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Abstract

This paper presents a coherent probabilistic framework for taking

account of allelic dropout, stutter bands and silent alleles when in-

terpreting STR DNA profiles from a mixture sample using peak size

information arising from a PCR analysis. This information can be

exploited for evaluating the evidential strength for a hypothesis that

DNA from a particular person is present in the mixture. It extends

an earlier Bayesian network approach that ignored such artifacts. We

illustrate the use of the extended network on a published casework

example.

Keywords
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1 Introduction

When interpreting the output from a PCR analysis of a DNA mixture, the

peak sizes obtained provide useful information regarding the relative amounts

of DNA in the mixture originating from the contributors. This information

can be exploited to make inferences regarding the genetic profiles of un-

known contributors to the mixture, or for evaluating the evidential strength

for a hypothesis that DNA from a particular person is present in the mixture.

However, a variety of complications may occur during the PCR amplification
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process, collectively referred to in the forensic genetics literature as artifacts.

The presence of such artifacts makes it difficult to carry out these inference

tasks. In this paper we describe Bayesian networks for analysing complex

DNA mixtures which incorporate possible allelic dropout, stutter bands, and

silent alleles in a comprehensive and fully probabilistic analysis of such mix-

tures.

Gill et al. [1] give recommendations on DNA mixture interpretation in-

cluding some general guidelines for handling artifacts such as dropout and

stutter bands. In a recent paper Gill et al. [2] illustrate a method to in-

terpret complex DNA profiles where peak height information is used in the

preprocessing of PCR output to identify potential stutter bands and other

artifacts. In contrast, we present a probability model that handles these

artifacts simultaneously.

Our model is also applicable in the investigative phase of DNA mixtures.

This could involve a separation analysis to determine the profiles of unknown

contributors, or a consideration of various scenarios to determine the most

likely contributors to the DNA mixture amongst a group of individuals whose

DNA profiles are known.

The plan of the paper is as follows. In the next section we briefly describe

the Bayesian network of Cowell et al. [3] for modelling peak area values in

the absence of artifacts. Then in § 3 we show how to extend this model to

handle silent alleles, dropout and stutter bands. In § 4 we analyze the two

mixtures taken from casework presented in [2] using our extended model.
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Concluding remarks and suggestions for future work are given in § 5.

2 Gamma model

In this section we present an overview of the basic model for peak areas. For

a detailed exposition of this model and the implementation as a Probabilistic

Expert System (PES) [4] we refer the reader to Cowell et al. (2006, 2007a,

2007b).

The gamma model of [3] considers I potential contributors to a DNA

mixture. Let there be M markers to be used in the analysis of the mixture

with marker m having Am allelic types, m = 1, . . . , M . Let θi denote the

proportion of DNA from individual i prior to PCR amplification, with θ =

(θ1, θ2, . . . , θI) denoting the vector of proportions from all contributors. Thus

∑I
i=1 θi = 1. It is assumed that this pre-amplification proportion of DNA is

constant across markers.

For a specific marker m, the model is describing the peak weight W+a at

allele a which here is the peak height ha multiplied by a. We have earlier

used the peak area instead of peak height, but this makes little practical

difference. The model makes the following further assumptions:

• W+a is approximately proportional to the amount of DNA of type a

after PCR amplification.

• If Wia denotes the contribution of individual i to peak weight at allele

a, then W+a =
∑

i Wia.

4



• Each contribution Wia from individual i to peak weight at allele a has

a gamma distribution, Wia ∼ Γ(ργinia, η), where:

– γi = γθi is the amount of DNA from individual i in the mixture,

γ being the total amount of DNA;

– nia is the number of alleles of type a carried by individual i;

– η determines scale and ρ is the amplification factor. Both may be

marker dependent.

It follows from properties of the gamma distribution assumption that

W+a =
∑

i

Wia ∼ Γ

(

ρ
∑

i

γinia, η

)

and since
∑

a

∑

i θinia = 2, that

W++ =
∑

a

W+a =
∑

a

∑

i

Wia ∼ Γ(2ργ, η).

By scaling the weight of each allele by the total marker weight we obtain

relative weights Ra:

Ra = W+a/W++ ∼ Dir(ρBa).

Here Ba =
∑

i γinia is the weighted allele number, and B+ = 2γ is twice the

total amount of DNA γ and is marker independent. It follows that, observed
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values ra of Ra give a contribution to the likelihood of

L(µ|W ) ∝
∏

a

r
µa(1/σ2

−1)
a

Γ{µa(1/σ2 − 1)}
(1)

where µa = Ba/B+ =
∑

i θinia/2 and σ2 = 2ργ, where we call σ2 the variance

factor.

Figure 1 illustrates the structure of the basic Bayesian network in the

case of two contributors to a mixture in which three peaks are observed on

a single marker.

Insert Figure 1 about here.

Recently, Cowell [7] has carried out an analysis of the validity of the

gamma model by comparing with simulations of mixtures using a stochastic

procedure presented by Gill et al. [8]. He found that the gamma model gives a

good description of the distribution of peak area values arising from the PCR

process in amplifying moderate to large quantities of (simulated) DNA, but

becomes inadequate in the low-copy-template regime where dropout becomes

a significant factor.

3 Artifacts

Here we extend the Bayesian network based on the gamma model to deal with

the possible artifacts of dropout, silent alleles, and stutter. These artifacts

are all handled simultaneously in our PES. An important feature of using the
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PES is that it provides posterior probabilities for the presence, absence, or

degree, of the occurrence of such features: it does not have to be assumed at

the outset of the analysis that such features are definitely present or definitely

not present. For ease of exposition, we will explain how these artifacts may

be incorporated in the PES one at a time as network fragments.

3.1 Dropout

In amplifying a sample of DNA in the PCR apparatus, one of the first steps

is to extract the nuclear DNA from the cells using enzymes, and then to

transfer a sample of the extract (aliquot) to the PCR apparatus. A major

source of dropout, which is particularly acute in the low-template scenario,

is the failure of some alleles to get selected for input into the PCR apparatus.

The differential selection of alleles is also a factor in the stochastic variability

of peak size values. Before presenting our dropout model, we summarize how

dropout arises in the simulation model of [8].

The selection of DNA material for the PCR apparatus proceeds in two

stages. First, an enzyme is added to the DNA sample to break up the

nuclei of the cells. Then some of the aliquot is taken to be put into the

PCR apparatus. Both allele sampling processes are stochastic and may be

modelled mathematically by binomial sampling. Thus suppose initially there

are n0 alleles of type a in the nuclei of the cells. Let πe be the probability

that a particular allele is extracted into the solution. Further, let πa denote

the probability that a particular allele in the aliquot is put into the PCR
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apparatus. Then, with alleles selected independently, the total number N of

alleles of type a in the apparatus is binomially distributed as

N ∼ Bin(n0, πeπa).

The allele will not be selected and hence drop out when N = 0, which

happens with probability P (N = 0) = (1 − πeπa)
n0. Gill et al. [8] estimated

πe = 0.6 and πa = 20/66 for their laboratory procedures, giving πeπa = 0.182,

and hence a dropout of 0.818n0 ≈ exp(−0.2n0).

Our model for pre-PCR dropout assumes for each marker that all the

copies of the maternal allele from a person present in the aliquot are either

all selected or all not selected for amplification, and similarly for the pater-

nal allele. This all-or-nothing selection of the maternal contribution of an

individual of a given marker is assumed to be independent of the selection

or otherwise of the individual’s paternal contribution from the marker, and

of the selection or otherwise of any of the individual’s other marker alleles;

more precisely, this independence is conditional on the total amount of DNA

from the individual in the mixture. Our model can thus be viewed as a crude

approximation to the Gill et al. [8] model, which models the partial selection

of alleles in the aliquot. The remaining variation in the number of amplified

alleles is modelled by the gamma distribution of peak heights. Note, how-

ever, the difference that we are modelling allelic selection at an individual

contributor level, whereas in the Gill et al. [8] model the selection is from
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the combined contributions from all of the mixture contributors.

To model this allelic dropout in our network, we introduce nodes namp
ia

with values in {0, 1, 2}. The various values may occur in the following man-

ner. A value of namp
ia = 0 arises in two ways: (i) neither the maternal nor

paternal allele is of type a; (ii) one or both of the maternal and paternal

allele is of type a but is not selected for amplification. A value of namp
ia = 1

indicates that alleles of type a from person i are selected for amplification.

This can happen in two ways: (i) either the person is heterozygotic with one

allele of type a, in which case all of the a allele contribution is amplified; (ii)

the person is homozygote (a, a), in which case only half is amplified. In the

latter case, total dropout does not occur, but the peak height associated with

the a allele is lower than would be expected given the person’s genotype and

his/her relative contribution of DNA to the mixture. A value of namp
ia = 2

arises if both the maternal and paternal alleles are of type a and they are all

selected for amplification.

The network fragment modelling our dropout process is illustrated in

Figure 2, which for simplicity of display assumes that only two allelic types,

a and b, are seen. The nodes nia and nib are the same as occur in Figure 1,

and count up the number of (maternal or paternal) alleles of type a and b for

person i. Each nia takes values in {0, 1, 2}, with the conditional probability

table P (nia | pigt) having entries 0 or 1. Our dropout nodes namp
ia depend

on the nia and the amount of DNA. Now as shown above, from Gill et al.

[8] the sampling dropout probability has the form exp(−0.2n0) in which
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n0 is proportional to the amount of DNA. This exponential dependence on

amount is used in our conditional probability table P (namp
ia |nia, θi) shown in

Table 1, which introduces a new parameter λ. Note the binomial distribution

in the final column, modelling the independent dropout of the maternal and

paternal alleles for profiles homozygote in allele a.

Insert Figure 2 about here.

Insert Table 1 about here.

Since
∑

a nia = 2 for every contributor, this implies that
∑

i

∑

a θinia = 2.

This value of 2 was used as a common fixed normalization to the means of

the relative weight in our earlier model, illustrated in Figure 1, but is not

appropriate when taking dropout into account. Instead, with the potential

for dropout, we have that ntot =
∑

i

∑

a θin
amp
ia ≤ 2. The node ntot in Figure 2

stores this sum, conditional on the value of θ and the nia nodes, and is used

for normalization of nodes µa at the bottom of the figure as

µa =

∑

i θin
amp
ia

∑

i

∑

a θin
amp
ia

=

∑

i θin
amp
ia

ntot

where we define 0/0 ≡ 0. The likelihood factors (1) are then applied to the

modified mean values.

There is a second source of dropout, in which some alleles are sampled

but their amplified number is below the threshold detection level to register

a distinct peak on the PCR output. Our extended Bayesian network does

not model this source of dropout.
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3.2 Silent alleles

A null or silent allele is one that is not recorded by the equipment used.

When this can happen, what appears to be a homozygous genotype at some

marker may not be so: an alternative explanation is that we are seeing

just one band of a heterozygous genotype, the other band being missed.

This phenomenon will clearly affect the evidential interpretation of certain

patterns of DNA mixture profiles. Several papers in the literature have dealt

with genetic aspects of this, see for example [9]. A possible explanation for a

silent or null allele is sporadic failure of the apparatus to record the correct

allele value or primer binding site mutations. Accounting for the possibility

that a silent allele is present can easily be accommodated by including an

additional allele in each marker which never gets amplified, corresponding

to dropout with a probability of 100%. This in turn potentially affects the

normalization ntot =
∑

i

∑

a θin
amp
ia ≤ 2 of the mean nodes as in the case of

dropout and can be handled in exactly the same way.

3.3 Stutter

Following [10] and [11], stutter bands are understood to be allelic in origin

and arise from slippage of the Taq polymerase enzyme. Only a single stutter

band is typically observed and is four bases shorter than the associated “true”

peak allele band, i.e., stutters are one repeat unit (allele value) less than the

associated peak. In amplifying normal amounts of DNA, stutter tends to be
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less than 15% of the size of the associated allelic peak [1], but if the amount

of DNA is small, as in Low Template Analysis, this figure can be larger, and

in very rare cases a stutter peak can be greater than the peak of the allele

from which it arose.

In DNA mixtures a stutter peak could be indistinguishable from the minor

contributor’s allele peak or could be masked by a “true” allele peak thus

leading to a higher allele peak size.

The proportion of stutter band increases with the length of the allele

so that the longer allele in heterozygous sample has a higher percentage of

stutter than the shorter allele [12]. For simplicity, we consider the prior

distribution of stutter percentage to be constant across alleles and markers.

Insert Figure 3 about here.

Figure 3 shows a fragment of the Bayesian network that represents our

stutter model. The layer of mean nodes µa at the top are augmented by

stutter nodes sa. The stutter node sa gives the proportion that is lost by

stuttering of allele a and contributes to the peak for the allele one repeat

value lower, increasing the mean µa−1.

Without stutter, the mean value at allele a is µa. With stutter, then two

things can happen: (i) part of the DNA of allele type a is amplified as stutter,

so this decreases the effective mean of the measured peak weight associated

with a and increases that associated with a − 1; (ii) the allele a + 1 can also

stutter and increase the mean associated with a. Thus the effective mean µ∗

a
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depends on the stutter losses sa and sa+1 and the values of µa, µa+1 as

µ∗

a = (1 − sa)µa + sa+1µa+1.

Having found the µ∗

a values, the likelihood factors in (1) should now refer to

µ∗ rather than µ.

4 Application to a case

We shall apply our model to the challenging example presented by Gill et al.

[2], who describe the case background as follows.

“An incident had occurred in a public house where the deceased had spent

the evening with some friends. There was an altercation in the car park

between the deceased (K1) and several others resulting in the death of the

victim. The alleged offenders then left the scene and went to another public

house where they were seen to go into the lavatory to clean themselves.”

Two known individuals, K2 and K3, alleged to be present at the time of

the offence, were typed and their profiles together with that of the victim K1

are shown in Table 2: all were males.

Insert Table 2 about here.

Two blood stains, called MC18 and MC15 were found at the public

house lavatory and were typed using the SGM plus system. The results of
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the typing are show in Table 3 and Table 4. Both blood stains indicated that

they were DNA mixtures of at least three individuals.

In the following we shall compare various scenarios to the specific baseline

hypothesis Hb that the contributors to the mixture are exactly the individ-

uals K1, K2 and K3. One alternative scenario is that the stains originate

from three unknown individuals U1, U2, and U3, but there are several other

possibilities. We also discuss the question of whether or not the individual

K3 has contributed to the traces, but prior distributions for various scenarios

must be specified for this to be answered.

Under the base hypothesis Hb, ten of the allele peaks in Table 3 would

need to be interpreted as stutter alleles, for example allele 22 in marker

D2, as none of the three individuals possess this allele. Also, if there are

at most three contributors there must be stutter peaks in markers D8 and

FGA, as seven alleles are observed. Similarly, for mixture MC15 in Table 4

seven of the peaks would have to be stutter peaks. In addition the following

alleles, assumed to belong to K2, would have to have dropped out: 16.2(D19),

22(FGA) and 9(TH0). There are also other alleles in MC18 that are not

present in MC15.

Insert Table 3 about here.

We shall analyse these stains in turn, both individually beginning with

MC18, and in combination. In all the analyses we use the following param-

eters. The vector of contributor fractions θ = (θ1, θ2, θ3) is uniform on the
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set of positive coordinates which add to 1, discretized with intervals of size

0.1. To get parameters for the dropout probabilities we argue as follows.

For n0 = 20 molecules the estimates in [8] give a probability that none are

selected of (1 − 0.182)20 = 0.0179. We then let λγ ≈ − loge(0.0179) ≈ 4.

The frequency of a silent allele has been set to 0.005 in all markers. The

stutter nodes are crudely modelled with three states: (No stutter, 5%, 10%)

having prior probability distribution (0.98, 0.01, 0.01). We used σ2 = 0.03

for the variance factor, and the allele frequencies are based on the Caucasian

population in Appendix II of [12]. For each single mixture and the combined

mixture analyses, we considered the eight different possible scenarios involv-

ing exactly three contributors. For each of these, the ratio of the likelihood

of the base hypothesis Hb to that of the scenario was evaluated.

4.1 Analysis of MC18

This would appear to be the simplest of the two blood samples to analyse

since, although stutter peaks must be present under Hb, there is no overt

dropout. However, in our analyses we assumed the potential presence of all

three artifacts in our PES model: stutter, dropout and silent alleles. The

second column of Table 5 shows the likelihood ratio of the base hypothesis

Hb to the other seven alternative scenarios involving exactly three people.

From this table we see that the most likely scenarios, by a wide margin, are

those that assume both the victim K1 and K3 contributed to the mixture

whereas it is less definite whether K2 has contributed to the mixture. The
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most likely of the scenarios not involving K3 is that the mixture consists of

contributions from K1 and two unknown persons. The likelihood ratio in

favour of the base hypothesis Hb when compared to this scenario is equal to

3.74× 108. Alternatively, if we assume a uniform prior over the scenarios so

that it is assumed every contributor is independently either in or out of the

mixture with equal probability, the posterior probability that K3 is not in

the mixture is found to be 1.89 × 10−9, rendering it extremely unlikely that

K3 did not contribute to the trace.

4.2 Analysis of MC15

This would appear to be the more challenging of the two stains as both

dropout and stutter must be involved under Hb. We analysed this mixture

for the same scenarios as the MC18 mixture. The likelihood ratio in favour of

the base hypothesis against each of the seven alternative scenarios are shown

in column three of Table 5. The most likely scenarios by a wide margin are

those that assume both the victim K1 and K3 contributed to the mixture,

the same conclusion as reached for MC18. The overall most likely scenario

is that the mixture consists of contributions from the victim K1, K3, and

an unknown person. We note that this scenario is about twice as likely as

the original base hypothesis Hb. The likelihood ratio of the base hypothesis

to the scenario K1U1U2 being the contributors is 1.14 × 105. Using again a

uniform prior over the hypotheses as in § 4.1, the posterior probability that

K3 is not in the mixture is 1.24 × 10−8, yielding strong evidence that K3 is
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in the mixture.

4.3 Combined analysis of MC15 and MC18

Cowell et al. [13] showed that combining peak information from two mix-

tures having some contributors in common can strongly enhance the mixture

analysis. Here we apply this idea to a combined analysis of the two mix-

tures MC15 and MC18. Figure 4 illustrates the combined analysis of a

pair of three-person mixtures. Each mixture has its own vector, θ and φ, of

pre-amplification proportion of DNA from the three contributors. We have

initially based the analysis on the assumption that the two traces have the

same three contributors. The corresponding likelihood ratios in favour of the

base hypothesis versus the other seven scenarios are displayed in the final

column of Table 5. Assuming once more a uniform prior over the hypothe-

ses, the posterior probability that K3 has not contributed to both mixtures is

1.88×10−10, a smaller posterior probability that obtained from each mixture

analysed separately.

Notice however that the likelihood ratio for Hb compared to the scenario

of contributors K1U1U2 is now 1.40×103 which is a lot smaller than when each

mixture was analysed separately. This weakening of the evidence in favour

of Hb when combining the traces reflects that it is highly unlikely that K2

has contributed to both traces. Indeed the likelihood ratio in favour of the

scenario that K1K3U1 were the contributors against Hb, is 1/2.62 × 10−7 =

3.82 × 106, yielding the base hypothesis Hb quite unlikely. From the values
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in the final column of Table 5 (which give the likelihood ratio in favour of

the base hypothesis Hb) the scenario K1K3U1 is seen to be the most likely

out of the eight because it has the smallest value.

Insert Figure 4 about here.

It is worth emphasizing that our simultaneous analysis of a pair of mix-

tures does not require that an allele present in one mixture is also present

in the other, even though we assume that the contributors to the two traces

are the same. This is in contrast to the interpretation of duplicated STR

analyses of low copy number (LCN) STR samples using the conventional

consensus approach [9].

Insert Table 5 about here.

4.4 Other scenarios

In the combined analyses of the previous section, we assumed that each

mixture had the same three contributors. This is not an essential requirement

of our PES, we merely imposed this to limit the number of scenarios under

consideration to a manageable number. Table 6 shows some further combined

analyses, in which the contributors to the mixtures were not all assumed to

be identical.

Insert Table 6 about here.
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The likelihoods for some of these combined mixture analyses may be

found from the likelihoods of individual mixture analyses by exploiting con-

ditional independence properties of the networks. This applies for example

to the first combination of Table 6, because the peak areas in the two mix-

tures are independent given K1 and K3, and both K1 and K3 are known.

Similarly, the likelihood for the second combined analysis can be found from

the individual mixture analyses, because the mixtures are independent given

the profiles of the three known persons. The final combination is really two

independent mixture analyses, and may be obtained from multiplying the

values in columns 2 and 3 of the final row of Table 5. (Compare this to

non-independent analysis value in the last row, column 4, of Table 5.) Only

for the third combination in Table 6, having a partial overlap of two common

unknown contributors to each mixture, is it not possible to find the likelihood

from the likelihoods of the single mixture analyses.

We also note that the only likely scenarios are those involving the indi-

vidual K3 as a contributor to both mixtures. The two first combinations

in Table 6 are both more likely than Hb whereas the most likely scenario,

as seen from Table 5, still is that K1, K3, and an unknown individual has

contributed to both traces, the likelihood ratio in favour of the scenario be-

ing 1.09 × 104 compared to the most likely scenario in the second row of in

Table 6 with the two unknown contributors being different.
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4.5 Identification of artifacts

Recall that our PES does not impose at the outset that a particular peak

is or is not a stutter peak, or that a particular allele has dropped out, or

that a silent allele is present. Instead, it is possible to query the PES, after

entering the peak area information and profile information on known persons,

by examining the posterior marginal distributions of the variables making up

the network. It thus becomes possible to gauge the occurrence or otherwise

of the various artifacts. We illustrate this by some examples.

If we assume that mixture MC18 is made of DNA from the three known

persons, then on comparing the profiles in Table 2 to the peaks of mixture

MC18 in Table 3, we see that ten of the peaks have to be stutter peaks.

These are 22 (D2); 14,16(D3); 12,15 (D8); 13,15 (D18); 12 (D19); 25 (FGA);

and 17 (VWA). These peaks would arise from the allele one repeat number

higher stuttering. Table 7 shows the posterior distribution over a selection of

these the associated stutter nodes. Note the zero probability on 0% stutter

for the alleles that must stutter under the hypothesis Hb. In contrast allele

29 of marker D21 does not have to be explained as a stutter peak under Hb,

because K2 has genotype (29, 30). However the peak height of allele 30 is

about 8.5 times that of allele 29, so it could be suspected of giving rise to

29 as a stutter peak. Table 7 also shows the posterior probability for allele

23 (D2) to have stuttered in either mixture from a simultaneous analysis of

both traces. In the mixture MC15, the posterior probability of allele 23 not

stuttering is 1, which is consistent because there is no allele 22 (D2) peak in
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MC15.

Insert Table 7 about here.

In the single mixture analysis of MC18, the posterior probability on the

proportion θ showed that K2 contributed the least amount of DNA, around

15% of the trace. This could make K2 more susceptible as a source of dropout

than the other contributors, although there is no overt allelic dropout in the

mixture if the three known persons contributed to the mixture. Examining

the posterior probabilities for marker D16 shown in Table 8 indicates that

covert dropout most probably occurred. It shows that for individual K1 both

maternal and paternal alleles were amplified with probability 0.844, but there

is approximately a 16% chance that one of two alleles dropped out. Similarly

for K3 it is most likely that both alleles were amplified. However, for K2

there is a posterior probability of 0.342 that his allele 12 was not amplified:

indeed from the table the probability is only 0.316 that both of K2’s alleles

were amplified, and thus a probability of 0.684 that one or both of the alleles

dropped out. Most of the other markers show similar covert dropout for K2,

and to a lesser extent for K1 and K3. For example for the marker TH0,

the posterior probability that one of K2’s 9 alleles dropped out is 0.91, with

a probability of 0.09 that neither dropped out. In contrast, the posterior

probability that one of K1’s alleles dropped out is less than 10−7.

Similar results regarding stutter and dropout were obtained for the mix-

ture MC15, on the assumption that K1, K2 and K3 were the contributors,
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with the additional result that overt allelic dropouts are picked out with

posterior probabilities of unity. In a joint mixture analysis, a probability

of 0.486 was found that one of K2’s 24 (D2) alleles was not amplified from

mixture MC15, and 0.380 that both were not amplified. For mixture MC18

the corresponding probabilities are 0.516 and 0.313.

Insert Table 8 about here.

These few examples are illustrative of the information about artifacts that

may be obtained from examining the posterior probabilities on nodes in the

network.

4.6 A separation analysis

Our analysis of § 4.4 suggests it is much more likely that both mixtures con-

sist of contributions from K1, K3 and an unknown individual U . Under this

scenario, in contrast to Hb, it is no longer definite that the MC18 peak of

allele 22 (D2) arises as a stutter peak from allele 23; it could be that the

unknown person has one or both alleles. Using methods described in [6], it is

possible to use the same network for the separation of DNA profiles, and so

give an estimate of the most likely DNA profile of the third contributor con-

ditional on the peak height values and the DNA profiles of K1 and K3. Such

a simultaneous analysis of both mixtures yields the following posterior prob-

ability distribution that allele 23 (D2) in MC18 stutters: 0.565 (at None),

0.176 (at 5%), and 0.259 (at 10%). This should be contrasted with the values
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in Table 7 for Hb. The interpretation is that it is more probable that allele

22 is in the genotype of the unknown individual, rather than arising as a

stutter peak.

Tables 9 and 10 show the predictions for U ’s genotype across all mark-

ers from separation analyses of the two mixtures individually, and Table 11

shows the predictions of a simultaneous separation analysis of both mixtures.

In all analyses the unknown individual is predicted, with a posterior prob-

ability of more than 0.97, to be the minor contributor, contributing 10% of

the total DNA to the each mixture. For K1 the predicted contribution is

70%, and for K3 the predicted contribution is 20%, in both mixtures.

We consider first the individual mixture analyses. In column 2 of Tables 9

and 10 the most probable selections of alleles (gtamp) from the genotype (gt)

of the unknown person that are amplified from each mixture, and in column

3 its marginal posterior probability. An allelic dropout is denoted by D. Note

that the gtamp value of person pi is logically determined by the set of values

of his/her namp
ia nodes in Figure 2; indeed for each person a node gtamp

i could

be added to Figure 2, with gtamp
i a common child of the namp

ia nodes of person

pi.

The mixture MC15 appears to have significant dropout from the un-

known person, with complete dropout on markers D2, D16 and TH0, and

partial dropout on markers D3, D19, D21 and FGA. Less dropout is indi-

cated for MC18, with only the marker D16 suggesting as most probable the

total dropout of both maternal and paternal alleles. Such a high level of
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dropout in each mixture is consistent with the low amount of DNA that

the unknown contributor to each mixture is predicted to have contributed.

There is agreement on some markers on the most probable genotype of the

unknown person (column 4 of both tables), but also some disagreements.

Only for marker VWA do both analyses predict the same genotype (16, 17)

with high probability.

Insert Table 9 about here.

Insert Table 10 about here.

The prediction of a (17, x) genotype on marker D2 for MC15 may appear

puzzling, given that it is most probable that both alleles dropped out. Note

though that the associated probability of 0.191 is quite low. (Here the x

designation in the predicted genotype for marker D2 indicates an allele of

unspecified type other than of any peaks appearing in the mixture.) The

explanation is found by looking beyond the most probable values of gtamp

and gt; Table 12 shows the six most probable values of these quantities for

marker D2. We see that the second most probable genotype is (x, x) with

a probability only slightly less than for (17, x). It is also worth remarking

that allele 17 has the highest population frequency of 0.182. A similar story

applies to marker D16 in both mixtures, in which it is most probable that

neither of the alleles is amplified in either mixture. Nevertheless, the (11, 12)

genotype is predicted by both mixtures separately. The allele frequencies
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of 11 and 12 are 0.321 and 0.326 respectively, the two highest amongst the

alleles of D16.

Insert Table 11 about here.

Insert Table 12 about here.

We now turn to the simultaneous mixture analysis. For both mixtures

the predicted proportion of DNA contributed by the unknown person is 10%,

with probabilities 0.99 (MC15) and 0.98 (MC18). We see that the pattern

of most probable allelic selection or dropout exhibited in Table 11 is the

same on each marker as for the individual mixture analyses in Table 9 and

Table 10. However the posterior probabilities are markedly higher across all

markers when compared against the individual mixture analyses. In addi-

tion, for five of the markers D3, D18, D19, FGA and VWA, the probabilities

for the genotype prediction are greater than 0.9. The genotypes on the re-

maining markers, for which dropout is quite likely, have lower probabilities.

However, some useful partial information is still available from the marginal

distribution over the genotype (not tabulated here). For D2, the posterior

probability that one of the alleles is a 22 is 0.586. For D16, allele 11 has a

probability of 0.754 of being in the genotype; for D21, allele 29 has a proba-

bility of 0.998; and for TH0, allele 9 has a probability of almost 1 of being in

the genotype. For marker D8, for which the most probable genotype (12, 14)

has a probability of 0.630, the second most probable genotype is (14, 15) with

a probability of 0.355; taken together these two genotypes account for 98.5%
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of the posterior probability on the genotypic possibilities for this marker. The

usefulness of such partial information for investigative purposes in a database

search is clearly apparent.

5 Discussion

We have presented an extension of the model in [3] which incorporates the

possible presence of silent alleles, stutter peaks, and dropout. We have ap-

plied this model to the analysis of two complex mixtures found at a crime

scene and calculated likelihood ratios necessary for an evidential analysis of

the traces, both individually as well as in combination. The networks also

give the posterior probabilities for the specific artifacts to have occurred at

particular alleles.

For illustrative purposes we have implemented a näıve stutter model with

a crude discretization and a simple probability distribution. The analysis

can be very sensitive to the values used in the stutter model. If the stutter

probability is increased from 0.01 to 0.05, for example, the scenario K1K2K3

becomes more likely than K1K3U in each single trace analysis as well as in

the combined analysis. This reflects that the additional peaks, representing

a very small amount of DNA, then most likely are the result stutter rather

than additional alleles. The fact that K3 has contributed to both traces

seems robust varying the stutter probability within reasonable values.

For the model to be fully reliable in real casework it should be more
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realistic in terms of both the level of discretization and the probability dis-

tribution over it. Any analysis should also be supplemented with a study of

sensitivity and robustness by varying the parameters involved, for example

along the lines of [15] who analyse sensitivity to distributional assumptions

about founder genes.

We have ignored that the amount of stuttering tends to increase as the

total amount of DNA decreases, and is also marker dependent. Similarly

we have assumed the probability of silent alleles to be common for all loci,

but there is a known dependence on marker and allele [12, 14]. These and

other dependences could be incorporated into the model, for example can

the prevalence of silent alleles be made marker dependent; in our exposition

we have for simplicity assumed a common prevalence across markers.

An important concern is the computational complexity of our Bayesian

networks. For analysing two person mixtures the computations are quite

fast, a matter of a few seconds. Increasing the number of contributors to

three people in a single mixture significantly increases the computation and

memory requirements: typically between 2-3Gb of memory and around 1-2

hours of computation time was required to find each likelihood in Table 5.

Unfortunately, we were unable to complete any analyses involving four people

with the dropout model due to hardware constraints. A simple measure of

the computational complexity involved is to look at the total size of the

state space of tables in the junction tree for the Bayesian network [4]. For

two-person two-trace networks, state spaces are typically of the order of 106
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in size. For the three-person two-mixture networks examined in Table 5,

the state space sizes were of the order of 109. For a four person two-trace

network, the state space grows to 1011 or more. We believe that some of

these difficulties will be addressed in future work.

Finally we emphasize that threshold generated dropout should eventually

be incorporated as should issues concerning trace contamination.

References

[1] P. Gill, C.H. Brenner, J.S. Buckleton, A. Carracedo, M. Krawczak, W.R.

Mayr, N. Morling, M. Prinz, P.M. Schneider, and B.S. Weir. DNA com-

mission of the international society of forensic genetics: Recommenda-

tions on the interpretation of mixtures. Forensic Science International,

60:90–101, 2006.

[2] Peter Gill, James Curran, Cedric Neumann, Amanda Kirkham, Tim

Clayton, Jonathan Whitaker, and Jim Lambert. Interpretation of com-

plex DNA profiles using empirical models and a method to measure their

robustness. Forensic Science International:Genetics, 2:91–103, 2008.

[3] Robert G. Cowell, Steffen Lilholt Lauritzen, and Julia Mortera. A

gamma Bayesian network for DNA mixture analyses. Bayesian Analysis,

2:333–348, 2007.

28



[4] Robert G. Cowell, A. Philip Dawid, Steffen Lilholt Lauritzen, and

David J. Spiegelhalter. Probabilistic Networks and Expert Systems.

Springer, New York, 1999.

[5] Robert G. Cowell, Steffen L. Lauritzen, and Julia Mortera. MAIES:

A tool for DNA mixture analysis. In R. Dechter and T. Richardson,

editors, Proceedings of the 22nd Conference on Uncertainty in Artifi-

cial Intelligence, pages 90–97, San Francisco, 2006. Morgan Kaufmann

Publishers.

[6] Robert G. Cowell, Steffen Lilholt Lauritzen, and Julia Mortera. Identi-

fication and separation of DNA mixtures using peak area information.

Forensic Science International, 166:28–34, 2007.

[7] Robert G Cowell. Validation of an STR peak area model. Forensic

Science International: Genetics, 3(3):193–199, 2009.

[8] Peter Gill, James Curran, and Keith Elliot. A graphical simulation

model of the entire DNA process associated with the analysis of short

tandem repeat loci. Nucleic Acids Research, 33(2):632–643, 2005.

[9] P. Gill, J. Whitaker, Christine Flaxman, Nick Brown, and J. Buckleton.

An investigation of the rigor of interpretation rules for STRs derived

from less than 100 pg of DNA. Forensic Science International, 112:17–

40, 2000.

29



[10] P. Gill, R. Sparkes, R. Pinchin, T. Clayton, J. Whitaker, and J. Buckle-

ton. Interpreting simple STR mixtures using allele peak areas. Forensic

Science International, 91:41–53, 1998.

[11] P. S. Walsh, N.J. Fildes, and R. Reynolds. Sequence analysis and char-

acterization of stutter products. Nucleic Acid Research, 24:2807–2812,

1996.

[12] J. M. Butler. Forensic DNA typing. Elsevier, USA, 2005.

[13] Robert G. Cowell, Steffen L. Lauritzen, and Julia Mortera. Probabilistic

modelling for DNA mixture anlaysis. Forensic Science International:

Genetics Supplement Series, 1:640–642, 2008.

[14] T. M. Clayton, S. M. Hill, L. A. Denton, S. K. Watson, and A. J.

Urquhart. Primer binding site mutations affecting the typing of STR loci

contained within the AMPFlSTRr SGM PlusTM kit. Forensic Science

International, 139:255–259, 2004.

[15] Peter J. Green and Julia Mortera. Sensitivity of inferences in foren-

sic genetics to assumptions about founding genes. Annals of Applied

Statistics, 3(2):731–763, 2009.

30



Figure captions

Figure 1 A single marker network for the generation of peak areas from a

mixture of DNA from two people having genotypes p1gt and p2gt, with

three observed alleles a, b and c.

Figure 2 Illustration of how nodes relate in the dropout network fragment

for a marker with two observed alleles, a and b, in a two person mixture.

Figure 3 Network fragment for modelling stutter. The mean µa is affected

by stuttering in two ways: (i) a reduction due to part of type a alleles

amplifying to type a−1; (ii) an increase due to part of type a+1 alleles

amplifying to type a.

Figure 4 Schematic modelling of a pair of three-person mixture samples

that simultaneously share DNA from the same three contributors, but

in possibly different proportions θ and φ.
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Table 1: The conditional probability table P (namp
ia |nia, θi) quantifying

dropout with δi = exp(−λγθi).

nia

namp
ia 0 1 2

0 1 δi δ2
i

1 0 1 − δi 2(1 − δi)δi

2 0 0 (1 − δi)
2
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Table 2: Profiles of the victim K1 and individuals K2, and K3 for the ten
markers.

K1 K2 K3

D2 23 24 24 24 16 17

D3 15 18 17 17 17 19

D8 13 16 13 14 10 11

D16 12 12 11 12 11 13

D18 14 16 14 14 12 16

D19 13 14 15 16.2 14 15

D21 30 31 29 30 28 30

FGA 24 26 21 22 20 23

TH0 7 8 9 9 9.3 9.3

VWA 14 18 16 16 15 19
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Table 3: Blood stain MC18, showing alleles a, and peak heights ha for ten
markers.

a ha a ha a ha a ha a ha

D2 D8 D18 D21 TH0

16 189 10 241 12 187 28 304 7 670

17 171 11 192 13 87 29 134 8 636

22 55 12 127 14 997 30 1146 9 99

23 638 13 1092 15 80 31 734 9.3 348

24 673 14 127 16 744 FGA

D3 15 58 20 99 VWA

14 50 16 808 D19 21 49 14 876

15 715 12 57 22 76 15 249

16 67 D16 13 775 23 145 16 274

17 479 11 534 14 818 24 412 17 97

18 638 12 1786 15 159 25 39 18 967

19 136 13 265 16.2 76 26 349 19 251
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Table 4: Blood stain MC15, showing alleles a, and peak heights ha for ten
markers.

a ha a ha a ha a ha a ha

D2 D8 D18 D21 TH0

16 64 10 152 12 99 28 120 7 727

17 96 11 140 13 61 29 89 8 625

23 507 12 76 14 707 30 1010 9.3 165

24 534 13 929 15 107 31 783

14 58 16 930

15 84 VWA

D3 16 901 FGA 14 1036

14 79 D19 20 90 15 98

15 993 D16 12 53 21 52 16 163

17 286 11 256 13 546 23 103 17 79

18 689 12 1724 14 655 24 556 18 746

19 135 13 109 15 98 26 392 19 85
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Table 5: Likelihood ratios in favour of the base hypothesis Hb that K1,
K2 and K3 are the mixture contributors, against alternative scenarios Ha

involving contributions from exactly three persons. The ratios are given
both for the two single-mixture analyses, and for the simultaneous analysis.
The Ui (i = 1, 2, 3) refer to contributors whose profiles are not known.

Ha MC18 MC15 MC15 and MC18

K1K2K3 1 1 1

K1K2U1 6.07 × 109 4.88 × 109 7.29 × 108

K1K3U1 2.00 1.41 × 10−3 2.62 × 10−7

K2K3U1 6.59 × 1013 8.79 × 1013 9.08 × 1013

K1U1U2 3.74 × 108 1.14 × 105 1.40 × 103

K2U1U2 1.43 × 1023 1.94 × 1023 3.28 × 1022

K3U1U2 6.84 × 1013 6.22 × 1010 1.19 × 107

U1U2U3 4.90 × 1021 3.06 × 1018 4.19 × 1016
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Table 6: Likelihood ratios in favour of the base hypothesis Hb that K1, K2

and K3 are the mixture contributors, against selected alternative scenarios
Ha that do not have the same contributors to the two traces. The ratios are
based on simultaneous analyses of both traces. The Ui (i = 1, . . . , 6) refer to
contributors whose profiles are not known.

MC18 MC15 Hb : Ha

K1K3U2 K1K3U1 2.86 × 10−3

K1K2K3 K1K3U1 1.42 × 10−3

U1U2U4 U1U2U3 3.93 × 1021

U1U2U3 U4U5U6 1.51 × 1040
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Table 7: Posterior probabilities for alleles to have stuttered, for a small selec-
tion of alleles for the single trace analysis of MC18, and for the simultaneous
analysis of both traces, assuming in each case that the DNA in the mixtures
originates from the three known persons K1,K2 and K3.

Only MC18

Stutter amount

Allele (Marker) 0% 5% 10%

23(D2) 0 0.400 0.600

15(D3) 0 0.431 0.569

17(D3) 0 0.356 0.645

13(D19) 0 0.428 0.572

26(FGA) 0 0.367 0.633

18(VWA) 0 0.382 0.618

30(D21) 0.969 0.014 0.017

Simultaneous analysis

MC18 23(D2) 0 0.400 0.600

MC15 23(D2) 1 0 0
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Table 8: Posterior probabilities of genotypic contribution to the amplifica-
tion of mixture MC18 for marker D16, assuming K1, K2 and K3 are the
contributors. D indicates an allele (paternal or maternal) that has dropped
out.

K1 K2 K3

12, 12 0.844 11, D 0.342 11, 13 0.832

12, D 0.156 11, 12 0.316 13, D 0.168

D, D 3.6×10−7 D, D 0.207

12, D 0.136
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Table 9: Separation analysis of mixture MC15, to predict the most probable
profile of the unknown contributor U , assuming that the mixture is made up
of DNA from K1, K3 and U . For each marker, the second column (gtamp)
shows the most likely combination of maternal and paternal alleles that were
amplified, with an allelic dropout denoted by D. The posterior probability
for the amplified genotype is shown in the third column. The fourth and fifth
columns show the most probable genotype (gt) and its posterior probability.

Alleles amplified from U Predicted profile of U

Marker gtamp Posterior gt Posterior

D2 D, D 0.580 17, x 0.191

D3 14, D 0.600 14, 15 0.248

D8 12, 14 0.412 12, 14 0.426

D16 D, D 0.457 11, 12 0.236

D18 13, 15 0.636 13, 15 0.673

D19 12, D 0.551 12, 14 0.322

D21 29, D 0.681 29, 30 0.301

FGA 21, D 0.782 21, 24 0.174

TH0 D, D 0.592 7, 9.3 0.178

VWA 16, 17 0.879 16, 17 0.902
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Table 10: Separation analysis of mixture MC18, to predict the most probable
profile of the unknown contributor U , assuming that the mixture is made up
of DNA from K1, K3 and U . The format of the table is the same as Table 9.

Alleles amplified from U Predicted profile of U

Marker gtamp Posterior gt Posterior

D2 22, D 0.515 22, x 0.268

D3 14, 16 0.550 14, 16 0.581

D8 12, 14 0.621 12, 14 0.636

D16 D, D 0.421 11, 12 0.252

D18 13, 15 0.651 13, 15 0.689

D19 12, 16.2 0.601 12, 16.2 0.624

D21 29, D 0.704 29, 30 0.309

FGA 21, 22 0.873 21, 22 0.880

TH0 9, D 0.701 9, 9.3 0.462

VWA 16, 17 0.882 16, 17 0.906
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Table 11: Separation profile analyses for the unknown contributor, from a
simultaneous analysis of the two traces. The table shows the most probable
combination of alleles (gtamp) from the genotype amplified, together with the
associated probability. An allele not amplified is denoted by D. Also shown
is the predicted genotype (gt) and its posterior probability. See main text
for more details.

Marker MC15 MC18 Predicted profile

gtamp Posterior gtamp Posterior gt Posterior

D2 D, D 0.634 22, D 0.432 22, x 0.170

D3 14, D 0.919 14, 16 0.854 14, 16 0.903

D8 12, 14 0.610 12, 14 0.615 12, 14 0.630

D16 D, D 0.432 D, D 0.397 11, 12 0.269

D18 13, 15 0.928 13, 15 0.926 13, 15 0.981

D19 12, D 0.941 12, 16.2 0.937 12, 16.2 0.973

D21 29, D 0.719 29, D 0.729 29, 30 0.318

FGA 21, D 0.992 21, 22 0.922 21, 22 0.929

TH0 D, D 0.748 9, D 0.683 9, 9.3 0.503

VWA 16, 17 0.970 16, 17 0.969 16, 17 0.995
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Table 12: The six most probable combinations of alleles amplified (gtamp),
and the six most probable genotypes (gt), for the unknown contributor on
marker D2 obtained from an analysis of MC15.

gtamp Posterior gt Posterior

D, D 0.580 17, x 0.191

17, D 0.143 x, x 0.169

24, D 0.097 24, x 0.129

23, D 0.079 23, x 0.116

16, D 0.049 17, 24 0.072

17, 24 0.011 17, 23 0.065
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p2gtp1gt

n2cn1cn1b n2bn1a n2a

µa = (θ1n1a + θ2n2a)/2 µb = (θ1n1b + θ2n2b)/2 µc = (θ1n1c + θ2n2c)/2

Wc ∼Γ(ρµc,η)
wc = c×hc

Wb ∼Γ(ρµb,η)
wb = b×hb

Wa ∼Γ(ρµa,η)
wa = a×ha

θ = (θ1, θ2)

Figure 1: A single marker network for the generation of peak areas from a
mixture of DNA from two people having genotypes p1gt and p2gt, with three
observed alleles a, b and c.
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θ = (θ1, θ2) n2bn2a

n1bn1a

p2gtp1gt

n
amp
2bn

amp
2an

amp
1b

n
amp
1a

ntot

µbµa

Figure 2: Illustration of how nodes relate in the dropout network fragment
for a marker with two observed alleles, a and b, in a two person mixture.

µa+1µaµa−1 sa+1sasa−1

µ
∗

a+1µ
∗

aµ
∗

a−1

Figure 3: Network fragment for modelling stutter. The mean µa is affected by
stuttering in two ways: (i) a reduction due to part of type a alleles amplifying
to type a − 1; (ii) an increase due to part of type a + 1 alleles amplifying to
type a.
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p1 gt p2 gt p3 gt

MC18MC15

θ = (θ1, θ2, θ3) φ = (φ1, φ2, φ3)

Figure 4: Schematic modelling of a pair of three-person mixture samples that
simultaneously share DNA from the same three contributors, but in possibly
different proportions θ and φ.
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