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Measuring Investors' Historical Returns: Hindsight Bias In Dollar-
Weighted Returns

Abstract

A growing number of studies use dollar-weighted metias evidence that consistently bad timing
substantially reduces investor returns, and that consequently the equity risk premium must be
considerably lower than previously thought. These studies measure the impact of bad timing as
the difference between the geometric mean reommesponding to a begnd-hold strategy) and

the dollar-weighted return. Hower, the present paper demoasts that this differential
combines two distinct effects: The correlationfastor cashflows with Xifuture asset returns,

and (ii) past asset returns. Both correlations tenater the dollar-weighted return, but only the

first affects investors’ expeed wealth. The secondrggrates a hindsight bias.

This paper also derives a method which sepathtesse two effects. The results show that the
great majority of the return differential for mainstream US equities has been due to hindsight
bias, and very little due to bad investor timimpllar-weighted returns have been low because
aggregate investment flows reflect past returtiserathan future returns, and these low returns
should not lead us to adopt correspondingly low estimates of the risk premium. The
decomposition method which is derived here d&as many applications in other fields where

dollar-weighted returns are used, such as project finance and investment management.

JEL Classification: G11, G12, G15
Keywords: risk premium, dollar-weighted return, investment, equity



Measuring Investors' Historical Returns: Hindsight Bias In Dollar-
Weighted Returns

Few figures are of such central importance in finance as the equity risk premium, yet
estimates vary widely. In particular, a growing number of studies argue that investors time their
investments so badly that on average they earn returns which are significantly below the buy-
and-hold return on the corresponding market index. They conclude from this that the risk
premium must be substantially lowtéan had previously been thought.

This emerging literature stems from an influential paper by Dichev (2007), who argues
that the impact of bad timing on aggregate #tgereturns can be dededt using a simple and
elegant method. The geometric mean (GM) of monthly market returns gives the return that would
be earned if investors followed a strict buydehold strategy, immediately re-investing any
dividends. By contrast, the dollar-weighted (DWiure takes account of the net cashflows paid
or received by the average investor ahead otdtmainal period, such as share issues, dividend
payments or share buybacks. The difference betivese two rates is then used as a measure of

the effect the timing of these cashflows has on investor returns.

Using this method Dichev concludes that poming has led to a substantial reduction in
investor returns: A 1.3% per annum reduction for equities traded on NYSE and AMEX
exchanges (1926 to 2002) and a 5.3% reduction for NASDAQ stocks (1973 to 2002), as shown in
Table I. This would imply that the equity rigkemium earned by investors (and firms’ cost of

capital) must be considerably lower than previously estimated.



Table |
Investor Timing Effects Identified by Previous Studies

The table shows the annualized Geometric Mean (GM) and Dollar-Weighted (DW) returns derived by previous
studies for the markets and periods shown. A positive differential (final column) is interpreted as thenrédtio

return received by investors as a result of bad timing. Distributions are defined as net cash distributions by firms to
investors — a negative distribution represents an additional net investment (eg. as investors buy neweshare issu
The correlation coefficients in columns 4 and 5 are calculated on mean returns over the previous/subsequent three
years (Dichev and Dichev/Yu), and one year (Clare/Motson).

Correlation of
distributions with:

Market Period Authors reF:l?rsr:s ;liﬂﬁrr]i GM DW GD'\\;lV
NYSE/AMEX 1926-2002 Dichev -0.26 0.51 9.9% 8.6% 1.3%
NYSE/AMEX 1926-1964 Dichev -0.41 0.54 9.6% 8.0% 1.6%
NYSE/AMEX 1965-2002 Dichev 0.09 0.44 10.1% 9.4% 0.7%
NYSE/AMEX 1926-1951 Keswani/Stolin 7.5% 5.8% 1.8%
NYSE/AMEX 1951-1977 Keswani/Stolin 9.5% 9.7% -0.2%
NYSE/AMEX 1977-2002 Keswani/Stolin 12.6% 12.9% -0.3%
NASDAQ 1973-2002 Dichev -0.57 0.28 9.6% 4.3% 5.3%
NASDAQ 1973-2006 Keswani/Stolin 10.4% 7.5% 2.9%
19 International stock exchange 1973-2004 Dichev -0.24 0.16 1.5%
19 International stock exchange 1973-2004 Keswani/Stolin 0.7%
UK mutual funds (all flows) 1992-2009 Clare/Motson -0.18 -0.02 6.5% 5.7% 0.8%
UK mutual funds (retail flows) 1992-2009 Clare/Motson -0.37 0.09 6.5% 5.4% 1.2%
UK mutual funds (institn'l flows)  1992-2009 Clare/Motson -0.03 -0.08 6.5% 6.2% 0.3%
US mutual funds (all) 1991-2004  Friesen/Sapp 1.6%
Hedge funds (7190 funds) 1980-2006 Dichev/Yu -0.22 0.04 10.0% 6.4% 3.6%

Keswani and Stolin (2009) challenge the robustness of these results, noting that the
differential for NYSE/AMEX stocks is sensitite the exact start andhé dates chosen. Dichev
finds that the differential falls to 0.7% per ammin the second half of the period, but Keswani
and Stolin find that it disappears entirely if tivae series is split at flerent points. They also

find that the differential for NASDAQ stocks shrinks substantially when four years’ subsequent



data are included, and thatettdifferential recorded for tarnational stock exchanges was

influenced by a dramatic increase in the prtipa of stocks included in these indexes.

However, studies using the same method Hiauad differentials in other markets which
are similar to those reported by Dichev. Friesed Sapp (2007) find a differential of 1.6% per
annum for US mutual funds, Clare and Motson (2010) a differential of 0.8% for UK funds, and
Dichev and Yu (2011) a differential of 3.6% feedge funds. A consensus has thus emerged that

the aggregate effects of bad investor timing have been substantial.

These studies all use the difference betw&dhand DW returns to measure the impact
of bad investment timing. Howexnewe demonstrate below thttis differential combines two
distinct effects: the correlation @fivestor cashflows with (i) fute asset returns, and (ii) past
asset returns. Both correlations tend to alterOlé return, but only the first affects investors’

expected wealth. The second generates a hindsight bias.

Section Il derives a method for quantifying and removing the effects of this hindsight
bias. The results show that for mainstream US equities (those traded on NYSE and AMEX) the
great majority of the differential between DWda@M returns has been due to the hindsight bias,
and very little due to bad investor timing. DW returns are low because aggregate investment
flows reflect past returns, rather than futureumes. The effect of bad timing of investment in
NASDAQ stocks is also much smaller than was initially calculated. Furthermore, Table | shows

that distributions in other markets are gengralluch more strongly correlated with previous



returns than with future return3his suggests that the retudifferentials recorded for these

markets are also likely to be largely due to hindsight bias.

This contribution of the present paper is: (i) it helps to resolve the current debate about
the equity risk premium by showing that low DW returns do not imply correspondingly low risk
premia; (ii) it derives a new method which canused to separate genuine bad timing from
hindsight bias in any context in which DW reta are used. This method is likely to find
applications in many other fields, since the DW return is still commonly usetiganternal rate

of return, IRR) in project finance and investment management.

The structure of this paper is as follows: Section | demonstrates the hindsight bias in DW
returns which can be mistaken tbie effect of bad investor timg. Section Il sets out a method
for decomposing the GM-DW return differential into the bias component and the genuine effect
of investor timing. Subsequent sections gpfhlis decomposition taata for NYSE/AMEX
stocks (sections Il and IV) and NASDAQ stocks (section V). Conclusions are drawn in the final

section.

I. Identifying the Bias
The source of the hindsight bias can be illustratet reference to the simple game illustrated
below, in which the player faces gain/loss of 10% in each of two rounds (Figure 1a). If we
assume that the outturns in each round have a probability of exactly 50%, then the expected

terminal wealth equals the initial stake.
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Figure la Figure 1b

The player may instead be able to quit the game following a win in the first round (Figure
1b). The expected terminal wealth for this trunddtee is still 1.0, but by quitting following the

initial win the player can bias other performance measures.

For example, quitting early allows the playerclaim a higher expected win rate. The full
tree structure shows a 50% success rate. For example if we are trying to show “heads” in a fair
coin toss then we have: HH, HT, TH, TT, giving success rates of 100%, 50%, 50%, 0%. But if
the player quits if the first outcome is a hetien the tree shrinks to H, H, TH, TT, and the
success rates shift to 100%, 100%, 50%, 0%ngian impressive overall average of 62.5%.
Quitting whilst ahead, and thus preserving a 100% winning record, biases this performance
measure in a way which appears to suggest thaldlyer has the ability to forecast the coin. The
opposite incentive — to keep gambling when behind — can also be found. One simple example
from outside the realm of finance is the child wdgrees to toss a coin to settle an issue but,
having lost, demands “best of three”.

Quitting whilst ahead also biases the exedcdinternal Rate oReturn (IRR, the term

which is generally used for the dollar-weightetlire in investment management — the two terms



are synonymous). Table Il shows that the full tree gives an average IRR of close to zero
(fractionally negative due to the arithmetic/geonsetnean inequality). This rises to 2.4% if the
player quits after a win in the first round, snquitting locks in the early gains and gives the
same IRR as if another win was guaranteed insd@®nd round. This quit-whilst-ahead bias is
similar to the familiar problem of the re-investment assumption used in calculagingetd to

maturity on bonds.

Table Il
IRRs of lllustrative Two-Round Game
The table shows the payoffs and associated internal rates of return of the two games
shown in Figures 1a and 1b. An initial investment of 1 unit is assumed. Titzgave
IRR is the simple unweighted average of the IRRs calculated for the four scenarios.

Period Lose-lose Lose-win Win-lose Win-win  Avg.IRR

(a) Game Played over two periods

0 -1 -1 -1 -1
1 0 0 0 0
2 0.81 0.99 0.99 1.21
IRR -10.0% -0.5% -0.5% 10.0% -0.25%
(b) Player quits if ahead after round one
0 -1 -1 -1 -1
1 0 0 1.1 11
2 0.81 0.99
IRR -10.0% -0.5% 10.0% 10.0% 2.4%

Phalippou (2008) notes that private equity managers can in this way boost their recorded
IRRs by altering the time horizon of their istments - returning cash to investors rapidly for
successful projects and extemglithe life of poorly-performing projects. We show below that
IRRs can also be biased up when the time horizofixed. Ingersoll et al. (2007) show that
investment managers can manipulate conweati performance measures by reducing risk

exposure following a good performance and increasing exposure after a poor performance. The



underlying strategy is to quit whilst ahead, but gamble more following poor outturns. They show
that measures such as the Sharpe ratio and Jerdeima can be biased by this means, although
they do not cover the IRR in their analysis.

Individual investors have no corresponding incentive to bias the IRR recorded for their
own savings, but the typical pattern of investor cashflows tends to introduce this bias
accidentally. To demonstrate this we need to examine the reasons for this bias more formally.
Dichev derives net distributions from data for market returns and market capitalization using the
clean surplus identity identified by Peasnell (1982). If in any period the market capitalization K
is less than would have been suggested by applying the monthly rate of yéautmerprevious
capitalization, then the differential must represent a distribution d

di=Ki -1+ r) - K (1)

If we regard the market capitalization, s the aggregate portfolio value across all

investors, then when we discount at the internal rate of retyn lne present value of future

cashflows and the final liquidation value by defiom sum to the value of the initial investment:

T
Ko=y 4, K @
=1 (1+ rdw) (1+ rdw)

As set out in Dichev and Yu (2011), subdtiig equation 1 into equation 2 eliminates the
distributions and shows that the IRR can be considered to be a dollar-weighted average of the
individual monthly returns. Speatlly, the relativeweight that this DW return puts on the
market return in any month:(tis determined by the NPV of thesa$s that the investor holds in

this market at the start of this period (discounted at the DW return):
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This formula shows how distributions and injections of additional funds re-weight the
monthly returnsr The resulting shifts in the DW retunmay represent either a genuine effect on
expected investor wealth or a retrospective imathe calculation. To illustrate these different
effects we assume in Table Il that we are daking the overall DW return over an investment
horizon of ten successive periods. We initialbsame that there are no further cashflows after
the initial investment, and thattuens are 1ID. Our ex ante expectation would then be that the ten
returns will be given equal weight (the firsiesario shown in the table). We would expect the
portfolio value to increase over time, but atate equal to the DW return, implying that the
expected NPV of this portfolio would be equal in each period.

After the event we are likely to see someiatéon in these NPVs, due to volatility ip r
But, to keep the illustration simple, we assume ibl@all that this effect is small. If we invest a
further amount, equal to the current portfolio \elafter period 9, then the weight given to the
period 10 return will be increased from 1/102¢41. All earlier periods now have 1/11 weight,

keeping the weights summing to unity. This is the second scenario illustrated in Table IlI.
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Table IlI
lllustrative Effects of Net Distributions on Return Weights

The table shows the expected weights given in the DW return calculation to the returns in each period of a ten-
period investment horizon, given the cash injections/distributions shown in the first cdtonmn different
cashflow profiles are considered. For simplicity returns are assumed IID, with low volatility.

1 2 3 4 5 6 7 8 9 10
(1) No injections/withdrawals 1/10 1/10 1/10 /10 1/20 1/10 1/10 1/a0 1/10 1/10
(2) Injection (=K) after period 9 /11 111 111 111 111 111 111 111 111 2/11
(3) Injection (=K) after period 1 1/19 2/19 2/19 2/19 2/19 2/19 2/19 2/19 2/19 2/19
(4) Distrib'n (=K/2) after period 1 2/11 1/11 1/11 1/11 1/11 /11 1/21 1/11 111 1711

If instead we had made arcesponding injection after period 1, then the weight on
subsequent periods would have been raisedtor?y19. An injection or withdrawal cannot have
a substantial effect on the weights given to adargmber of subsequent periods since this would
raise the overall sum of the NPVs across all periods, with limited impact on the relative weights.
But this injection has a substantial impact on the first period’s weight, wHishfrtam 1/10 to
1/19 (scenario 3). Indeed, if we had instead diistad half the portfolio after period 1, halving
the value of the remaining portfolio, then we would expect the first period return to be given
twice the weight of each subsequent return (scenario 4).

Thus injections/distributions can affect theigfgs given to previous returns just as much
as the weights given to futuretuens. For example, comparing scenarios 2 and 4 shows that we
can just as easily boost the expected weight given foyrdistributing half the portfolio after
period 1) as the weight given tgy by doubling the size of the portfolio after period 9). In

addition, comparing scenarios 2 and 3 shows that the effect of a given distribution/injection
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depends on its timing within the overall investment horizon — a result confirmed in Appendix A
using simulated data.

We can re-arrange equation 3 further to show the deviation of periodic returns from the
DW return. Periodic returns will be either above or belowy, but the weighted sum of these

differentials must be zero:

ZT:[ Kis mw)jzo (4)

(1+ rdw

This gives us a convenient form in whichdonsider the effect on the DW return of a
distributiond (expressed as a percentage offpbo value) at the end of period:

& Ki-a K; B
z((l-i—l’d) (r —I"dwj'i'(l d)z((1+rw) (r l"dw)J—O (5)

-1 t=m+1

The distribution reduces the weight given ttufe returns in calcating the DW return,
by reducing the future portfolio values to a fractidad] of what they otherwise would have
been (K¥). A negative distribution (a further investment, for example as the result of a share
issue) correspondingly increases future podfolalues. In the extreme, an investor could
liquidate the entire portfoliodEl). The DW return would then be calculated just on the returns
up to periodn, giving no weight to subsequent market returns.

Equation 5 shows that the two types of cotretathat affect the GM-DW differential act
in very different ways. A negative correlatibetween distributions and future returns would
tend to boost the DW return, with negative distributions (injections) raising the start-of-period

portfolio value ahead of periods of above-averagarns, and positive distributions lowering it

12



ahead of weaker returns. This would représgood investor timing. Unfortunately this
correlation is generally positive (see Tablewjth investors tending to reduce their exposures
ahead of periods of above-average returns and increase them ahead of poor returns.

The correlation of distributions with previous returns can also affect the DW return by
retrospectively altering the relative weight givienearlier returns. Thisorrelation teds to be
negative (eg. with above-averdgeturns tending to be followely injections of new funds).
This will reduce the expected DW return by i@sing the relative weight given to subsequent
returns and correspondingly reducing the weight given to these earlier strong returns.

The arithmetic appears similar for the backward-looking and forward-looking
correlations, but these effects are very different. The forward-looking correlation works by
altering investors’ portfolio size ahead of unaky strong/weak returns. Thus the change in the
weight given to these returns in the DW return calculation corresponds to a change in investors’
exposure to these returns. Byntrast, the correlation of distributions with past returns does not
affect the portfolio value until &dr the relevant retusnhave already taken place - the relative
weight given to these returns in the DW returltaiation is adjusted teospectively. A forward-
looking correlation between distributions andufe returns represents good/bad timing, and
clearly affects investor welfare. €backward-looking correlation does not.

There is also an important distinction to imade in the information content of these

different effects. Ingersoll et al. (2007) stateimaportant principle: That a manipulation-proof

! The correlation coefficient is calculated using the arithmetic mean rather than the DW, but these two measures will
of course be highly correlated.
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performance measure must not reward informatiiea trading. The correlation of distributions

with future returns clearly depends trades which have a high information content, since they
forecast future returns. The cdaton of distributions with prior returns instead affects the DW
return by means of trades which have a very |darmation content - all that is required is that

the investor is sometimes able to judge that returns to date have been unusually high or low
compared with likely returns in fure. This is a much easier tesk.

An investment manager with no forecasting ability can boost his recorded DW return by
making large distributions following a lucky period of strong returns, thus giving less weight to
subsequent returns and correspondingly more weight to the returns already recorded. This is a
form of the quit-whilst-ahead bias discussé\ae. Conversely a negative distribution could be
used to increase the relative weight given tarei returns after disappointing returns to date.

For illustration we can consider a situationwhich periodic returns are drawn from a
distribution with a fixed meap. An investor with a negative forward-looking correlation will
tend to invest more (negative distribution) ahead of periods whetelhis investor will achieve
higher returns over time because her forecasting ability means that her ex ante conditional
expectation (conditioned on these forecasts) is greatepthan

An investor with no forecasting ability is still able to boost his expected DW return by

retrospectively re-weighting the returns in poms periods. This can boost the expected DW

2 It may be difficult to judge whether the return to date in any specific period differs significantlyHfedong-term
mean, but investors can be opportunistic: if there is ever a period when the return to date haseredshveaich
are clearly different from any plausible estimate of the long-term mean then investors can istgnatatis at this
point to bias the DW return (for example, the cumulative return drops to well zelmwin the early years of our
NYSE/AMEX dataset — see Table V). By contrast, forecasting future returns is always likely to be difficult.

14



return, but not in any way which is likely to help meet his underlying investment objectives since
his ex ante expected return each period is stil. The evidence in Table | suggests that
distributions tend to show a significant negatogrelation with past returns, biasing the DW
return downwards.

Monte Carlo simulations confirm that thisaki can spuriously affect the DW return.
Friesen and Sapp (2007) show the results mukitions where returns are NIID. The ex ante
expected return each period is identical, sowaighting of these ex ante returns must give the
same average, regardless of thatinge weights used. Volatility iex post returns will drag the
geometric mean below this arithmetic mean, but the simulations show that when distributions are
correlated with previous returns the DW retisrsignificantly lower than the geometric mean.

By construction, there is no correlation betweerritistions and future retas, so this reduction
must be due to ex post re-weighting of past returns. The simulations presented in Appendix A of
the present paper confirm this result.

Hayley (2010) shows that the same hindsigiats is also responsible for the superior
returns claimed for value averag (a formula investment stegy which requires investors to
make regular periodic investments to keep theitfplow growing at a pre-specified target rate).

This strategy builds in a strong correlation ofipéic investments with prior returns, since a
smaller (larger) additional investment is requifelowing strong (weak) market returns, thus
giving relatively less (more) weight to future retsiravhich are likely to be lower (higher). This
gives rise to an IRR which is greater thar tteometric mean even in simulated random walk

data where the ex ante expected returaich period is constant by construction.
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The following section sets out a method éiecomposing the observed GM-DW return
differential into the effects of the backward-looking correlation (hindsight bias) and forward-

looking correlation (bad timing) effects.

II. A Method For Decomposing The Effects Of Distributions
Equation 5 allows us to calculate the effect of a distribution in periath the expected DW
return, but it cannot in itself distinguish the effects of the forward-looking and backward-looking
correlations in historic time series. The period weights sum to unity so, for example, increasing
the weight given to above-average returns after perieebuld automatically reduce the weight
given to earlier below-average returns. Thus caanot directly distinguish between the two
effects discussed above.

At first sight this seems to be an ihdge problem. However, a fund manager would
require very limited information to use the quitilshahead strategy to deliberately bias the DW
return - all that is required is an estimate:oThus we should be able to identify retrospectively
the expected impact of such aasegy on the DW return condihal on a similar assumption for
future returns. Specifally, if we assume: is constant, then we can evaluate the retrospective
bias that each distribution has on the expedd®d return. Repeating the process for each
successive distribution will give us the total bias.

We start by assuming that the expected retureach period is equal to the geometric
mean recorded for the whole investment hammi{this prevents the AM/GM differential from

biasing our results) and that the distribution eawmnth is zero. We will relax each of these

16



assumptions later. On these assumptions, ther&Wn over the investment horizon as a whole
will initially be equal to the GM. We then substitute in the historical value for thenré the
first period (i), recalculate the DW return for the eatseries, and record the amount by which
this is different from our initial DW returrestimate. Next we substitute in the historical
distribution for that period, recalculate the DWura again and note how much this has changed
from our previous estimate (which was based;oand assumed values for all other data). This
sequence reflects the assumption in equationaf distributions are made at the end of each
month, after the return for the month is known.

Substituting in the actual distribution datandze interpreted as replicating the process by
which a cynical investment manager would bizes DW return. Each month, once the monthly
return is known, he decides on the net distrdsutHaving no short-term forecasting ability, the
manager assumes that all future returns will be equal tbreturns to date are significantly
different fromy, then distributions/injections can immat#ly increase the expected DW return
by increasing the weight given to previous good returns or reducing the weight given to previous
bad returns.

These distribution decisions would have low information content in the sense that they are
not predicated on a forecast of short-term tasserns. They require only an estimate«qfand
as we will see below, the results are not veryitegado the accuracy dhis estimate). The sum
of the changes in the estimated DW return as dtresaach of these net distributions thus gives

us the cumulative effect of these low information trades.
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If the distributions turn out to anticipate future returns, then this will be recavted
these subsequent returns are substituted into tbelai@don. The effect ofuccessive return data
on the estimated DW return is likely to be noisy, but if there is no relationship between these
returns and earlier distributionthen these effects will tend to cancel out over time. The
cumulative effect on the estimated DW return Wwél positive only to the extent that previous net
distributions resulted in relatively large start-of-period portfolio values (with correspondingly
large NPVSs) for periods when the returns were high, and relatively low NPVs ahead of periods
when returns were low. This captures the effect of the good/bad timing of previous net
distributions. As discussed above, this is a gemeconomic effect rather than a bias, and will
only come about if previous distributionsntained information about future returns.

Our decomposition starts with the DW return equal to the GM, but by recalculating the
DW return after each new piece of data is sultstit in, we gradually move to the historic DW
return. We consider separately (i) the aggtegeffect on the DW return of including the
distribution data (this gives the bias effect resulting from re-weighing past returns), and (ii) the
aggregate effect on the DW return of the monttdturn data (this ges the timing effects,
reflecting any information in the distributionbaut future returns). These two components sum

to give the total GM-BV return differential.
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Table IV
Impact of Distributions on the DW Return (NYSE/AMEX)
This shows for early years of the NYSE/AMEX dataset the effect each year's return
(timing effect) and distribution (bias) have on the expected DW return for the whole
investment horizon1026-2002). Future returns are assurmmeastant at 9.87% per annum.
For clarity the table shows annual data, but underlying calculationsaisthly data, so
the precise effects depend on the timing of these distributions within these years.

Annual Annualised Net Timing

return return to date distribution effect Bias

1926 9.6% 9.6% -3.1% 0.00% 0.00%
1927 33.3% 20.9% -3.2% 0.25% -0.01%
1928 39.0% 26.6% 0.1% 0.31% -0.01%
1929 -14.6% 14.7% -9.4% -0.33% -0.06%
1930 -28.8% 4.3% -5.3% -0.57% 0.00%
1931 -44.4% -6.1% 6.6% -0.89% -0.04%
1932 -8.5% -6.4% 7.4% -0.24% -0.07%
1933 9.9% . 0%

1934 9.9% . 0%

2002 9.9% . 0%

Table IV illustrates this pross, with historical data having been substituted over our
starting assumptions up to 1932. The large tregalistribution in 1929 had two effects. In
aggregate investors added new cash equivalent to 9.4% of their existing portfolios. This
subsequently turned out to be very bad timihgncreased portfolio values and so boosted the
effect on the DW return of the subsequent negateturns. However, em before any further
return data were included, the cash injection in 1929 had an immediate impact on the expected
DW return by increasing the weight given to f@tueturns (assumed edua the 9.9% overall
GM) and reducing the weight given to returns top1929, which were then well above this

average. This re-weighting resulted in themediate -0.06% bias effect shown for 1929.
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Conversely, the large cash distributions BB81 and 1932 reduced the iglat given to future
returns and boosted the weight given to returndate, which by then were far below average.
This gave rise to an immediate hindsigids which again reduced the DW return.

This decomposition reflects the distimmeti between the forward-looking correlation of
distributions with future returns and the backevbboking correlation with past returns. Future
returns are assumed constant, so by construction the decomposed effects are calculated on the
basis that past return and distribution data beamelationship to fute returns. But as we
substitute in the actual distribution for eacltsssive period, the impact on the estimated DW
return reflects any relationship between thistrithution and previous returns. Correspondingly,
the effect on the estimated DW return as we substitute in each new piece of return data reflects
any relationship with previous distributions. Thus substituting in the distribution data captures
any effects of the backward-looking correlation witievious returns (the hindsight bias), whilst
substituting in the return data captures thsvéwd-looking correlation of previous distributions

with the current(the effect of good or bad investor timing).

[ll. Decomposing The Effects On theDW Return For NYSE/AMEX Stocks
We use the same dataset as Dichev (NYSEAMEX stocks January 192&® December 2002),
and the same method to infer net distributions from the capitalization tanad figures. We then
step through the entire dataset adding first tfenthly return, then the monthly distribution,
calculating the DW return after each piece dhda added. The GM is 9.87% and the DW 8.61%

(1926 to 2002). However, we find that the @lbrl.26% per annum differential decomposes
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into an annualized -0.21% from adding the retdata and -0.95% from adding the distribution
data (see Table V). This shows that the large majority of the GM-DW diffgres due to

hindsight bias, with only a limited effect from bad investor timing.

Table V

Decomposition Of Timing And Bias Effects (NYSE/AMEX)
Cumulative effect on the DW return of substituting in (i) return data (timing effect),
(ii) distributions (bias). By construction, for monthly data DW return = GM return +
timing effect + bias, although this summation is only approximate for the annualized
returns shown here.

GM return Timing Bias DW return
effect
Jan. 1926 - Dec. 2002 9.87% -0.21% -0.95% 8.61%
Jan. 1926 - Dec. 2006 10.22% -0.25% -0.98% 8.88%

This method allows us to identify the impaxteach new data point as we step through
the data. Figure 2 presents the annualized returdate and the annual net distribution as a
proportion of the implied portfolio value at the time. Figure 3 shows the corresponding
incremental effects on the DWtuen resulting from adding successive data for returns (the
investor timing effect) and distributions (the hindgigias). The timing effect is noisy, but small

in aggregate, whereas the hindsight bias is consistently negative in the early part of the period.

% Some papers have also found bad investor timing using data on equity (ssueRitter, 1991, Ritter and
Loughran, 1995), although others question these results (e.g. Brav and Gal8g&rand Schultz, 2003). The
present paper does not revisit this well-established debate: It shows instead that whatever their statistical
significance, the economic significance of these bad timing effects is far smaller than is suggested by the studies
detailed in Table I.

21



30.0% +

= Net distribution (%)
= Return to date (% per annum)

25.0% +

20.0% +

15.0% -+

10.0% ~

5.0% 4

0.0% -

1944
-5.0% +

-10.0% -

-15.0% -
Figure 2: Returns to date and nedistributions (NYSE/AMEX stocks). The line shows the annualized
cumulative return to date (%) from the start of the dataset in January 1926. The bars show net distributions as a

percentage of the implied total market capitalization before the distributigflL{#)). A positive distribution is a
return of cash to investors, a negative distribution is a net investme
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Figure 3: Timing and bias effects in DW returns (NYSE/AMEX stocks).This shows the change in the expected
DW return for the whole period (January 1926 - December 2002) resulting from substituting in (i) the monthly
market return (‘timing effect’, the volatile bold line), and then (ii) the monthly aggregate net distribution (‘bias’, the
thinner, more stable line). The DW return is calculated on the initial assumption that future returns are legual to t
geometric mean (9.87% per annumyl dhat future distributions are zerbhe underlying calculations use monthly
data, but annual effects are shown here for clarity.
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It is also reassuring that Figure 3 shows naesne monthly jumps. This suggests that the
DW return calculation has found the same underlying root to the IRR polynomial in every
calculation, with only modest changes due to the new data. If it ever jumped between multiple

solutions then we might expect to see a far larger monthly move.

The large cash distributions in 1931 and 188uced the weight given to future returns
and boosted the weight given to returns to datach by then were far below average. As we
saw above, this gave rise to an immediate hindsight bias which again reduced the DW return. The
incremental bias effect remained negative inléte 1930s and early 194@s consistently large
distributions were made whilst the return taedavas below 5%. Distributions in later years
caused relatively little bias since by this stdgereturn to date hadewitably converged towards
the overall average. Consistent with this, extepdhe dataset makes little difference, with the
return and distribution effects shifting only fro21% and -0.95% respectively (1926 to 2002)

to -0.25% and -0.98% (1926 to 20086).

The method derived here for decomposing the GM — DW return differential clearly has
applications in other fields where DW returns are used, notably project finance and investment
management. Good timing by investmenanager should clearly be separated from the effect of
hindsight bias (whether deliberate or accidentadr this purpose the method above should be
used to calculate a hindsight-corrected DW return, which can be derived by adding the timing

effect to the GM return or, equivalently, subtracting the hindsight bias from the DW return:

Ry (hindsight-corrected DW return) = GM return + timing effect = DW return — bias ~ (6)
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IV. Sensitivity Analysis
In this section we examine the robustness of ault® as we relax the initial assumptions made
above: (i) that future returns are equal tte GM of 9.87% per annum; (ii) that future
distributions are zero. Our assumption that distributions are made at the end of each month makes
minimal difference: when we assume instead that they are made at the start of each month, the
decomposed effects daif by less than 0.01%.

Table VI sets out the timing and bias effects derived using a wide range of assumptions
for future returns. The timing effect calculated such counterfactual assumptions is relatively
uninformative: Assuming returns which are welldve the historical meamaturally leads to a
more positive timing effect as returns subsedyeteind to be higher than this (high assumed
returns lead to correspondingly negative retsuanprises). Our interess instead in the bias
effect. The table covers a huginge of assumed average regjrput our key finding is robust,
since for any plausible figure in the middle parthoé range the bias effect is clearly substantial

and negative, and accounts for a large patti@f1.3% historical GM-DW differential.

24



Table VI

Decomposition on Alternative Return Assumptions
The table shows the cumulative effect of monthly returns (timing effect) and
distributions (bias) on the expected DW return for NYSE/AMEX stocks 1926-2002
Future returns are initially assumed constant at the levels shown in the first column. By
construction, for monthly returns the DW return = assumed GM + timing effect + bias,
although this summation is only approximate for the annualized returns shown here.

Assumed GM Timing effect Bias DW return
5% 3.49% -0.04% 8.61%
6% 2.76% -0.28% 8.61%
7% 2.01% -0.49% 8.61%
8% 1.24% -0.67% 8.61%
9% 0.47% -0.83% 8.61%
10% -0.31% -0.97% 8.61%
11% -1.10% -1.09% 8.61%
12% -1.89% -1.19% 8.61%
13% -2.67% -1.28% 8.61%
14% -3.46% -1.37% 8.61%
15% -4.24% -1.44% 8.61%

Moreover, we do not need to interpret these assumptions as reflecting investor
expectations. Considering how a cynical investment manager could attempt to bias the DW
return helped lead us to the decomposition set out above, but this should be seen as just an
analogy. As discussed in section IlI, the key regfuent is that our assumed future returns are
constant, with no relationship with past retuorsdistributions. This ensures that all forward-
looking correlation of distributions with futuretuens is captured in the “timing effect” column
as the subsequent return data is substitutedvhilst all the backward-looking correlation
between distributions and previous returns is captured in the “bias” column. This holds regardless
of whether the return assumptiactually reflects investor expectations. The key advantage of

setting the assumed future returns equal to the historical geometricsrtbanthis removes the
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effect of consistent return surprises in either direction, leaving only the pure effect of the timing
of investment flows compared to periods of above/below average return.

We also investigate the effect of changing our initial assumption for future distributions
(set to zero for all periods in the decomposit above). Setting each instead to 0.082% of
market capitalization (giving amverage distribution equal to that in the historic sample)
substantially alters the decomposition, with tggragate bias effect increasing to -1.15% and the
timing effect almost vanishing (-0.04%). The m@a<an be seen in Figure 4, which shows that
returns on NYSE/AMEX stocks (cumulated over y€ar periods to reduce short-term noise)
trended upwards over our sampleriod of January 1926 to December 2002. Given this trend,
any early distribution would appear to be bad timing compared to our initial assumption that

future distributions were zero.

25%

20% A

—NYSE/AMEX index
15% -
— S&P index (Shiller)

-5% -

-10%

-15%
1871 1881 1891 1901 1911 1921 1931 1941 1951 1961 1971 1981 1991 2001

Figure 4: Long-term equity returns. The chart shows the annualized 10 year geometric
mean market return starting in the period shown. A linear timel thas been added, fitted to
NYSE/AMEX returns Jan. 1926-Dec. 2002. The longer time series shows the 8&P in
return (source: Shiller). Data after Dec. 2002 is shown as dotted lines.
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However we should not accept the effects of tlead at face value. First, bad investment
timing is generally interpreted as a short-terrslical effect as investors chase returns during
booms. Apparent bad timing causkeyl this very long term trend is a very different effect. As
most investors have horizons which are substaytsdbrter than this 77 year time series, they
had no realistic option to time their investments better. Moreover it is entirely impéatsib
suppose that this upward trend will continue in future — this would imply that expected equity
returns are currently over 15% per annum andaeifitinue to rise by almost 1% per decade.

Figure 4 also shows the similar S&P index returns going back to 1871 and forward to
2010. This shows that the 1926 to 2002 period was almost unique in showing such a sustained
uptrend. Almost any other period of equal length widhdve given us very different results. Thus
if we are to obtain results that can be playsi@bplied to the future (e.g. in estimating the
expected risk premium) we need to strip owd #ifects of this trend before decomposing the
residual into the timing and bias effects. This ¢& achieved either by de-trending the return
series or de-meaning the distribution. Fobusiness we do both, on a variety of different
assumptions, both individually and combined.

Table VII presents the results using four rad&give treatments of the distribution data.
We have already seen the first two, which usadjusted historical distribution data. The third
and fourth variants de-mean the distribution datasubtracting a percentage of portfolio value
such that (a) the average distribution is zeral{p)average percentage of capitalisation which is
distributed is zero. The last four variants regbatfirst four, but with return data from which a

log-linear trend has been extracted (thus keeping the GM return unchanged).
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Table VII

Decomposition With Alternative Corrections For Trend In Returns (% pa.)
The table shows the cumulative effect of monthly return and distribution data on the expectestubWar
NYSE/AMEX stocks 1926-2002 using a range of measures to correct for the long-term uptrenchinameduthe
positive mean distribution. The first two use raw distribution data wiisanmption that future distributions are (1)
zero, (2) set to the sample average as a percentage of implied market capitalization. These decompositions are
repeated for distribution data which has been de-meaned by subtracting a percentage of market capitalization such
that (3) the average distribution is zero, (4) the average percentage of market capitalization which is distributed is
zero. The last four variants repeat the first four, but with return data from which a log-linear trend has been removed.

Return Data Distribution data and starting assumption Timing Bias DW
effect return

1. Unadjusted;r  Unadjusted d(future dinitially set at zero) -0.21% -0.95% 8.61%
2. Unadjusted;r  Unadjusted d(future d(%) initially set at sample avg.) -0.04% -1.15% 8.61%
3. Unadjusted;r  De-meaneddfuture @ initially set at zero) -0.12% -0.53% 9.17%
4. Unadjusted;r  De-meaned dfuture @* (%) initially set at zero) -0.06% -0.29% 9.50%
5. Detrended,r Unadjusted d(future d initially set at zero) -0.03% -0.49% 9.31%
6. Detrended;r Unadjusted d(future d(%) initially set at sample avg.) 0.04% -0.58% 9.31%
7. Detrended;r De-meaned dfuture g@* initially set at zero) -0.06% -0.26% 9.51%
8. Detrended,r De-meaned dfuture @* (%) initially set at zero) -0.06% -0.36% 9.43%

The first two variants use unadjusted historical data, thus ending up with the historical
DW return of 8.61%. By contrast the other varigt$o 8) adjust the historic data to remove the
effect of the long-term trend in returns. These new variants all give substantially higher final DW
returns but, reassuringly, these Within a limited range 9.17% &51%. Thus all these methods
suggest that this long-term uptrend accodnfer a substantial part of the raw GM-DW
differential, and only around half resultedordn shorter-term effects. Thus even before
decomposing the residual into bias and timifigats it is clear that these two together have
much less effect once we strip out the longrterptrend in returns. Meover, decomposing the
remaining differential shows that the timing effectery small in all cees, ranging from -0.12%

to +0.04%.
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Thus after adjusting for (i) the unsustainable uptrend in returns, and (ii) hindsight bias in
the DW return, we find that bad timing actually had only a very small impact on the return
received by investors. Thus, in contrast to the claims made elsewhere, bad investor timing does

not justify reducing our estimates of the equity risk premium.

V. Decomposing The Return Differential For NASDAQ Stocks
NASDAQ stocks show a much larger differential than NYSE/AMEX stocks, with a GM of 9.6%,
but a DW return of only 4.2% (January 1973 to December 2002). When we decompose this
differential using the method set out above, we fhat the large majority (-4.0%) is due to bad

investor timing, with only -1.0% du® hindsight bias (see Table VIII).

Table VIII
Decomposition of Timing and Bias Effects (NASDAQ)
Cumulative effect of monthly returns (timing effect) and distributions (bias) on the
expected DW return for NASDAQ stocks. By construction, for monthly returns DW
return = GM return + timing effect + bias, altigh this summation is only approximate
for the annualized returns shown here.

GM return Timing Bias DW return
effect
Jan. 1973 - Dec. 2002 9.6% -4.0% -1.0% 4.2%
Jan. 1973 - Dec. 2006 10.4% -1.8% -0.9% 7.5%

The main effect comes from investors’ terrible timing during the dotcom boom.
Additional funds equivalent to 8.6% of marketpitalization were invested in 1999 and 13.7% in

2000, just ahead of the crash (see Figure 5).
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Naturally, the recorded effect of bad timinges as we increase our assumption for future
returns, but it is reassuring that the degree of hindsight bias remains fditéy (see Table IX).
Moreover, the decomposition shows very litdensitivity to the assoed level of future
distributions (consistent with the absence of lEmg-term trend in returns). Thus our estimates

of the bias are robust to stsifin both these assumptions.

Table IX

NASDAQ Return Decomposition: Alternative Return Assumptions

The table shows how cumulative timing and bias effects vary as we alter our
assumption for future returns. Returns are initially assumed constant at the levels shown
in the first column before historical returns are substituted in. For monthly returns DW
return = assumed GM return + timing effect + bias, but this summation is only
approximate for the annualized returns shown. Coverage: NASDAQ stocks 1973-2002.

Assumed GM Timing effect Bias DW return
5% 0.59% -1.31% 4.25%
6% -0.44% -1.23% 4.25%
% -1.45% -1.15% 4.25%
8% -2.44% -1.08% 4.25%
9% -3.40% -1.02% 4.25%
10% -4.35% -0.96% 4.25%
11% -5.28% -0.90% 4.25%
12% -6.19% -0.85% 4.25%
13% -7.08% -0.80% 4.25%
14% -7.95% -0.75% 4.25%
15% -8.80% -0.71% 4.25%
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Figure 5: Distributions and annual returns (NASDAQ stocks).The line shows the annual
return on NASDAQ stocks (Jan. 1973 — Dec. 2002). The bars show annual net distributions as a
percentage of the market capitalization ahead of the distribution(1f)). A positive
distribution is a return of cash to investors, a negative distributi@t mvestment.

However, as Keswani and Stolin (2008) showelden the dataset is extended to 2006 the
GM-DW return differential shrinks markedly. @hdecomposition shows that the cumulative
timing effect changes from -4.0% to only -1.8@ne reason for this is the positive returns seen
after 2002, but the timing effect would havemdiished even if the additional data were
unexceptional. As we saw in Section | (andasfamed by the simulations in Appendix A), for
any given relationship between distributions andsequent returns, timingffects are far more
powerful for distributions close to the end of the investment horizon, since they then have a large
effect on the weights given to subsequent retimrriee DW return calculation. The same pattern
of distributions and subsequentuens would tend to have much less impact further from the end

of the horizon, since the distributions would then affect start-of-month portfolio values over a
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larger number of subsequent periods, implyirgs lanpact on their relative weights in the DW
return calculatior.

The historical data 1973 to 2006 still shows a -1.8% effect from bad investor timing, but
we face two problems in assuming that bad timiniys@intinue to have such an effect in future.
First, this effect stems from what should be sagm single massive event — the dotcom crash —
so we must question whether this is statidfjcaignificant. Second, we must expect the
measured bad timing effect to shrink furthernagre data is addegushing the 2000 to 2002

period further away from the end of the investment horizon.

VI. Conclusion
A growing number of papers use the differermween the dollar-weighted return and the
geometric mean return as a measure of the efffelsad investment timing. They generally find
that poor timing has reduced the return actuabeived by investors to well below the buy-and-
hold return on the assets concerned. As a resultdbreglude that our estimates of the equity risk
premium need to be revised dowsubstantially. Given the central role that this figure plays in
finance, this would havprofound implications.
However, the present paper finds that the DW return is affected by the correlation of net

investor cashflows with both future asset returns and prewassst returns. The first effect

4 Using artificial data for these extra years (returns set equal to the GM to date (9.62%) and distributiaescet to
reduces the aggregate timing effect to only -2.5% (from -4.0% for 1973-2002). This confirms thajotity of the
reduction is inherent in the extension of the dataset, rather than being due to the specific data added.
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clearly affects investors’ expected wealth, butdbeond merely gives rise to a hindsight bias in
the DW return.

This paper derives a method which allowstaseparate these two effects. This shows
that bad investment timing accounts for very litifehe overall differential between the GM and
DW returns for mainstream US equities (those traded on the NYSE and AMEX exchanges). The
great majority is just hindsight bias. Thisw DW returns should not lead us to adopt
correspondingly low figures for the equity risk premium.

There are likely to be applications in other fields. Wherever DW returns (IRRs) are
quoted this technique can be used to separatsiigiht bias from any geme timing effect. This
is likely to be useful in project financené investment management, where IRRs are still
routinely used as summary performance messufhe decomposition sleribed above can be
used to derive hindsight-corrected IRRs.

More specifically, future research could investigate the degree to which funds have
benefited from hindsight bias. This could has@me about if funds tend to choose between
alternative cashflow options by comparing the prg@dRRs, or if funds wikh benefit from this
bias by luck tend to have higher survival rates.we saw above, the effects of this bias can be
substantial even for broad equity market indiddsey could be much larger for individual funds

which are likely to have considerably greater tibtg in both their returns and their cashflows.
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Appendix: Simulation Evidence

This section uses Monte-Carlo simulations to show that the correlation of distributions with prior
returns can shift the average D\turn away from the geometnuean even when the ex ante
expected return in each period is identical by trocion. We also confirnthat the size of this
bias depends on the timing of the cashflows within the investment horizon.

Returns are generated over an investmenz&orcomprising ten periods. These returns
are NIID, and for convenience the mean is set so that the GM return over the ten periods averages
zero. We then consider the impact that a single net distribution after each of periods 1-9 has on
the DW return (all assets are assumed to be liquidated in the tenth period). Net distributions are
either (a) negatively correlated with the prexaeturn (as investors chase returns by investing
more following strong returns), or (b) positivagrrelated with the retunm the following period
(bad investor timing). Note that these are $igns of the correlations generally found in the

empirical studies shown in Table I.

Figure 6 shows that each of these correlations pulls the average DW return below the GM
return (the opposite correlations — not showhave a positive effect The forward-looking
correlation reduces the conditional expected return in the period following the distribution
(conditioned on the amount which remains invested). By contrast, where the distributions are

only correlated with past returns the ex antpeexed return in each period is identical by
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construction, so we should regard the shift inDW# return as a hindsight bias produced by the

retrospective shifts in the weights given to past returns.

Period in which distribution takes place
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Figure 6: Impact on DW returns of correlation between distributions and returns.Each simulated path is of ten
periods, with returns in each period NIID with standard deviation 20% and geometric mean zero. A single
distribution is included for each path in the period shown. This distribution is set as a percentage of pottéolio val
which is (i) the previous period’s percentage return multiplied by -1, or (ii) identical to the follgeimngd's
percentage return. Net distributions in all other periods are zero for each path. The impact of these cashflows in
pulling the DW return below the GM return is calculated for each of 5000 simulated return pathsHof the
distribution patterns shown. The GM is, of course, unaffected by these cashflows, so the differential is interpreted as
the negative impact of these cashflows on the DW return.

The size of these effects depends on when each distribution comes within the investment
horizon, but the average size of the effect acatiggeriods is roughly the same for the forward-

looking and backward-looking correlations. Thanfirms the underlying symmetry apparent in
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equation 5: That a distribution can in princigifect the DW return just as effectively by re-
weighting either past returns or future returns.

A distribution which is correlated with retugnn the coming period is most effective in
period 9, since it can then have a substantial effect on the NPV of the portfolio value at the start
of period 10, and hence on the relative weight gieethis return in the DW return calculation.

By contrast, a similar distribution after period 1 alters the portfolio value in all future periods,
and so has little effect on their relative weiglBsit such early distributions strongly affect the
relative weight given to previous returns. Thus a forward-looking correlation has more impact
near the end of the investment horizon and the backward-looking correlation has more impact
near the beginning.

Decomposing the effects on the DW retéon NYSE/AMEX stocks (Section 1ll) shows
that the major impact comes from a backward-looking correlation of distributions early in the
investment period with prior returns. The sapagtern of distributions and returns would have
had less impact on the DW return if our sample had started earlier.

For NASDAQ stocks we found instead that the major impact is the bad timing of the large
net investments made at the height of the dotcom boom — ahead of the subsequent bust. But,
again, the fact that these flows took place very near the end of the investment horizon gives them
the maximum effect on the DW return. We found thateffect is reduced as more recent data is
added, pushing these large distributions awamftiee end of the horizon, and we should expect

further reductions as sudxguent data is added.
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