudes of the deceleration 

(‘braking’) and acceleration (‘propulsion’) forces, the duration of the braking and propulsion 

phases, and the resulting change in velocity values (from the calculation of both negative and 

positive impulses). Net change in velocity was calculated from net impulse over the whole 

contact phase, while the positive and negative impulses were summed to further calculate 

gross change in velocity. In those traces showing evidence of a brief ‘spike’ peak at initial 

contact, the spike impulse was calculated. In the mediolateral direction, the variables chosen 

were the magnitudes of the maximum lateral force (during late stance) and maximum medial 

force (during midstance). Early stance values have not been reported as no consistent pattern 

emerged during this phase. The instants during contact where the predominant lateral force 
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became medial and then reversed back to lateral were also measured. Temporal data have 

been reported as normalised data using percentage of stance time. 

 

Race walking speed was determined as the mean horizontal speed during one 

complete gait cycle (using the digitised data). With regard to spatiotemporal variables, stride 

length was measured as the distance between successive right foot contacts. Stride length was 

also expressed as a percentage of the participants’ statures, and referred to as stride length 

ratio. Stride frequency was calculated as the reciprocal of stride time (Padulo, Chamari, & 

Ardigò, 2014). ‘Foot ahead ratio’ was used to describe the horizontal distance from the foot 

to the CM at initial contact as a proportion of stature. Similarly, ‘foot behind ratio’ was the 

horizontal distance from the foot to the CM at the final instant of contact as a proportion of 

stature. Flight distance was the distance the CM travelled during flight, measured from the 

instant of toe-off to the instant of initial contact (Hunter, Marshall, & McNair, 2004). The 

knee angle was calculated as the sagittal plane angle between the thigh and lower leg 

segments and considered to be 180° in the anatomical standing position (Hanley & Bissas, 

2013; Padulo, Annino, Tihanyi et al., 2013). 

 

Statistical analysis 

All statistical analyses were conducted using SPSS Statistics 20 (IBM SPSS, Inc., 

Chicago, IL). Independent t-tests were conducted to compare values between men and 

women, with adjustments made if Levene’s test for equality of variances was less than 0.05. 

One-way ANOVA was used to compare vertical force peak magnitudes, with post-hoc Tukey 

tests conducted (Field, 2009). Pearson’s product moment correlation coefficient was used to 

find associations between variables; statistical significance was accepted as p < .05 for all 

tests. 
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Results 

None of the normalised GRF or kinematic variables differed between sexes and consequently 

the results for both men and women have been combined for the purposes of description and 

analysis. The mean race walking speed during testing was 13.40 km·h
-1

 (s = .79), stride 

frequency was 1.61 Hz (s = .07), and stride length was 2.32 m (s = 0.17), which equated to a 

mean stride length ratio of 132.7% (s = 7.4). Mean contact time was 0.280 s (s = .019), while 

flight time was 0.031 s (s = .010); the mean flight distance during this phase was 0.12 m (s = 

.05). The mean foot ahead ratio was 21.4% (s = 1.7) and the mean foot behind ratio was 

27.0% (s = 1.2). The mean knee angle at contact was 180° (s = 3), hyperextending to 185° (s 

= 4) at midstance and flexing to 148° (s = 4) at toe-off. The mean stride width was .048 m (s 

= .037). Race walking speed was positively correlated with stride length ratio (r = .71, p = 

.001), flight time (r = .46, p = .049) and flight distance (r = .69, p = .001), while longer foot 

behind ratios and flight distances were associated with longer stride length ratios (r = .49, p = 

.034 and r = .56, p = .013 respectively). During the braking phase of contact, the mean 

decrease in velocity was –0.58 km·h
-1

 (s = .10) while the mean increase in velocity during 

the propulsive phase was 0.71 km·h
-1

 (s = .11), for a net change in velocity of 0.14 km·h
-1

 (s 

= .11) and gross change in velocity of 1.29 km·h
-1

 (s = .17). Higher stride frequencies were 

associated with smaller gross changes in velocity (r = –.46, p = .046) and shorter contact 

times (r = –.86, p < .001), but not with shorter flight times (r = .30, p = .21). 

 

The values for key kinetic variables and the timing of their occurrence are shown in 

Table 1 below, and a diagram of the averaged race walk GRF trace is shown in Figure 1. In 

the vertical direction, a distinct impact peak was identified in the traces of 15 of the 19 

participants. Longer flight times were associated with both higher loading peak forces (r = 

.47, p = .042) and higher midstance forces (r = .51, p = .025). In the anteroposterior direction, 
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a brief spike impulse that began at initial contact and lasted 20 ms (s = 3) was identified in 

the traces of 18 participants. The braking phase lasted 41.0% (s = 5.5) of total stance time; its 

duration was correlated with foot ahead ratio (r = .53, p = .020), and there was a relationship 

between gross change in velocity and peak braking force (r = .54, p = .016) but not with 

braking phase duration. By contrast, during the propulsive phase both greater maximum 

propulsive forces and longer propulsive phases were associated with larger gross changes in 

velocity (r = .61, p = .005 and r = .59, p = .008 respectively). Later peak propulsive forces 

were associated with longer flight times (r = .49, p = .035), while higher midstance forces 

were correlated with smaller gross changes in velocity (r = –.68, p = .001). 

 

In early stance, the athletes differed in their experiences of mediolateral forces (some 

were predominantly medial, others lateral, and others experienced both). There was however 

a distinctive pattern of medially-directed forces lasting from 28.6% (s = 6.1) to 61.3% (s = 

5.0) of total stance time, after which laterally-directed forces were observed until toe-off. 

Faster walkers took longer to reach the medial peak force (r = .61, p = .006), and narrower 

stride widths were associated with smaller medial peaks during midstance (r = .63, p = .007), 

smaller vertical push-off peak forces (r = .60, p = .011), smaller braking peak forces (r = .60, 

p = .011), and smaller propulsive peak forces (r = .49, p = .046). 

 

Discussion 

The aim of this study was to describe and analyse GRF variables in world-class race walkers 

and relate them to key spatiotemporal variables. It was informative that no differences 

between sexes were found for GRF variables or the few kinematic variables when 

normalised. Previous research has found that elite men were faster than elite women because 

of longer step lengths, and this difference was in turn largely due to men’s greater statures, 
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rather than joint angular differences or movement patterns (e.g. there was no difference in 

step frequency) (Hanley et al., 2013). The results of the present study likewise suggest that 

elite male and female race walkers have comparable motions as a result of similarly well-

developed techniques that optimise performance. Even though the athletes race walked at 

competitive rather than maximal speeds, it was still noticeable that faster walkers had longer 

stride lengths and flight distances. This was because very brief but non-visible flight periods 

were recorded for all athletes (and indeed are commonplace in competition (Hanley et al., 

2011; Knicker & Loch, 1990)). Although longer flight distances were clearly advantageous 

to this group of athletes, it is not advisable for race walkers to deliberately increase flight 

time when attempting to walk faster as this also increases the risk of disqualification. The 

best advice might therefore be to try to maximise flight distance with the minimum of flight 

time (i.e. avoid upward rather than forward movement), and it was interesting in this study 

that these two temporal variables did not always correlate with the same GRF or kinematic 

variables. Coaches should monitor their athletes for visible loss of contact and develop sound 

techniques in training to prevent it. 

 

Race walking is an abnormal form of gait and while all peak forces were higher than 

those typically found in normal walking (Levine, Richards, & Whittle, 2012), what was 

particularly striking was how the vertical trace did not increase after midstance with the 

result that the push-off peak was approximately 83% of the earlier loading peak. The 

corresponding kinematic data suggest that the reduction in vertical force during late stance is 

a result of the knee’s movement from hyperextension in midstance to flexion during late 

stance, and means that the race walker’s CM has a flat trajectory that does not follow a 

pendulum-like gait as in normal walking (Pavei, Cazzola, La Torre, & Minetti, 2014). 

Instead, the trajectory during race walking is vertically lower than in normal walking (less of 
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a circular arc) and thus means that it is dynamically more similar to running (Pavei et al., 

2014). Comparable GRF results were found in non-elite race walkers by Fenton (1984) and 

this similarity might be because those race walkers had to fully extend the knee by midstance 

(but not at initial contact) even before the current rule was introduced in 1995 (although the 

knee’s movement was not measured by Fenton (1984)). The knee’s kinematics before toe-off 

might therefore prove to be useful in reducing vertical propulsion of the CM, and reveal a 

previously unheralded advantage of the straightened knee to efficient race walking that helps 

prevent visible loss of contact, and further highlights the value of excellent technique. 

 

As endurance athletes, it is important for race walkers to reduce overall movement 

inefficiency and some features of the vertical GRF pattern (e.g. the slight flattening of its 

stance profile) might be an attempt to reduce vertical displacement and conserve mechanical 

energy (Murray, Guten, Mollinger, & Gardner, 1983). Nearly all athletes experienced a brief 

propulsive impulse at initial contact that theoretically should have reduced the magnitude of 

force production in late stance (Lafortune et al., 1989), but its very small size meant that no 

such association was found. However, greater force magnitudes at midstance were associated 

with less gross change in velocity, showing that the flatter vertical GRF trace already 

described was also beneficial in reducing fluctuations in velocity during stance. This was 

particularly important as athletes who experienced larger gross changes in velocity 

experienced longer contact times and thus had lower stride frequencies. While net change in 

velocity during stance was by necessity positive (at 0.14 km·h
-1

) because of the inevitable 

slowing down that occurs during flight, the key to requiring smaller increases in velocity 

during late stance is to have experienced smaller decreases in velocity during early stance. 

Achieving this was associated with smaller peak braking and propulsive forces (rather than 

the duration of these phases) that in turn were achieved with narrower stride widths. By 
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contrast, coaching advice that the foot ahead distance should be kept very short (Summers, 

1991) was not strongly supported by this study as it was not associated with decrease in 

velocity (or peak braking force) during early stance. This was possibly because the athletes in 

this study were well-trained, elite athletes whose foot positioning was optimised at just over 

20% of stature, a similar value to that found in world-class competition (Hanley et al., 2011), 

and thus a useful guide for athletes to avoid overstriding. 

 

Although there were no phases of double support identified in any of the race 

walkers’ traces, lateral forces were still experienced during early and late stance (as in 

normal walking where double support does occur). Relatively large medial forces were 

recorded in all athletes for roughly the middle third of stance; as suggested by previous 

research (Murray et al., 1983), this was possibly due to an acceleration of the CM towards 

the swing side of the body as a result of pelvic obliquity that occurs to reduce the CM’s 

vertical displacement in the absence of knee flexion. The medial force peak was smaller in 

those athletes with a narrower stride width, and suggests that walking in a straighter line 

necessitates less lateral movement to maintain balance, and a reduction in muscular energy 

requirements is achieved (Levine et al., 2012). In addition, athletes with narrower stride 

widths did not have to produce as much force in the vertical and anteroposterior directions 

during late stance, and this might also show a reduced need for energy expenditure. A narrow 

stride width has been proposed by race walk coaches for some time (e.g. Markham, 1989) as 

a means of increasing stride length (there was no association in this study) but these results 

show that it might have other benefits. As the medial peak force timing was correlated with 

race walking speed, the race walker’s effectiveness in delaying the medial motion of the CM 

in midstance might be a feature of better race walking (through better postural control, for 

example). The lateral forces experienced during late stance appeared to be an attempt to 
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reverse the pelvic obliquity movement before contralateral initial contact (Murray et al., 

1983). These features of both medial and lateral GRFs suggest there is a requirement for race 

walkers to develop the pelvic muscles involved (e.g. gluteus medius) so that CM movement 

efficiency is improved. 

 

A main strength of the present study was the fact that all athletes had competed at the 

highest standard of international competition. However, this meant that the sample size was 

restricted because of the difficulty of recruiting such high-standard athletes. With regard to 

other limitations, future studies could adopt three-dimensional kinematic measurements that 

would allow for the analysis of the CM’s movement in all three planes (e.g. Pavei et al., 

2014) as the two-dimensional analysis undertaken in this study did not allow for appreciation 

of the effects of lateral movement. In addition, direct measurements of the CM in race 

walking might be more suitable than using body segment parameter data because of the 

unusual gait adopted (Pavei, Cazzola, & Minetti, 2012), especially if a greater number of 

kinematic variables is being studied. 

 

Conclusion 

This study was the first to describe and analyse important aspects of GRF traces in world-

class race walkers. Race walking is an abnormal form of gait with a GRF profile different 

from normal walking, not just in terms of force magnitudes, but also in appearance. This was 

especially true of the vertical GRF pattern, but there were also elements of the 

anteroposterior and mediolateral forces that were evidence of efforts to optimise efficiency. 

The results of this study have some practical implications for race walkers and their coaches. 

First, the knee’s abnormal movement from hyperextension to flexion in race walking seems 

to restrict upward propulsion at toe-off that might help prevent visible loss of contact 
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(although brief, non-visible flight is beneficial). Second, placing the foot ahead of the body 

need not be overly detrimental with regard to braking forces, provided its length is about 

20% of stature; in addition, a narrow stride width is advantageous to the athlete. Finally, the 

large mediolateral forces that occur are a response to the straightened knee and could 

demonstrate the need for appropriate training of pelvis-stabilising muscles such as gluteus 

medius. 
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Figure legends 

Figure 1. An averaged GRF trace of the race walking stance phase (left foot) with vertical, 

anteroposterior and mediolateral components shown. 





Table I. Mean (± s) peak values for GRF variables and their timing during race walking. 

 Peak values (BW) Timing (% of stance time) 

Vertical direction   

Impact force 1.30 (± .18)
a
 16.4 (± 4.3) 

Loading force 1.72 (± .18)
a
 23.5 (± 4.1) 

Midstance force 1.55 (± .12)
a
 41.0 (± 5.5) 

Push-off force 1.43 (± .09)
a
 58.0 (± 6.2) 

Anteroposterior direction   

Braking force –0.36 (± .08) 16.8 (± 2.8) 

Propulsive force 0.23 (± .03) 75.4 (± 2.5) 

Mediolateral direction   

Medial force 0.11 (± .05) 41.7 (± 5.4) 

Lateral force 0.06 (± .03) 74.3 (± 4.3) 

a
The peak vertical loading force was significantly larger than the impact, midstance and 

push-off peak forces (p < .001). 


