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Abstract 

     Modeling the price of multi-attribute products generally requires an assessment of 

each attributes’ market value. In the presence of price dispersion, when similar products 

are sold at different prices, hedonic pricing models provide users with biased estimates of 

attribute value. This paper develops the hedonic pricing literature by proposing data 

envelopment analysis as a prior means of identifying a sub-sample of products which, 

after adjusting for attribute provision, display no price dispersion. These products then 

display a homogenous link between attributes and price, which can be modeled using 

hedonic pricing. This paper implements and evaluates this two-stage approach using 1000 

observations from the UK mortgage market. 

 

Key Words: Price dispersion, hedonic pricing, data envelopment analysis, bias, 

consumption efficiency, mortgages. 
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1. INTRODUCTION 

This study proposes a means of measuring the value of product attributes when 

the link between the provision of differentiated product attributes and price is 

complicated by the presence of price dispersion.   

Price dispersion is a violation of the economic law of one price. Products of 

comparable quality, in a perfectly functioning market, should sell for an identical price. 

In reality, the law of one price appears weak, with empirical evidence providing support 

for price dispersion across many industries. For recent examples see (Frank and 

Lamivard, 2009) the Swiss private medical insurance; (Martin-Olivier, Salas-Fuma and 

Saurina, 2008) Spanish bank loans; (Lee, Park, Oh and Kim, 2008) the Korean personal 

computer market; (Grover, Lim and Ayyagari, 2006) for a variety of internet based 

markets; and (Zhao, 2006) in the US grocery market.  

While a significant amount of academic research, led by, (Stigler, 1961), 

(Reinganum, 1979), (Salop and Stiglitz, 1982), (Varian, 1980), (Borenstein and Rose, 

1994) has focused on explaining price dispersion, less attention has been placed on the 

consequences of price dispersion within empirical investigations of differentiated 

products, attribute value and price. 

 A common means of assessing attribute value is to use hedonic pricing models, 

see (Court, 1938), (Lancaster, 1966) and (Rosen, 1974). Assuming that the law of one 

price holds, hedonic pricing models provide unbiased estimates of individual attribute 

price coefficients, (Rosen, 1974). Unfortunately, such an assumption is at odds with the 

plethora of evidence supporting the existence of price dispersion. 

Business and economic academics, commercial pricing specialists and 

government agencies measuring inflation, (see Triplett, 1991), are all interested in 
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measuring the value of differentiated attributes. Given the potential for price dispersion to 

generate bias within hedonic pricing models, then a hedonic approach capable of 

accommodating price dispersion would be extremely desirable. 

Attempts to specify price dispersion as a stochastic element within a hedonic 

framework are evident within the literature. For example, (Caudill, 1993) and housing 

rent controls, (Munn and Palmquist, 1997) and lumber prices, (Kalita, Jagpal, and 

Lehmann, 2004) and consumer electronics; and (Lee et al., 2008) and personal 

computing, all apply the stochastic frontier developed by (Aigner, Lovell, and Schmidt, 

1977). Unfortunately, the stochastic frontier specification also produces biased estimates 

of attribute price coefficients, see (Bardhan, Cooper, and Kumbhakar, 1998).  

The purpose of this study is to accommodate price dispersion and avoid statistical 

bias in the hedonic pricing approach. To achieve this goal, this study applies hedonic 

pricing models to a data set pre-screened for price dispersion. This approach requires a 

prior analysis of the data using non-parametric efficiency measurement techniques. Such 

techniques are capable of identifying products where the quality adjusted price is the 

same and the law of one price holds. Focusing the hedonic price estimator on the 

observations where the law of one price holds results in unbiased estimates of the 

attribute price coefficients.  

In order to illustrate this two-stage approach, the study investigates a sample of 

over 1,000 UK mortgage products, differentiated along 14 dimensions. The results show 

that a traditional one-stage hedonic model results in a poor fit of the data and a number of 

unexpected negative price effects. This study’s preferred two-stage hedonic approach 

provides a better model of the data. 
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The important contributions of this study are: First, an effective empirical 

approach for dealing with price dispersion within hedonic pricing models, leading to 

unbiased results; which addresses a significant weakness in the existing approaches 

proposed by (Kalita et al., 2004) and (Lee et al., 2008). Second, the proposed two-stage 

approach is relatively simple to implement and accessible to researchers and 

practitioners. Non-parametric efficiency measurement is widely understood, appropriate 

software packages exists and problems tend not to be computationally demanding. Third, 

this study extends and supports the growing literature characterized by (Fernandez-Castro 

and Smith, 2002), (Lee et al., 2004, 2005 and 2008), (Ward, 2009) and (Chumpitaz, 

Kerstens, Paparoidamis and Staat, 2010), which investigate economic consumption 

problems from an efficiency perspective.  

The discussion proceeds as follows. Section two develops a framework for 

addressing price dispersion when seeking to estimate hedonic pricing functions. Section 

three highlights the competing non-parametric efficiency approaches and provides a 

useful guide for future researchers. Section four provides an overview of the data and 

presents the results. Section five offers conclusions. 

 

 2. Hedonic Pricing, Price Dispersion And Consumption Efficiency 

 (Rosen, 1974) proposes the hedonic pricing formula (1), which links the price pi 

of the ith product to the xj attributes of the product.  

)...,( 21 ijiii xxxfp   (1) 

Unfortunately, price dispersion prevents the estimation of unbiased price coefficients 

from a hedonic model. Price dispersion as an empirically verified pervasive feature of 

markets, (Frank and Lamivard, 2009, Lee et al., 2008, Martin-Olivier, Salas-Fuma and 
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Saurina, 2008, Grover, Lim and Ayyagari, 2006 and Zhao, 2006), should therefore be 

recognized within empirical studies of price, value and differentiation.  

Related to price dispersion is the concept of consumption efficiency, (see Lee et 

al., 2004, Lee et al., 2005 and Lee et al., 2008), which measures the extent to which a 

consumer could achieve a higher level of utility for a given price with an alternative 

product. In contrast; and from the perspective of a firm seeking to understand the price 

that can be charged for a given combination of product characteristics, an efficient 

product maximizes the output (price) for a given level of input (product features).   

In the efficiency literature radial approaches view inefficiency as linear or 

proportionate changes required in all inputs or outputs to achieve full efficiency. In 

contrast, non-radial approaches examine efficiency from a non-linear perspective by 

considering the possibility of non-proportionate improvements in some or all inputs and 

outputs simultaneously.  

Following a similar approach to (Bardhan et al. 1998) 0 < i < 1 represents the 

unknown radial inefficiency of the ith product. An inefficient input can then be 

characterized as ijiij xx ˆ ; and similarly an inefficient output can be defined as iii yp ˆ  . 

Only when i=1 is the ith product efficient with ijij xx ˆ and ii pp ˆ . Introducing 

inefficiency into our hedonic pricing function, then (1) becomes: 

)ˆ...ˆˆ(ˆ 21 ijiii xxxfp   (2) 

  By allowing  to vary by input j and be no longer common within the ith 

observation, then ijijij xx ˆ and (2) becomes a non-radial expression of possible 

inefficiencies. 
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For the purposes of exposition, assuming that f is linear, then an empirical 

estimable version of (2) is shown in (3), where the error term  is ),0( 2
N : 

iijjiii xxxp   ˆ.....ˆˆˆ 22110  (3) 

Due to researchers only observing ip̂ and the sxij 'ˆ , then ordinary least squares will 

produce biased estimates of the  price coefficients on the xij’s. This bias is because the 

j’s are not constant across efficient and inefficient products, varying by i. Furthermore, 

since i varies by product, then each observation also has its own intercept, ij. Any 

application of (3) to a pooled data set of efficient and inefficient products will result in 

biased  estimates for the underlying technology that describes the relation between 

attributes and price for fully efficient products. This problem is alluded to by (Cubbin and 

Murfin, 1987) when undertaking market share analysis and (Bardhan et al., 1998) when 

examining production efficiency measurement.  

 The stochastic frontier approach developed by (Aigner et al., 1977) is an 

alternative specification for (3). Under this approach the error term i = vi + ui, where vi is 

),0( 2
vN  ; and ui ≥ 0 capturing the inefficiency.  

iiiii uvxxp  ....ˆˆˆ 22110   (4) 

   Used by (Kalita, Jagpal, and Lehmann, 2004) to examine the quality-price 

relationship in the durable and non-durable goods markets, (Caudill, 1993) to examine 

rent controls across differentiated properties; and, (Lee et al., 2008) to examine the 

personal computer market,  the stochastic frontier approach is also known to produce 

biased estimates of the  coefficients. This bias is because the stochastic frontier assigns a 

statistical distribution to all the ui’s, not just those of the inefficient products, leading to 
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E(ui) > 0. The estimated j coefficients from (4) are similar to the biased coefficients 

from (3) and the intercept value increases by E(ui) > 0, see (Bardhan et al. 1998). 

These statistical problems can be resolved if the empirical analysis focuses on 

fully efficient consumption choices, where the law of one price holds; and either i=1 for 

radial inefficiency and ij=1 for non-radial efficiency problems. In this study, a two-stage 

approach employs non-parametric efficiency measurements to categorize observations 

into efficient and inefficient groupings; and then uses only the efficient group of products 

when estimating the hedonic pricing function as in (5) below. 

iijjiii xxxp   ˆ..ˆˆˆ 22110  (5) 

In such circumstances, the filtering out of inefficient observations in the first stage, means 

that ii pp ˆ  and ijij xx ˆ . Therefore, an estimation of (5) will result in an unbiased 

estimate of the underlying efficient technology. Whilst not used in the hedonic pricing 

literature, this two-stage filtering approach is an accepted methodology in the production 

efficiency literature for finding a more statistically efficient estimator of the underlying 

technology, (see Arnold, Bardhan, Cooper, and Kumbhakar, 1996; Bardham, 1998; 

Simar, 1992; and Thiry and Tulkens, 1992).  

Interest in the statistical properties of the estimated efficiency measures and the 

appropriateness of various approaches taken to model efficiency in the second stage, (see 

Hoff, 2007; McDonald, 2009; Simar and Wilson, 2007; Badin, Dairo and Simar, 2012; 

and Johnson and Kuosmanen, 2012) are less relevant to this study. In this study the 

efficiency measures gained from stage-one are only used to select the stage-two sample. 

The determinants of efficiency are not modelled in stage-two of this study; and therefore, 

the efficiency measures and by consequence the statistical properties of the efficiency 

measures are not a consideration in stage-two of this study. However, the approach 
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adopted here is still not without risk, with a possibility of the first-stage filtering process 

leading to a significant loss of observations. Under such circumstances, the one-stage 

approach proposed by (Johnson and Kuosmanen, 2012), which permits a simultaneous 

measurement of efficiency and estimation of the second-stage explanatory model, can be 

considered. However, this approach also has a significant drawback, which is that 

computational burden increases at a quadratic rate as sample size increases. Given that 

some of the consumption efficiency measures discussed below bring their own 

computational burden through the addition of numerous constraints, further 

computational burden from a simultaneous estimation procedure is likely to be 

undesirable. 

The next section discusses the various ways in which non-parametric efficiency 

measures can categorize products as efficient, or inefficient. 

 

3. Non-Parametric Efficiency Measures 

Data envelopment analysis, DEA is the most well-known non-parametric 

efficiency measurement technique; and is closely related to the efficiency work of (Farrel, 

1957).  DEA consists of comparing a given decision making unit, (good, or service), to a 

frontier of piecewise linear combinations of all other units. An observation located on the 

frontier is deemed efficient, see (Coelli, 1996) and (Charnes, Cooper, and Rhodes, 1978).  

Insert Figure 1 here 

In figure 1 observations A, C, D and E define the (thick) frontier. The frontier 

observations are fully efficient, while B’s inefficiency is some function of its distance 

from the frontier.  
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 Keeping inputs and outputs in the same proportions, the initial DEA approach 

proposed by (Charnes, Cooper, and Rhodes, 1978),  CCR, provides a radial measure of 

efficiency by examining how much a unit has to increase all outputs, or lower all inputs, 

in order to be on the frontier. In figure 1 the radial expansion from B to b provides a 

radial measure of B’s inefficiency. However, it is important to note that the comparator b 

does not exist in the sample of products under analysis. Instead, b is a hypothetical 

construction based on a linear combination of the features of products A and C. To ensure 

that B is only compared against observed products in the sample, then following 

(Tulkens, 1993), a free disposal hull, FDH, approach can be used, which creates the 

dotted frontier in figure 1.  

The FDH approach is utilised by (Fernandez-Castro and Smith 2002) to examine 

consumption efficiency in the European car market. However, there are weaknesses in 

the approach. Significantly, the prevalence of dichotomous product features is a 

consideration in consumption efficiency problems.  For example, in figure 1 if products A 

through to E are cars, price is the output, input 1 is engine size and input 2 is number of 

doors, then for car B, a radial expansion to an efficient frontier requires a proportionate 

increase in both engine size and number of doors. Size of engine can be reasonably 

considered a continuous variable, however, number of doors is either 2 or 4; and never 

4.25, for example. Therefore, holding the number of doors constant and making a non-

radial expansion from B to b’ onto the dotted or thick frontier is a more appropriate 

means of measuring efficiency. The importance of non-linearities between product 

characteristics and price are also recongised in the hedonic pricing literature, see 

(Ekeland, Heckman and Nesheim, 2004) and (Chumpitaz et al. 2011).  
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By considering non-radial efficiency a further opportunity arises which is to allow 

simultaneous improvements in outputs and inputs, something which the input(output) 

only orientation of the radial efficiency approaches does not facilitate. Therefore, an 

approach which considers radial, non-radial, input and output orientations is 

advantageous. (For a theoretical discussion of these issues and empirical review see, e.g., 

De Borger, Ferrier and Kerstens, 1998).  

 
Drawing on the work of (Cooper, Park and Pastor, 1999), the free disposal hull 

range adjusted measure, FDH-RAM is proposed by (Lee et al. 2005); and serves as a 

means of addressing the concerns outlined above.  (Lee et al., 2004 and 2005) highlight 

many positives of the RAM approach. In particular, the RAM approach considers 

efficiency in outputs and inputs and thereby accommodates price and or product 

characteristic inefficiencies. The RAM approach also identifies both radial and non-radial 

inefficiencies, thereby reducing the misidentification of slack inefficiencies. Importantly, 

the RAM approach has attractive numerical qualities. As the name suggests, the 

efficiency measures from the RAM approach are also invariant to the units of 

measurement, efficiency measures lie strictly between 0 and 1. Furthermore, the method 

is more capable than other non-parametric efficiency measures of incorporating dummy 

variable characteristics, which are key features of goods and services, see (Lee et al. 

2005). In addition, (Brockett, Cooper, Golden, Rousseau, and Wang, 2005) stress that 

unlike radial efficiency measures, such as CCR, the RAM approach generates monotonic 

efficiency measures, which are essential for any second-stage parametric estimation, such 

as hedonic pricing models. This final quality helps to address the concerns regarding 

second-stage statistical inference highlighted by (Simar and Wilson, 2008).  
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However, it should be noted that despite all these attractions (Silva Portela, Castro 

Borges, and Thanassoulis, 2003) caution that the RAM approach can compare units with 

very distant peers, which in the product characteristics space means that products can be 

compared to very distant competitors/substitutes and could, therefore, distort the measure 

of efficiency.  

The first-stage of the analysis in this study uses both the FDH and FDH-RAM to 

identify two sub-samples of efficient products. A hedonic pricing model is then estimated 

using the sub-samples of efficient products. The results from this two-stage process are 

compared to an estimated hedonic pricing model using the entire sample of efficient and 

inefficient products. 

The next section estimates hedonic pricing functions for UK mortgage products 

using the two-stage approach. UK mortgage products are chosen because providers make 

strong use of differentiation, data is publically available on over 1,000 products and the 

key differentiated features are easy to measure, (Ward, 2009).  

 

4. Data And Results 

This study uses data on mortgage prices and characteristics from the UK Financial 

Services Authority’s, FSA Consumer Tables, 

(http://www.moneymadeclear.org.uk/tables). An average borrower, characterized by an 

average house price and an average loan to value ratio in 2005 is drawn from the Council 

for Mortgage Lenders dataset. Mortgages available to the average borrower are taken 

from the FSA Consumer Tables. This approach results in 1075 usable observations. 

The study uses the Annual Percentage Rate, APR, as the measure of price. The 

APR provides a measure of the overall cost of a mortgage for a typical borrower 
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incorporating introductory and standard interest rates, as well as charges incurred in 

setting up the mortgage.  

  For each ith mortgage, j product characteristics are collected from the Consumer 

Tables. The contents of Table 1 provide the definitions for each of these characteristics. 

As all product characteristics should be increasing in utility for a potential mortgage 

borrower a number of transformations are undertaken. For example, Setup Costs is 

transformed by calculating the difference between the maximum value in the sample and 

the observed value. Setup Costs is then increasing in utility and measures the discount on 

the maximum price for setting up a mortgage. Tie-in period and the valuation fee are 

subject to the same transformation. 

Table 1 here. 

Market share, provided by the Council of Mortgage Lenders, is used to measure 

brand. Because market share is only available at firm level, the study assumes that brand 

resides at the level of the firm, rather than the level of the product; and is therefore 

constant across each firm’s i product offerings. 

  Table 2 lists the descriptive statistics for each variable. The large range and high 

standard deviation for each of the product outputs confirms a high degree of product 

differentiation across the sample. Table 3 reports the Pearson correlation coefficients 

between each of the product characteristics. The majority of the correlation values are 

small; and none are large enough to warrant multi-collinearity concerns when using 

regression analysis to estimate the hedonic pricing models. 

Table 2 here 

Table 3 here 
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The FDH approach identifies 641 efficient observations and the FDH-RAM finds 

499 efficient observations. The FDH approach identifies more efficient units than the 

FDH-RAM approach. This is because in addition to the radial slacks considered by FDH, 

the FDH-RAM approach also considers non-radial slacks.  

Figure 2 provides illustrations of the efficiency distributions for each of the 

efficiency measures. Both the FDH and the FDH-RAM identify large numbers of 

inefficient observations in the 80% and 90% range. At lower levels of overall efficiency, 

the FDH-RAM approach identifies more inefficiency observations than the FDH 

approach.  The measures of inefficiency provide clear evidence for the existence of price 

dispersion in the UK mortgage market. The consequential risk of bias within a hedonic 

pricing analysis of UK mortgages is therefore likely. 

Finally, the Spearman rank correlation between the two competing approaches of 

efficiency measurement is 0.84. Being a high correlation score, the competing efficiency 

measurement approaches appear to be selecting similar observations as efficient and 

inefficient, suggesting a good degree of comparability between the competing approaches 

see (Weill, 2004 and Bauer, Berger, Ferrier and Humphrey, 1998). 

   

Figure 2 here 

The hedonic pricing models using efficient observations only are estimated next. 

Following routine procedures within the hedonic literature see, (van Dalen and Bode, 

2004), the hedonic pricing models are initially evaluated for the correct functional 

specification using a (Box and Cox, 1962) transformation; and are then corrected for 

heteroskedasticity using the (White, 1980) approach.   
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Table 4 reports the results from a traditional one-stage hedonic estimation as 

defined by (3), a stochastic frontier hedonic model, as in (4), where the efficiency term ui 

is assumed to be half normal; and hedonic models using only efficient observations as in 

(5). (Estimates for the stochastic frontier hedonic model were also derived assuming a 

truncated normal and exponential distribution for ui with no material difference in the 

estimated results).  

  Under a Box-Cox transformation the dependent variable Y is transformed (Y – 

1)/. If the estimated =1, then the model is best specified as linear. For all models the 

evidence for  being nearer to one is strong and so a linear specification is adopted 

throughout. 

Table 4 here 

  For the one-stage hedonic model and the stochastic frontier specification, a 

number of the estimated price parameters for the utility enhancing characteristics are 

negative. These results would indicate that utility enhancing features within a product 

reduce its value. These findings are illustrative of the potential bias generated by 

consumption inefficiency. Note that according to table 4 inefficient products are in the 

main the majority and are therefore likely to have a marked impact on the characteristics 

of the sample.  

Turning to the results from the two-stage approach, all the models show a marked 

(adjusted) improvement in goodness of fit over the traditional one-stage OLS approach. 

This is an encouraging result for the proposed method and indicates that the stage-one 

filtering of inefficient observations has resulted in a more refined sample where the 

relationship between price and product characteristics is more consistent and easily 

modeled. The estimated coefficient for UNTIL has become positive and the measure of 
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statistical significance for UNTIL, SETUP, INCENTIVE, RESTRICTION and BRAND 

have improved.  

Negative coefficients on the linked current accounts remain. These results may 

reflect an element of cross-subsidization. Linked mortgage and current account products 

are more valuable to banks when the customer frequently operates their current account 

in deficit. Higher fees and charges on the current account may then subsidize a reduced 

price on the mortgage product. However, negative coefficients do remain for valuation 

fees. 

The results also show a degree of parameter stability in the second-stage 

regression results regardless of the non-parametric approach used in stage-one. This 

finding would suggest that researchers can feel reasonably assured that these competing 

non-parametric techniques generate consistent results, but that they should still bear in 

mind the arguments made in section 3 and assess the relevance of each approach within 

the context of the products under examination. 

 

5. Conclusions 

Hedonic pricing models are a simple and powerful tool for academic and commercial 

users seeking to understand the relationship between product characteristics and price.  

(Lee et al., 2008) and (Kalita et al., 2004) try to develop hedonic pricing models 

by capturing price dispersion, or consumption efficiency, using stochastic frontier 

specifications.  However, both traditional and stochastic hedonic pricing models can 

produce biased estimates of the fully efficient technology. The bias in this study is a 

possible cause of the estimated negative price coefficients for utility enhancing product 
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characteristics. These results suggest that price dispersion can severely limit the insights 

offered by hedonic pricing models. 

          In seeking to address these concerns, this study proposes a two-stage approach 

which enables researchers to identify and focus upon fully efficient products, which after 

adjusting for quality, display no price dispersion. This approach is simple to implement, 

uses well developed and accepted non-parametric efficiency measures, requires no 

additional data; and in theory produces unbiased estimates of the price coefficients for 

each quality enhancing feature of a product.  

Empirically, this study provides evidence of price dispersion and consumption 

efficiency within the UK mortgage market. Rank correlation scores from the competing 

DEA efficiency approaches show a good degree of comparability between the 

approaches. Finally, augmenting hedonic price models with efficiency information 

improves model estimation performance, as evidenced by improved goodness of fit and 

correctly estimated coefficient signs. These results, coupled with the simple to use 

approach, should be of significant value to users of hedonic models. 

The approach developed in this study may also be subject to limitations and these 

could be examined by future research. In particular, in the measurement of inflation, 

hedonic pricing is commonly used to develop quality adjusted price indices for constantly 

changing technology products, such as computers. If the degree of price dispersion is 

common between periods, then the problem of price dispersion cancels out in the index. 

Such a situation could be reasonable for consecutive time periods, such as one or two 

years. But the notion that price dispersion remains constant for many consecutive periods 

is unlikely given changes in product technology, changes in competition and changes in 

consumers’ understanding of the key product features. So, quality adjusted measures of 
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inflation over longer time periods using hedonic pricing could be made more robust by a 

prior assessment of tij =sij, where tij is the efficiency of the jth characteristic of product i, 

in period t.  
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Table 1: Mortgage Product Characteristics 

Name Product Characteristics Description 
UNTIL Until/for period The period of time in months over which the initial 

introductory discount rate is applied. 
TIEIN Tie-in period The period of time in months during which early redemption 

of the mortgage results in penalties being applied to the 
borrower. 

VALUATION Valuation fee The fee to be paid by the borrower for the mortgaged property 
to be valued for the interest of the lender. 

SETUP Set-up fees Administration costs associated with checking, evaluating and 
advancing mortgages and funds. 

INCENTIVE Incentives Fixed level financial incentives paid by the lender to third 
parties on behalf of the borrowers, typically legal fees, or 
valuation fees.  

RESTRICTION Restricted availability The product is only available to customers who are new to the 
lender, or are current to the lender, (depending on lender)  

FLEXIBLE Flexible features The provision of an option by the lender which allows borrows 
to increase payments, redeem the mortgage early, or take 
payment holidays at no further cost. 

LINKED_C Linked current account The provision of balance off setting by the lender, where the 
mortgage account is offset by credit balances on linked current 
and savings accounts, thus saving interest charges 

CONDITIONAL Conditional insurance The borrower does not have to take out buildings, contents or 
life insurance with the lender to be eligible for the loan 

CAT_STAN CAT standard The mortgage is certified as low cost by the regulator 

SELFCERT Self-certification The lender requires no proof of earnings from borrower.  

DISCT Discount The size of the initial discount off the lender’s standard 
variable rate. 

CASHBACK Cashback Cash incentives remitted to borrower at the beginning of the 
mortgage. These payments are proportionate to the size of the 
loan and are typically worth 3-5% of the mortgage value. 

BRAND Brand The overall market share of the mortgage provider. 
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Table 2: Descriptive Statistics 
 Units Minimum Maximum Mean Std. 

Deviation 
APR Percentage 5.1 8.5 6.4 0.5 
IVR Percentage 1.5 7.7 5.4 0.8 
UNTIL Months 0.0 120.0 20.4 20.9 
TIEIN Months 180.0 300.0 278.3 21.8 
VALUATION £’s 0.0 435.0 248.7 118.5 
SETUP £’s 0.0 996.0 610.3 152.6 
INCENTIVE £’s 0.0 750.0 175.9 214.7 
RESTRICTION Yes, No 0.0 1.0 0.2 0.4 
FLEXIBLE Yes, No 0.0 1.0 0.4 0.5 
LINKED_C Yes, No 0.0 1.0 0.1 0.4 
CONDITIONAL Yes, No 0.0 1.0 0.03 0.2 
CAT_STAN Yes, No 0.0 1.0 0.03 0.2 
SELFCERT Yes, No 0.0 1.0 0.2 0.4 
DISCT Percentage 0.0 4.8 1.0 0.7 
CASHBACK £’s 0.0 10300.0 212.3 1193.4 
BRAND Percentage 0.3 26.0 2.6 4.3 
      
N  1075    
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Table 3 Correlation Coefficients 

PRICE UNTIL TIEIN VALUATION SETUP INCENTIVE RESTRICTION FLEXIBLE LINKED_C CONDITIONAL CAT_STAN SELFCERT DISCT CASHBACK BRAND 

PRICE 0.01 -0.08 -0.14 0.00 0.00 0.07 -0.17 -0.24 0.11 0.00 0.10 0.20 0.18 0.11 
UNTIL  -0.42 0.14 0.04 0.12 -0.17 0.16 -0.26 -0.06 -0.03 -0.10 0.32 -0.07 0.06 
TIEIN   -0.09 0.05 -0.14 -0.17 0.40 0.25 -0.01 0.17 0.02 -0.34 -0.42 0.10 
VALUATION    0.11 0.14 0.09 -0.12 0.09 -0.02 -0.03 -0.21 0.04 -0.02 -0.08 
SETUP     -0.02 0.07 -0.03 0.11 0.01 -0.06 -0.08 -0.02 -0.05 -0.09 
INCENTIVE      0.06 0.12 0.05 0.07 0.02 0.07 0.02 0.16 0.10 
RESTRICTION       -0.21 -0.10 -0.06 -0.09 -0.21 0.05 0.04 -0.10 
FLEXIBLE        0.44 0.11 0.19 0.08 -0.09 -0.11 0.11 
LINKED_C         0.07 -0.05 0.07 -0.05 -0.07 -0.06 
CONDITIONAL          -0.03 -0.01 -0.01 -0.02 -0.05 
CAT_STAN           -0.06 -0.04 0.00 0.23 
SELFCERT            0.02 0.06 0.04 
DISCT             -0.17 0.06 
CASHBACK              0.00 
BRAND               
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Table 4 Estimated Hedonic Pricing Coefficients From Alternative Estimation Approaches 

  BASIC Stochastic FDHRAM FDH 
 0 4.7064 4.4850 4.1291 4.0800 
  (0.0000) (0.0000) (0.000) (0.0200) 
UNTIL 1 -0.0004 -0.0002 0.0027 0.0028 
  (0.5412) (0.8227) (0.0015) (0.000) 

TIEIN 2 0.0057 0.0057 0.0058 0.0058 
  (0.0000) (0.0000) (0.000) (0.0000) 

VALUATION 3 -0.0005 -0.0005 -0.0002 -0.0002 
  (0.0001) (0.0001) (0.0003) (0.1060) 

SETUP 4 0.0001 0.0001 0.0003 0.0003 
  (0.1044) (0.1282) (0.0002) (0.0073) 

INCENTIVE 5 0.0001 0.0001 0.0001 0.0002 
  (0.8660) (0.8822) (0.0001) (0.0324) 

RESTRICTION 6 0.0995 0.1037 0.2833 0.2340 
  (0.0013) (0.0134) (0.000) (0.0000) 

FLEXIBLE 7 -0.1555 -0.1540 0.0503 -0.0056 
  (0.0000) (0.0000) (0.0538) (0.9038) 

LINKED_C 8 -0.2723 -0.2655 -0.3893 -0.0619 
  (0.0000) (0.0000) (0.000) (0.0000) 

CONDITIONAL 9 0.3943 0.3932 0.2720 0.1853 
  (0.0000) (0.0000) (0.000) (0.0543) 

CAT_STAN 10 -0.0563 -0.0582 -0.1824 -0.0726 
  (0.5433) (0.3863) (0.1431) (0.5231) 

SELFCERT 11 0.1230 0.1261 0.0758 0.1012 
  (0.0008) (0.0022) (0.0659) (0.0596) 

DISCT 12 0.2037 0.2076 0.3590 0.3795 
  (0.0000) (0.0000) (0.000) (0.000) 

CASHBACK 13 0.0001 0.0001 0.0002 0.0002 
  (0.0000) (0.0000) (0.000) (0.000) 
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BRAND 14 0.7669 0.7876 1.6800 1.5529 
  (0.0005) (0.0952) (0.000) (0.000) 
      
  1.34 

(0.0000) 
 1.09 

(0.0481) 
1.04 
(0.0362) 

      
 R2 0.2249  0.4208 0.4172 
 Adj R2 0.2147  0.41117 0.4094 
 F(j-1, n) 21.97 

(0.0000) 
 28.55 

(0.0000) 
41.82 
(0.0000) 

 Breusch-
Pagan 

199.92 
(0.0000) 

 192.42 
(0.0000) 

176.18 
(0.0000) 

      
 Log-liklihood -607.221   
 s(v)  0.3965   
 s(u)  0.2575   
 S  0.4728   
      
 N 1075 1075 641 499 

p values are in parentheses  
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Figure 1Data Envelopment Analysis 
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Figure 2 Distribution of Consumption Efficiency by type of DEA Approach  
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