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Abstract

The notion of residual estimation risk is introduced in order to study the impact

of parameter uncertainty on capital adequacy, for a given risk measure and capital

estimation procedure. Residual estimation risk is derived by applying the risk mea-

sure on a portfolio consisting of a random loss and a capital estimator, reflecting the

randomness inherent in the data. Residual risk thus equals the additional amount

of capital that needs to be added to the portfolio to make it acceptable. We propose

modified capital estimation procedures, based on parametric bootstrapping and on

predictive distributions, which tend to increase capital requirements, by compen-

sating for parameter uncertainty and leading to a residual risk close to zero. In

the particular case of location-scale families of distributions, the analysis simplifies

substantially and a capital estimator can always be found that leads to a residual

risk of exactly zero.
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1 Introduction

Insurance decisions, such as pricing, reserving and capital setting, are informed by the

outputs of statistical risk models. Such models are typically parametric. However, the

true values of parameters are in principle unknown and must be estimated from samples of

relevant observations. Such samples are often very small and statistical error means that

the estimated parameter values can diverge substantially from the true values. The poten-

tial for error in estimated parameters, termed parameter uncertainty, introduces possible

error into insurance decisions based on model outputs. For example, if the estimated fre-

quency used to model claims from a natural hazard is lower than the true one, insurance

policies may be under-priced and a portfolio of such policies under-capitalized. It is con-

ventional to view parameter uncertainty in the context of an otherwise correctly specified

risk model. If the model is not known with certainty, we talk of model uncertainty.

Decisions sensitive to tails of distributions, for which limited information resides in

available data, are more sensitive to parameter error. Thus, there is particular focus on

applications where the extremes of loss distributions are of interest, for example when

setting capital by a tail risk measure like Value-at-Risk (VaR) and Tail-Value-at-Risk

(TVaR), or when pricing high reinsurance layers. Investigations by insurance practitioners

have shown that the impact of parameter uncertainty in realistic modeling applications

can indeed be very substantial, see Mata (2000) and Borowicz and Norman (2008). High

sensitivity to parameter error has also been demonstrated in the context of credit risk

modeling by McNeil et al. (2005) and in a banking context by Jorion (1996), who argues

that confidence bands should be reported alongside estimated VaRs. Cont et al. (2010)

study risk measurement procedures and their sensitivity to changes in data used for

estimation, with reference to the notion of qualitative robustness.

In an early response to parameter uncertainty, Venezian (1983) recommends an explicit

increase to insurer capital, with the adjustment reflecting estimation volatility. Allowance

for parameter uncertainty is now often made in actuarial risk models, see Cairns et al.
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(2006) on stochastic mortality and longevity bond pricing and Verrall and England (2006)

on stochastic claims reserving. A broadly applicable response to parameter uncertainty

is to work with predictive distributions, arising as weighted averages of distributions with

different parameter values. Cairns (2000) argues in favor of a fully Bayesian approach to

capture parameter (as well as model) uncertainty. Predictive distributions tend to be more

volatile than distributions that are derived via point estimates of parameters and thus can

lead to more conservative decisions, see also Landsman and Tsanakas (2012). Gerrard

and Tsanakas (2011) show that the increase in VaR that using a predictive distribution

implies, is appropriate for restoring a frequentist failure probability to its required nominal

level.

In the present contribution we also study risk measurement procedures, but from a

perspective that is complementary to that of Cont et al. (2010). We introduce a criterion

for assessing, in monetary units, the impact of parameter uncertainty on capital adequacy.

We assume that the required capital for an insurance company is calculated by applying

to a random loss variable a risk measure that is positive homogeneous, translation in-

variant, and law invariant. Commonly used risk measures, such as VaR or TVaR, satisfy

these properties. A random sample for the loss is available and the estimated capital

is a function of that sample; we call this function the capital estimator. To assess the

effectiveness of a capital setting procedure, the risk measure is applied to the difference

between the loss (a random variable representing process variability) minus the capital

estimator (a random variable reflecting variability due to estimation). The result of this

calculation we call residual estimation risk. If the distribution of the loss is known, the

residual risk is zero. In general, residual estimation risk is not equal to zero and can be

viewed as the (deterministic) amount of capital that needs to be added to the capital

estimator such that the total position becomes acceptable. When the sample size grows,

the capital estimator typically converges to the unknown required capital and the residual

estimation risk thus goes to zero.

This approach can in principle be used to assess the effectiveness of any estimation
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procedure, even though our focus is on parametric models. In particular, model uncer-

tainty can also be assessed via residual estimation risk, if model selection is data driven

and thus reflected in the capital estimator (Bignozzi and Tsanakas, 2013). A strength

of the proposed approach is that it allows to consistently rank different estimation pro-

cedures. We show that monotonicity and subadditivity of the risk measure ensure that

capital estimators are appropriately ranked with respect to stochastic dominance and con-

vex stochastic order. Moreover, residual risk is expressed in monetary units and derived

with reference to a risk measure that explicitly represents preferences.

Apart from quantifying residual estimation risk, in the context of parametric models,

we discuss modifications to the capital setting procedure that reduce or even eliminate

residual risk. The first approach we discuss is a parametric bootstrap correction to the

capital estimator. Since the exact value of residual risk generally depends on unknown

parameters, we rely on a simple plug-in estimator of residual risk. Under mild conditions

it is shown that this corrected capital estimator leads to an improvement in residual

risk and its effectiveness is demonstrated by numerical examples, including the common

log-normal and Pareto models. In the second approach we propose, capital is set using

a predictive distribution derived by standard Bayesian arguments. The good predictive

performance of Bayesian methods under frequentist criteria has been highlighted in the

literature (Smith, 1999; Datta et al., 2000; Gerrard and Tsanakas, 2011). Once more,

numerical examples show that use of the predictive distribution nearly eliminates residual

estimation risk.

In the special case of location-scale models, such as the normal and Student t distri-

butions, several simplifications appear. It is shown that residual risk is independent of

the location parameter and proportional to the scale parameter. It follows that a simple

modification of the risk measure used to set capital can lead to a residual risk of exactly

zero. For example, if a TVaR measure at given confidence level is used to set capital,

this may be adjusted by using a different confidence level, depending on the size of the

data sample, but not on unknown parameters. Furthermore, for location-scale families,
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repeated bootstrap corrections to the capital estimator can be performed without increas-

ing computational cost, as no nested simulations are needed. Finally, it is shown that for

location families and for scale families, the use of a predictive distribution respectively

eliminates residual estimation risk and a closely related functional.

Throughout the paper, we deal with models such as the Pareto and the log-normal,

which can give rise to distributions with infinite means, either by the values taken by

parameter estimators or by the mixture involved in deriving predictive distributions.

Infinite-mean models do not allow the evaluation of coherent risk measures such as TVaR

(Nešlehová et al., 2006). For this reason, we often use in examples a truncated version of

TVaR, which we call Range-Value-at-Risk (RVaR). This risk measure, already considered

by Cont et al. (2010), considers a larger part of the tail than VaR, but is not coherent

and is well defined even when the mean of the loss distribution is infinite.

In Section 2 we introduce the notion of residual estimation risk and present numerical

examples of its quantification. Section 3 discusses methods for controlling residual risk

applicable to general loss distributions, while Section 4 deals with the specific case of

location-scale families. Brief conclusions are given in Section 5. Details of calculations

are documented in the Appendix of Section 6.

2 Residual estimation risk

2.1 Risk measures

The financial loss of a portfolio is modeled by a random variable Y , defined on a standard

non-atomic probability space (Ω,F ,P). Thus, in the event {Y > 0} a portfolio loss occurs,

while {Y ≤ 0} corresponds to a gain. The distribution of Y is F . When considering

parametric models, we write F ≡ F (·; θ) where θ ∈ Θ is a vector of parameters. All

inequalities between random variables are meant to hold P-a.s.

A risk measure is a functional ρ that assigns to every financial loss Y a real number
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ρ(Y ). (Whenever this notation is used, we implicitly assume that the distribution of Y is

such that ρ(Y ) is well defined.) ρ(Y ) is expressed in monetary units and may represent

a regulatory capital requirement, which is the interpretation we follow here. Following

Artzner et al. (1999), a loss is acceptable if ρ(Y ) ≤ 0 and not acceptable if ρ(Y ) > 0.

We consider in this paper only risk measures that satisfy the following four standard

properties, which are assumed throughout the paper and not explicitly stated further on.

Monotonicity: If Y1 ≤ Y2, ρ(Y1) ≤ ρ(Y2).

Translation invariance: If a ∈ R, ρ(Y + a) = ρ(Y ) + a;

Positive homogeneity: If λ ≥ 0, ρ(λY ) = λρ(Y );

Law invariance: If Y1
d
= Y2, ρ(Y1) = ρ(Y2),

where
d
= denotes equality in distribution.

Law invariance requires that two losses with the same distribution have the same

capital requirement. Because of this, a risk measure can also be evaluated as a functional

of a distribution, such that for Y ∼ F we may denote ρ(Y ) ≡ ρ[F ]. With this notation,

translation invariance and positive homogeneity can be written as ρ[F (· − a)] = ρ[F ] + a

and ρ[F ( ·
λ
)] = λρ [F ] respectively.

Three risk measures satisfying the above properties are

VaRp(Y ) := inf{a ∈ R | P(Y ≤ a) ≥ p} = F−1(p), (1)

TVaRp(Y ) :=
1

1− p

∫ 1

p

VaRu(Y )du = E(Y |Y > F−1(p)), (2)

RVaRp1,p2(Y ) :=
1

p2 − p1

∫ p2

p1

VaRu(Y )du = E(Y |F−1(p1) < Y < F−1(p2)). (3)

The second equality in each of (1), (2), and (3), holds under the additional assumption

that the distribution F is invertible. All three risk measures are special cases of the general

class of distortion risk measures (Wang et al., 1997). The VaRp measure, used extensively

in insurance and banking regulation, is the 100pth percentile of the loss distribution. VaRp

is characterized by its insensitivity to the extreme tails of loss distributions, see Dowd
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and Blake (2006). TVaRp corrects for this defect by considering the average of all VaRs

above the 100pth percentile. However, this introduces sensitivity to extreme percentiles,

which may not be reliably estimable from limited data. Furthermore, TVaR is not defined

for distributions with infinite means. RVaRp1,p2 , proposed by Cont et al. (2010), offers a

compromise between those two risk measures: while it considers most of the tail, it does

not reflect some very extreme losses that a TVaRp1 measure would consider. Thus, for

p2 < 1 is always well defined.

An additional property often required is:

Subadditivity: For every Y1, Y2, ρ(Y1 + Y2) ≤ ρ(Y1) + ρ(Y2),

Risk measures satisfying monotonicity, translation invariance, positive homogeneity and

subadditivity are termed coherent, see Artzner et al. (1999). Of the three risk measures

discussed above, only TVaR is subadditive and thus coherent.

2.2 Residual estimation risk

For the loss Y , the value of a law invariant risk measure depends on the distribution

function F , which is typically unknown and needs to be estimated from data. An i.i.d.

random sample of size n from F will be denoted by X = {X1, . . . , Xn}; with slight abuse

of notation we write X ∼ F . We assume that Y is independent of X. It follows that the

capital that the holder of Y needs to hold, with reference to the risk measure ρ, will also

depend on the random sample itself and is denoted by η(X). Similar to Cont et al. (2010),

risk measurement is viewed as a two-step procedure. First the distribution F needs to

be estimated from data; denote the estimator of the distribution by FX. Second, the risk

measure ρ is evaluated at FX, yielding the capital estimator η(X) = ρ[FX].

Cont et al. (2010) investigated the robustness of risk measurement procedures with

respect to small changes in the data set. They consider the notion of qualitative robustness,

which is closely related to weak continuity of statistical functionals. In this paper we offer

a complementary discussion of risk measurement procedures, considering the impact of
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estimation volatility on capital adequacy, rather than robustness.

From translation invariance we have

ρ(Y − ρ(Y )) = 0, (4)

such that, by monotonicity, ρ(Y ) is the minimal amount of capital that needs to be

subtracted from the loss Y to make it acceptable. Reflecting the variability in the random

sample X, we can consider Y −η(X) as the random variable that represents the loss, after

the (random) capital estimator has been subtracted from it. We then define as residual

estimation risk the quantity

RR(F, η) = ρ(Y − η(X)). (5)

Equation (5) is analogous to (4), with the theoretical capital value ρ(Y ) substituted by

the capital estimator η(X). A positive residual risk implies that the impact of model

uncertainty is such that subtracting the capital estimator η(X) from the loss Y does not

produce an acceptable loss. Hence more safely invested capital needs to be held. The

residual estimation risk thus reflects the extra amount of capital that needs to be added

to the estimated capital η(X) in order to make Y acceptable, in particular it holds that

ρ(Y − (η(X)+RR(F, η))) = 0. By its definition, residual risk depends on the risk measure

ρ; this dependence is suppressed in the notation.

Of course, alternative measures of model and parameter uncertainty are available.

For example, confidence intervals for the estimated risk measure ρ[FX] can be calculated.

However, such an approach does not provide clear guidance about how risk estimates

should be plausibly adjusted, e.g. at which confidence level of ρ[FX] capital should be set.1

By measuring model risk in monetary units and associating it with the risk measure itself,

stated risk preferences provide guidance on designing capital setting procedures, as will be

seen in Section 3. Furthermore, the presence of the future loss Y and a related estimator in

the same expression distinguish the present approach from uncertainty assessments based

1The issue of how risk measures should be calibrated, e.g. what the confidence level of VaR should be

remains open – but this is a different problem. Residual risk allows a measurement of model uncertainty

that is consistent with such externally given risk preferences.
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on e.g. confidence intervals, by placing it in the broader context of predictive inference

(see e.g. Barndorff-Nielsen and Cox, 1996) and associating it with current considerations

of backtesting and model validation, see McNeil et al. (2005, Section 4.4.3) and Ziegel

(2014).

Before elaborating on that last point, some elementary properties of residual estima-

tion risk are collected. First, recall the definitions of stochastic dominance and convex

order for random variables (see Denuit et al., 2005, Sections 3.3-3.4). The random vari-

able S is smaller than T in stochastic dominance, S �st T , if VaRp(S) ≤ VaRp(T ) for all

p ∈ [0, 1]. Intuitively S �st T implies that S is a smaller risk than T ; in particular one

can always find S ′ d
= S, T ′ d

= T such that P(S ′ ≤ T ′) = 1. The variability of S and T

can be compared via the convex order. S is smaller than T in convex order, S �cx T , if

E(v(S)) ≤ E(v(T )), for all convex functions v such that the expectations exist. Immediate

consequences of S �cx T are E(S) = E(T ) and Var(S) ≤ Var(T ).

Proposition 2.1. For a risk measure ρ and distribution F , the following hold:

a) For any distribution F ∗, it is RR(F, ρ[F ∗]) = ρ[F ]− ρ[F ∗].

b) If η1(X) �st η2(X), then it is RR(F, η1) ≥ RR(F, η2).

c) If η(X) ≥ (≤)ρ[F ], then it is RR(F, η) ≤ (≥)0.

d) If ρ is subadditive and satisfies the Fatou property, then η1(X) �cx η2(X) implies

RR(F, η1) ≤ RR(F, η2)

e) If ρ is subadditive and η(X) = λη1(X) + (1 − λ)η2(X) holds for all λ ∈ [0, 1], then

it is RR(F, η) ≤ λRR(F, η1) + (1− λ)RR(F, η2).

Proof. Part a) follows from translation invariance of ρ. For part b), by Proposition 3.3.17

in Denuit et al. (2005) it is Y − η2(X) �st Y − η1(X). The stated inequality then follows

from monotonicity of ρ and Theorem 4.1 of Bäuerle and Müller (2006). Part c) is similar

to b). For part d), by noting that η1(X) �cx η2(X) ⇔ −η1(X) �cx −η2(X) and applying
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Proposition 3.4.25 in Denuit et al. (2005) it is Y − η1(X) �cx Y − η2(X). The result

then follows from subadditivity and positive homogeneity of ρ (implying convexity) and

Theorem 4.2 of Bäuerle and Müller (2006). Part e) follows directly from subadditivity

and positive homogeneity of ρ.

Part a) of Proposition 2.2 implies that estimating capital using a fixed distribution

F ∗ (essentially ignoring the data) leads to residual risk equal precisely to the difference

between the true and estimated level of capital, which is a simple measure of model

error. Part b) shows that choosing a larger capital estimator, in the sense of stochastic

dominance, will lead to a reduction in residual risk. Part c) is a special case of b):

designing a capital estimator that is always larger than the required capital under the

true distribution guarantees negative residual risk. Finally, part d) shows that residual

risk penalizes volatile capital estimators, for risk measures that are subadditive and satisfy

the Fatou property (a continuity requirement satisfied by all risk measures considered here

– see Bäuerle and Müller (2006) for details). Finally, the convexity of RR in η (part e) is

desirable as it implies that averaging of two capital estimators will lead to a residual risk

that is an improvement on the worst performing of the two.

The properties of residual estimation risk induce quality rankings of capital estimators.

This relates, but is distinct, to the discussion of elicitability of risk measures, which

concerns the potential for assessing the quality of individual risk forecasts via a particular

scoring rule – see Gneiting (2011) and Ziegel (2014) for more detail. A full discussion of

elicitability is beyond the scope of this paper, but we note two key differences. First, in

our context the future loss is compared to an estimator (a random variable) rather than

a fixed forecast, allowing the assessment of the quality of risk measurement procedures

rather than individual forecasts. Second, the scoring approach penalizes all deviations

between forecasts and realized losses, while residual risk is allowed to be negative, thus

distinguishing between scenarios of potential under- and over-capitalization.

Links between residual risk and backtesting become apparent by considering the par-
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ticular case of ρ ≡ VaRp, η(X) = VaRp[FX]. Then, the equivalence holds,

RR(F, η) = VaRp(Y − η(X)) ≥ 0 ⇔ P(Y > η(X)) ≥ 1− p. (6)

The right-hand-side of inequality (6) signifies a probability of failure (future loss exceeding

the capital estimator) higher than the acceptable level 1−p and was used as a measure of

parameter uncertainty by Gerrard and Tsanakas (2011). The quantity P(Y > η(X)) can

be interpreted as the expected relative frequency of violations when backtesting a VaR

model. Hence, the definition of residual estimation risk (5) can be related to a backtesting

criterion for risk measures more general than VaR; see the discussion on backtesting VaR

and TVaR in McNeil et al. (2005), Section 4.4.3.

2.3 Residual risk and parameter estimation

In the rest of the paper (with the exception of Example 11), we focus on residual risk due

to parameter rather than model uncertainty. Hence from now on we set F ≡ F (·; θ), where

the distribution family F (·; ·) is known, but the parameter θ needs to be estimated. Conse-

quently, we simplify notation somewhat and write from now on RR(θ, η) ≡ RR(F (·; θ), η).

The residual risk depends on unknown but true parameters. This is similar to other stan-

dard frequentist quality criteria such as e.g. the mean-squared-error.

By θ̂ we denote an estimator of θ based on the random sample X. Unless other-

wise specified, parameters are estimated by likelihood maximization, such that η(X) =

ρ[F (·; θ̂)] is the MLE of ρ[F (·; θ)].

We now present examples to illustrate the impact of parameter uncertainty on different

risk measures and distributions. In all numerical examples in this paper, the residual risk

ρ(Y − η(X)), for any distribution and capital estimator, is calculated numerically via

Monte-Carlo simulation. The precise details of the simulation algorithm are given in

Section 6.1. To allow comparisons, we will report in examples a normalized version of

residual risk:

NRR(F, η) =
RR(F, η)

ρ(Y )− E(Y )
, (7)
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In all examples the denominator ρ(Y )− E(Y ) is analytically calculated.

Example 1 (Normal, MLE). First consider a simple normal model, Y,X ∼ N (µ, σ2).

The mean µ and the standard deviation σ are unknown. Hence F (·; (µ, σ)) ≡ Φ
( ·−µ

σ

)

,

where Φ is the standard normal distribution. The standard normal density is denoted by

φ. We can write Y
d
= µ+ σZ, where Z ∼ N (0, 1). The MLE (µ̂, σ̂2) satisfies

(µ̂, σ̂2)
d
=

(

µ+
σ√
n
U,

σ2V

n

)

,

where U ∼ N (0, 1) and V ∼ χ2
n−1, with U, V independent.

By the translation invariance and positive homogeneity of ρ it is ρ(Y ) = µ+σc, where

c = ρ(Z). The capital estimator becomes

η(X) = ρ[F (·; (µ̂, σ̂))] = µ+
σ√
n
U + σ

√

V

n
c.

Consequently, the residual risk can be calculated as

RR((µ, σ), η) = σρ

(

Z − 1√
n
U −

√

V

n
c

)

,

where Z is independent of U, V . The residual risk thus does not depend on the mean and

is proportional to the standard deviation. Furthermore, normalization as in (7) gives the

parameter free quantity, NRR((µ, σ), η) =
ρ
(

Z− 1√
n
U−

√
V
n
c
)

c
. In Section 4 it will be seen

that this is generally the case for location-scale families.

Table 1: Normalized residual estimation risk for a normally distributed risk with risk
measure TVaRp, and the MLE capital estimator.

n=20 n=50 n=100
p=0.95 0.112 0.046 0.023
p=0.99 0.141 0.059 0.030
p=0.995 0.154 0.065 0.033

Table 1 presents the normalized residual risks for TVaRp and different values of p and

n. For this risk measure, it is c =TVaRq(Z) =
φ(Φ−1(q))

1−q
(e.g. McNeil et al., 2005, Example

2.18). The values obtained demonstrate the substantial sensitivity of residual risk on the

sample size. Thus, when n = 20 the residual risk is approximately between 11% and 15%

12



of the required capital, while for a moderate sample of n = 100, the residual risk takes

values around 3% of capital. �

For the commonly used log-normal model, some of the simplicity of Example 1 is lost.

Example 2 (Log-normal, MLE). Let Y ′ ∼ N (µ, σ2) such that Y = eY
′
is a log-normal

random variable. Here we use an RVaRp1,p2(Y ) measure, which can be calculated as

RVaRp1,p2(Y ) =
1

p2 − p1

∫ VaRp2 (Y )

VaRp1 (Y )

1

t
√
2πσ2

te−
(ln(t)−µ)2

σ dt

=
eµ+

1
2
σ2

p2 − p1

[

Φ(Φ−1(p2)− σ)− Φ(Φ−1(p1)− σ)
]

.

Thus the capital estimator is

η(X) =
eµ̂+

1
2
σ̂2

p2 − p1

[

Φ(Φ−1(p2)− σ̂)− Φ(Φ−1(p1)− σ̂)
]

.

The residual risk for a log-normal random variable is given by

RR((µ, σ), η) = RVaRp1,p2

(

Y − eµ̂+
1
2
σ̂2

p2 − p1

(

Φ
(

Φ−1(p2)− σ̂
)

− Φ
(

Φ−1(p1)− σ̂
))

)

,

where (µ̂, σ̂2) is a random variable with the same distribution as in Example 1.

Values of normalized residual estimation risk for the log-normal distribution are pre-

sented in Table 2. For (µ, σ), the parameter choices (4.6002, 0.0998) and (4.4936, 0.4724)

are used, corresponding to the same mean E(Y ) = 100 and coefficients of variation

CV(Y ) =
√

Var(Y )/E(Y ) taking values 0.1 and 0.5 respectively. A substantial depen-

dence of the normalized residual risk on the coefficient of variation is observed, with a

more volatile distribution leading to higher residual estimation risks. Residual risk is also

greater for higher p1, corresponding to risk measures focusing further in the tail. �

Coherent risk measures, such as TVaR, are not well defined for random losses with

infinite means (e.g. Nešlehová et al., 2006). The implication of this for the quantification

of residual risk are illustrated in the following example.

Example 3 (Pareto, MLE). Let Y,X follow a one-parameter Pareto with distribution

function F (y; θ) = 1− y−1/θ, y ≥ 1, which has a finite mean for θ < 1. The MLE of θ is

θ̂ = 1
n

∑n
i=1 log(Xi) ∼ Gam(n, θ/n), where Gam(a, b) denotes a Gamma distribution with
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Table 2: Normalized residual estimation risk for a log-normally distributed risk with risk
measure RVaRp1,0.997, and the MLE capital estimator.

CV(Y ) = 0.1 CV(Y ) = 0.5
n=20 n=50 n=100 n=20 n=50 n=100

p1 = 0.95 0.119 0.049 0.025 0.163 0.071 0.037
p1 = 0.99 0.147 0.062 0.031 0.200 0.091 0.048
p1 = 0.995 0.156 0.066 0.034 0.212 0.098 0.052

Table 3: Normalized residual estimation risk for a Pareto distributed risk, risk measure
RVaRp1,0.997, and MLE capital estimator.

θ = 0.1 θ = 0.5
n=20 n=50 n=100 n=20 n=50 n=100

p1 = 0.95 0.130 0.057 0.030 0.207 0.107 0.060
p1 = 0.99 0.156 0.071 0.038 0.227 0.123 0.070
p1 = 0.995 0.165 0.077 0.040 0.237 0.130 0.075

parameters a and b. It is apparent that P(θ̂ ≥ 1) > 0. Hence even though E(Y ) < ∞,

there are probable outcomes of θ̂ such that the capital estimator η(X) = ρ[F (·; θ̂)] is not

well defined for coherent risk measures, such as TVaR, that require a finite mean. As a

consequence, the residual risk RR(θ, η) = ρ(Y − ρ[F (·; θ̂)]) may also be not well defined.

For the Pareto distribution, simple computations lead to

η(X) = RVaRp1,p2 [F (·; θ̂)] = 1

p2 − p1

1

θ̂ − 1

(

(1− p2)
1−θ̂ − (1− p1)

1−θ̂
)

.

The residual estimation risk becomes

RR(θ, η) = RVaRp1,p2

(

Y − 1

p2 − p1

1

θ̂ − 1

(

(1− p2)
1−θ̂ − (1− p1)

1−θ̂
)

)

,

where θ̂ ∼ Gam(n, θ/n) is once more considered as a random variable.

Normalized residual estimation risks for the Pareto distribution are presented in Ta-

ble 3 for parameter values θ = 0.1 and θ = 0.5 (corresponding to the case of an infinite

variance). The risk measure RVaRp1,p2 is used throughout, with p1 ∈ {0.95,0.99,0.995}

and p2 = 0.997. Consistently with Example 2, residual risk increases in θ (more heavy

tailed distribution) and p1 (more extreme risk measure). �
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3 Controlling residual estimation risk

A further step beyond quantification of residual risk is its control, that is, the design

of capital estimators that produce a residual risk (close to) zero. In all cases we have

considered, residual risk under an MLE capital estimator is positive. Consequently, the

capital estimation procedures we propose here tend to increase the capital in relation to

the MLE.

3.1 Parametric bootstrap

In this section, we aim to adjust η(X) via estimation of the residual risk RR(θ, η) that it

gives rise to. Since RR(θ, η) specifically depends on the unknown parameter θ, it is not

known to an agent who just observes the random sample X. Thus RR(θ, η) needs itself

to be estimated from the data.

This approach is a form of parametric bootstrapping; the overall principle is as follows.

Let the distribution of the parameter estimator θ̂ be G(·; θ). Then, given θ̂, the boot-

strapped estimator θ̂∗ is defined as having distribution G(·; θ̂). The relationship between

θ̂∗ and θ̂ mirrors the relationship between θ̂ and θ, which is required for inference. For a

rigorous treatment of the bootstrap see Hall (1992).

To make these notions more explicit, first denote by r1(θ) = RR(θ, η) the residual

estimation risk as a function of only the true parameter θ. As before, η(X) = ρ[F (·; θ̂)],

where θ̂ is the MLE of θ. Since we can interpret r1(θ) as the additional capital that needs

to be subtracted from Y −η(X) in order to make it acceptable, it is reasonable to propose

the following first order bootstrap capital estimator

ηbs1(X) = η(X) + r1(θ̂) = ρ[F (·; θ̂)] + r1(θ̂). (8)

In order to calculate r1(θ̂) = RR(θ̂, η), for a given realization of θ̂, it is necessary to

simulate from the random variable θ̂∗|θ̂ ∼ G(·; θ̂). The details of this simulation are given

in Section 6.2.

The above process can be repeated in order to refine the adjustment to the capital
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estimator. Let the residual risk arising from using the capital estimator ηbs1 be r2(θ) =

RR(θ, ηbs1). Consequently, we can define the second order bootstrap capital estimator as

ηbs2(X) = ηbs1(X) + r2(θ̂) = ρ[F (·; θ̂)] + r1(θ̂) + r2(θ̂), (9)

and the associated residual risk by r3(θ) = RR(θ, ηbs2). The process can be further re-

peated in order to derive bootstrap capital estimators of higher orders.

Proposition 3.1 shows that under weak conditions repeated applications of the boot-

strap correction generally produce an improvement in residual risk. In particular, mono-

tonicity of the risk measure ρ ensures that the bootstrap correction operates in the correct

direction. Subadditivity of ρ, combined with a weak requirement on the volatility of the

estimator of residual risk, ensures the correction does not over- or under-shoot. The

proposition is formulated in relation to a bootstrap correction applied to a generic cap-

ital estimator η(X), which may itself be the product of a previously applied bootstrap

correction; we thus drop the subscript from the function r(θ).

Proposition 3.1. For X, Y ∼ F (·; θ), parameter estimator θ̂, risk measure ρ, and capital

estimator η(X), define r(θ) = RR(F, η) and η∗(X) = η(X) + r(θ̂).

a) If r(θ) ≥ 0 for any θ ∈ Θ, then RR(θ, η∗) ≤ r(θ).

If in addition ρ is subadditive and ρ(r(θ̂)) ≤ 2r(θ), then it is RR(θ, η∗) ≥ −r(θ).

b) If r(θ) ≤ 0 for any θ ∈ Θ, then RR(θ, η∗) ≥ r(θ).

If in addition ρ is subadditive and ρ(−r(θ̂)) ≤ −2r(θ), then it is RR(θ, η∗) ≤ −r(θ).

Proof. To prove part a), by monotonicity we have

RR(θ, η∗) = ρ(Y − (η(X) + r(θ̂))) ≤ ρ(Y − η(X)) = r(θ).

From the subadditivity of ρ it follows that ρ(Y − (η(X)+ r(θ̂))) ≥ ρ(Y − η(X))− ρ(r(θ̂)).

The assumption ρ(r(θ̂)) ≤ 2r(θ) implies RR(θ, η∗) = ρ(Y −η(X))−ρ(r(θ̂)) ≥ −r(θ). Part

b) follows similarly.

Here we demonstrate the effectiveness of the bootstrap approach for the log-normal

and Pareto models.
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Example 4 (Log-normal, bootstrap). Expressions of the MLE capital estimator η(X)

and the corresponding residual risk r1(µ, σ) = RR((µ, σ), η) are given in Example 2.

Consequently the bootstrap capital estimator is ηbs1(X) = η(X)+r1(µ̂, σ̂), where for each

estimate (µ̂, σ̂) it is

r1(µ̂, σ̂) = RVaRp1,p2

(

Y ∗ − eµ̂
∗+ 1

2
σ̂∗2

p2 − p1

(

Φ
(

Φ−1(p2)− σ̂∗)− Φ
(

Φ−1(p1)− σ̂∗))
)

,

where, given (µ̂, σ̂), Y ∗ follows a log-normal distribution with parameters (µ̂, σ̂2) and

(µ̂∗, σ̂∗)
d
=
(

µ̂+ σ̂√
n
U∗, σ̂2V ∗

n

)

, with U∗ ∼ N (0, 1) and V ∗ ∼ χ2
n−1 independent. See

Section 6.2 for a general description of the algorithm for deriving ηbs1 by simulation.

Normalized residual risk is reported in Table 4. A dramatic improvement is observed

in comparison to the unadjusted MLE capital estimator (Table 2), with even a single

application of the bootstrap correction leading to a residual risk of nearly zero. �

Table 4: Normalized residual estimation risk for a log-normally distributed risk with risk
measure RVaRp1,0.997, and first-order bootstrap corrected capital estimator ηbs1.

CV(Y ) = 0.1 CV(Y ) = 0.5
n=20 n=50 n=100 n=20 n=50 n=100

p1 = 0.95 0.001 -0.001 0.000 0.002 0.001 0.000
p1 = 0.99 0.001 0.000 0.000 0.002 0.001 0.000
p1 = 0.995 0.002 0.001 0.000 0.001 0.000 0.000

Table 5: Normalized residual estimation risk for a Pareto distributed risk, risk measure
RVaRp1,0.997, and first-order bootstrap corrected capital estimator ηbs1.

θ = 0.1 θ = 0.5
n=20 n=50 n=100 n=20 n=50 n=100

p1 = 0.95 0.001 0.001 0.000 0.001 0.000 -0.002
p1 = 0.99 0.001 -0.002 -0.002 0.003 0.001 0.002
p1 = 0.995 0.000 -0.001 0.000 0.002 0.002 0.001

Example 5 (Pareto, bootstrap). Expressions of the MLE capital estimator η(X) and

the corresponding residual risk r1(θ) = RR(θ, η) are given in Example 3. Once more, the
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bootstrap capital estimator is ηbs1(X) = η(X) + r1(θ̂), where for each estimate θ̂ it is

r1(θ̂) = RVaRp1,p2

(

Y ∗ − 1

p2 − p1

1

θ̂∗ − 1

(

(1− p2)
1−θ̂∗ − (1− p1)

1−θ̂∗
)

)

,

where given θ̂, Y ∗ follows a Pareto distribution with parameter θ̂ and θ̂∗ a Gamma dis-

tribution with parameters (n, θ̂/n).

Continuing from Example 3, residual estimation risk is calculated for a Pareto distri-

bution and the capital estimator ηbs1(X). Results are reported in Table 5. Once more,

residual risk is essentially eliminated, demonstrating a vast improvement in comparison

to the MLE capital estimator (Table 3). �

3.2 Bayesian predictive distribution

The use of a Bayesian predictive distribution is a standard approach to dealing with

parameter uncertainty, see Cairns (2000). Under a Bayesian approach, the parameter

θ ∈ Θ is considered a random variable itself with prior distribution π(θ). Once data

x have been collected, the posterior of the parameter, π(θ|x), is obtained by π(θ|x) ∝

π(θ)
∏n

i=1 f(xi; θ). The predictive distribution of Y , given the data x, is defined as

F̂ (·|x) =
∫

θ∈Θ
F (·; θ)π(θ|x)dθ. (10)

Probabilities and expectations calculated according to the predictive distribution are re-

spectively denoted by P̂(·|x) and Ê(·|x).

Parameter uncertainty can be reflected in capital measurement by setting capital ac-

cording to the predictive distribution. That is, we set

ηbay(X) = ρ[F̂ (·|X)]. (11)

Note the difference to the bootstrap capital estimators of Section 3.1: there an adjustment

to the MLE was produced, while here the probability distribution according to which

capital is set is modified.

Predictive distributions tend to be more dispersed in the tail, by their mixture con-

struction seen in (10). Hence, it is plausible that the capital estimator ηbay(X) will produce
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a reduction in the (typically positive) residual risk induced by an MLE capital estimator,

such that RR(θ, ρ[F̂ (·|X)]) ≤ RR(θ, ρ[F (·; θ̂)]). While the residual risk is a frequentist cri-

terion, it has been widely noticed in the literature that Bayesian approaches to prediction

tend, at least approximately, to satisfy frequentist quality criteria (see Smith, 1999; Datta

et al., 2000). In fact, it follows from results of Gerrard and Tsanakas (2011) that, for a

wide set of loss distributions that includes the log-normal and Pareto examples discussed

here and the use of a non-informative prior, it is VaRp(Y −VaRp[F̂ (·|X)]) = 0, such that

the residual risk is completely eliminated for VaR.

The effectiveness of the capital estimator ηbay is now demonstrated through examples.

It is seen the problems of infinite means emerge for both the log-normal and Pareto

models, motivating once more the use of RVaR.

Example 6 (Log-normal, Bayes). Let Y ′,X′ ∼ N (µ, σ2) and Y = exp(Y ′), X =

(exp(X ′
1), . . . , exp(X

′
n)), such that Y,X ∼ LN (µ, σ2). For the log-normal distribution

all moments exist, regardless of the value of the parameters, such that for a coherent risk

measure like TVaR, the quantity ρ[F (·; (µ̂, σ̂))] will always be well defined.

Consider now capital being set using the predictive distribution of Y , such that

ηbay(X) = ρ[F̂ (·|X)]. A standard argument (similar to Hogg et al., 2012, Example 11.3.1)

shows that, using an uninformative prior π(µ, σ) = 1/σ, the predictive distribution of

the normal variable Y ′ is a Student t distribution. Consequently, (see e.g. Gerrard and

Tsanakas, 2011, Lemma 1ii) the predictive distribution of the log-normal variable Y is a

“log-t” distribution

F̂ (y|X) = tn−1

(

√

n− 1

n+ 1

log(y)− µ̂

σ̂

)

,

where µ̂, σ̂ are the MLEs of µ, σ, and tn−1 is the distribution function of a standard

Student t variable with n− 1 degrees of freedom.

The expected value associated with F̂ (·|X) is Ê(Y |X) = Ê (exp(Y )|X) . However,

since the Student t distribution has a regularly varying tail (McNeil et al., 2005, p. 293),

its moment generating function is not well defined, implying that Ê(exp(Y ′)|X) = ∞.

Since the mean associated with the predictive distribution F̂ (·|X) is infinite, any capital
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estimator of the form ρ[F̂ (·|X)] will also be infinite, when a coherent risk measure ρ is

used.

Thus the use of the risk measure RVaR is more appropriate. We have

VaRp[F̂
′(y|X′)] = exp

(

µ̂+ σ̂

√

n+ 1

n− 1
t−1
n−1(p)

)

,

ηbay(X) = RVaRp1,p2 [F̂
′(y|X′)] =

1

p2 − p1

∫ p2

p1

exp

(

µ̂+ σ̂

√

n+ 1

n− 1
t−1
n−1(u)

)

du. (12)

The integral in (12) needs to be solved numerically.

The normalized residual estimation risk for the log-normal distribution is presented

in Table 6. It is seen that using the predictive distribution is highly effective in nearly

eliminating residual risk. In particular, comparison to Table 2 reveals the great improve-

ment achieved in relation to MLE, with residual risk for ηbay being close to zero. The

performance of ηbay is thus comparable to that of ηbs1 reported in Table 4. �

Table 6: Normalized residual estimation risk for a log-normally distributed risk, risk
measure RVaRp1,0.997, and Bayes capital estimator ηbay.

CV(Y ) = 0.1 CV(Y ) = 0.5
n=20 n=50 n=100 n=20 n=50 n=100

p1 = 0.95 -0.005 -0.001 -0.001 -0.008 -0.003 -0.001
p1 = 0.99 -0.001 0.000 0.000 -0.001 0.000 0.000
p1 = 0.995 0.000 0.000 0.000 0.000 0.000 0.000

Table 7: Normalized residual estimation risk for a Pareto distributed risk, risk measure
RVaRp1,0.997, and Bayes capital estimator ηbay.

θ = 0.1 θ = 0.5
n=20 n=50 n=100 n=20 n=50 n=100

p1 = 0.95 -0.005 -0.002 -0.001 0.018 0.012 0.008
p1 = 0.99 0.000 0.000 0.000 0.007 0.006 0.004
p1 = 0.995 0.000 0.000 0.000 0.002 0.002 0.002

Example 7 (Pareto, Bayes). When Y follows a Pareto distribution, the prior π(θ) = 1/θ
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leads to a predictive distribution for Y of the form

F̂ (y|X) = 1−
(

nθ̂

log (y) + nθ̂

)n

, (13)

where θ̂ is the MLE of θ. This is a “log-Pareto” distribution, again with infinite mean.

For the VaR and RVaR measures of Y we now have,

VaRp[F̂ (y|X)] = exp
(

θ̂n((1− p)−1/n − 1)
)

,

ηbay(X) = RVaRp1,p2 [F̂ (y|X)] =
1

p2 − p1

∫ p2

p1

exp
(

θ̂n((1− u)−1/n − 1)
)

du. (14)

Again, the integral in (14) can be solved numerically.

The normalized residual estimation risk for the Pareto distribution is presented in

Table 7. Once more, the use of the predictive distribution is highly effective, leading

to residual risk levels very close to zero, thus improving on the MLE capital estimators

(Table 3). �

4 Quantifying and controlling residual estimation risk

for location-scale families

In the current section we focus on residual estimation risk for distribution functions that

belong to location-scale families. Such distributions, like the normal, Student t, and

Laplace (double-exponential) families are commonly used in modeling asset returns. It

will be seen that the case of location-scale families allows substantial simplifications in

the quantification and control of residual risk. In particular, exact elimination of residual

risk is possible.

4.1 Residual estimation risk for location-scale families

Two random variables Y and Z belong to the same location-scale family, if there exist

a ∈ R and b > 0, such that Y
d
= bZ + a. Denote the parameter vector θ = (µ, σ), such

that any random variable in the location-scale family follows F (·; (µ, σ)). We say that
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Z ∼ F (·; (0, 1)) has a standardized distribution and simply denote it by F ≡ F (·; (0, 1)).

Hence, we can write Y ∼ F (·; (µ, σ)) = F
( ·−µ

σ

)

.

Estimators of location and scale parameters generally also belong to location-scale

families. Specifically, if the parameter vector θ = (µ, σ) is estimated via Maximum Like-

lihood, then a standard argument (e.g. Gerrard and Tsanakas, 2011, Lemma 4) shows

µ̂
d
= µ+ σU, σ̂

d
= σV, (15)

where U and V are random variables whose distribution depends on the sample size n,

but not on θ.

From the translation invariance, positive homogeneity, and law invariance properties

of the risk measure, it follows that for Y ∼ F (·; (µ, σ)), Z ∼ F , it is

ρ(Y ) = ρ(µ+ σZ) = µ+ σρ[F ].

Let the capital estimator be based on the MLE, such that η(X) = ρ[F (·; θ̂)], where

θ̂ = (µ̂, σ̂). Thus, it is η(X) = µ̂+ σ̂ρ[F ] = µ+ σU + σV ρ[F ].

Consequently, the residual estimation risk can be calculated as

RR(θ, η) = ρ(µ+ σZ − µ− σU − σV ρ[F ]) = σρ(Z − U − V ρ[F ]). (16)

Hence, while in general the residual estimation risk remains unknown, for location-

scale families it does not depend on the location parameter µ and is directly proportional

to the scale one σ. In particular, the amount ρ(Z − U − V ρ[F ]) does not depend on the

unknown parameters. This effect was demonstrated in Example 1, when dealing with

normally distributed losses.

4.2 Adjustment to the risk measure

In the case of location-scale families it is possible to modify the risk measure in a way

that compensates for parameter uncertainty and brings the residual estimation risk down

to zero. Consider another risk measure ρadj, that may be used to set capital. Under this
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risk measure, the capital estimator, using again MLE, will be

ηadj(X) = ρadj[F (·; θ̂)].

Analogously with (16), we can write

RR(θ, ηadj) = ρ(Y − ρadj[F (·; θ̂)]) = σρ(Z − U − V ρadj[F ]). (17)

Noting that the quantity ρ(Z−U−V ρadj[F ]) does not depend on the true but unknown

parameter θ, it becomes apparent that we can choose the risk measure ρadj[F ] specifically

so as to set the residual risk of (17) to zero. For example, if ρ = TVaRp, we can let

ρadj = TVaRq for some q 6= p. The process is illustrated by the following example.

Example 8 (Normal, adjusted TVaR). Consider a normal distribution and let ρ =

TVaRp, ρadj = TVaRq. The the random variables U, V in (15) become

U =
1√
n
U ′, V =

√

V ′

n
,

where U ′ ∼ N (0, 1) and V ′ ∼ χ2
n−1, with U ′, V ′ independent. Noting that TVaRq(Z) =

φ(Φ−1(q))
1−q

, the residual risk under the adjusted capital estimator is

RR((µ, σ), ηadj) = σTVaRp

(

Z − 1√
n
U ′ −

√

V ′

n

φ(Φ−1(q))

1− q

)

,

and a level q that sets the above expression to zero can be found.

To simplify exposition, assume now that the scale parameter σ is known. Then

RR(µ, ηadj) = σTVaRp

(

Z − 1√
n
U ′ − φ(Φ−1(q))

1− q

)

= σ

√

1 +
1

n

φ(Φ−1(p))

1− p
− σ

φ(Φ−1(q))

1− q
.

Therefore, to achieve RR(µ, ηadj) = 0, one needs to solve for q the equation
√

1 +
1

n

φ(Φ−1(p))

1− p
=

φ(Φ−1(q))

1− q
,

which is easily done numerically. The resulting adjusted capital estimator thus is

ηadj(X) = µ̂+ σTVaRq(Z) = µ̂+ σ

√

1 +
1

n
TVaRp(Z).

The required level of q is plotted in Figure 1, against the sample size n, for p ∈

{0.95, 0.99, 0.995}. It can be seen that in each case q > p and as the sample size increases
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Figure 1: Confidence level q required to eliminate the residual estimation risk for a normal
random variable with known scale parameter and risk measure TVaRp.

the adjusted confidence level q decays to the nominal level p. The difference q− p is more

pronounced for very small sample sizes, such that, if ηadj were adopted, portfolios with a

longer history would be subject to a lower capital requirement. �

4.3 Bootstrap procedure for location-scale families

In Section 3.1 it was demonstrated that repeated bootstrap corrections to the capital

estimator produce improvements in residual risk. However, these improvements come

at a cost, since each iteration induces a nested simulation. Here it is shown that, for

location-scale families, higher order bootstrap capital estimators can be derived exactly,

avoiding the need for nested simulations.

Using again the notation of Section 3.1, for a location-scale family the residual risk of
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the MLE and the first-order bootstrap capital estimator are

r1(θ) = σρ(Z − U − V ρ(Z)),

ηbs1(X) = µ̂+ σ̂ρ(Z) + r1(θ̂) = µ+ σU + σV (ρ(Z) + ρ(Z − U − V ρ(Z))). (18)

It follows that

r2(θ) = ρ(Y − ηbs1(X)) = σρ(Z − U − V (ρ(Z) + ρ(Z − U − V ρ(Z)))),

ηbs2(X) = ηbs1(X) + r2(θ̂)

= µ̂+ σ̂ [ρ(Z) + ρ(Z − U − V ρ(Z)) + ρ(Z − U − V (ρ(Z) + ρ(Z − U − V ρ(Z))))] .

(19)

Since the distribution of the random variables Z,U, V does not depend on the true pa-

rameters (µ, σ), formulas (18) and (19) can be evaluated from a single set of simulated

values from Z,U, V . The above argument can be extended to an arbitrary number of

bootstrap iterations.

It is also noted that for the case of location families, where the scale parameter is

known, the first-order bootstrap corrected capital estimator gives an exact elimination of

residual risk. To see that, one may follow the same steps as above, setting without loss

of generality V = 1. Then, r2(µ) = σρ(Z − U − (ρ(Z) + ρ(Z − U − ρ(Z)))) = 0.

Table 8: Normalized residual estimation risk for a normally distributed risk with sample
size n, risk measure TVaRp, and the bootstrap capital estimators ηbs1, ηbs2.

ηbs1 ηbs2
n=20 n=50 n=100 n=20 n=50 n=100

p1 = 0.95 0.012 0.002 0.000 0.002 0.000 0.000
p1 = 0.99 0.023 0.003 0.001 0.004 0.000 0.000
p1 = 0.995 0.030 0.005 0.001 0.006 0.000 0.000

Example 9 (Normal, bootstrap). Residual risk is now calculated for a normally dis-

tributed risk, a TVaRp risk measure, and the first- and second-order bootstrap capital

estimators ηbs1(X), ηbs2(X). Results are reported in Table 8. The first-order bootstrap

capital estimator ηbs1 reduces residual risk compared to the case of the MLE capital
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estimator, while the second-order bootstrap estimator reduces the capital even further.

In the particular case of a known standard deviation, we have

r1(µ) = TVaRp(µ+ σZ − µ̂− σTVaRp(Z))

= σTVaRp

(

Z − 1√
n
U ′
)

− σTVaRp(Z)

= σ

√

1 +
1

n
TVaRp (Z)− σTVaRp(Z),

ηbs1(X) = µ̂+ σ

√

1 +
1

n
TVaRp (Z) .

Hence, ηbs1 is exactly the same capital estimator as ηadj considered in Example 8, satisfying

RR(µ, ηadj) = 0. �

4.4 Bayesian predictive distribution for location-scale families

In this section we show that for location-scale families, (a) when the scale parameter is

known, residual risk is completely eliminated, and (b) when the location parameter is

known, a quantity similar to residual risk equals zero.

Before stating the results we reformulate without proof the content of Proposition 1 in

Severini et al. (2002), which is used in the present section. For the sake of simplicity, details

about the technical conditions are omitted, but Example 1 in Severini et al. (2002), implies

that location-scale families satisfy all the necessary conditions to apply the proposition.

Proposition 4.1. Severini et al. (2002). For Y,X ∼ F (·; θ) belonging to a location-scale

family with θ = (µ, σ) ∈ Θ, let H(X) be a region such that P̂(Y ∈ H(X)|x) = 1 − α.

Assume that H satisfies the following conditions:

(i) For each θ = (µ, σ) ∈ Θ, y ∈ H(x) if and only if y + µ ∈ H(µ + x) (for location

models) and σy ∈ H(σx) (for scale models).

(ii) Let C(x, y) = 1 if y ∈ H(x) and 0 otherwise. There exists 0 < α < 1, such that

Ê[C(X, Y )|x] = 1− α.

It follows that Eθ[C(X, Y )] = 1− α.
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Consider first a location family with parameter θ = µ. The prior π(θ) = 1 is used. It is

known that (e.g. see Gerrard and Tsanakas, 2011), if X = Z+ b, where Z = (Z1, . . . , Zn)

and Z ∼ F , then F̂ (y|z+ b) = F̂ (y − b|z). Therefore,

ρ[F̂ (·|x)] = ρ[F̂ (· − b|z)] = ρ[F̂ (·|z)] + b,

due to the translation invariance property of ρ.

Proposition 4.2 shows that using the predictive distribution eliminates residual risk

for location families.

Proposition 4.2. For location families, using the capital estimator ηbay(X) = ρ[F̂ (·|X)]

yields

ρ(Y − ηbay(X)) = 0.

Proof. The proof follows from an application of Prop. 4.1. Consider the predictive region

Hc(X) = (−∞, ρ[F̂ (·|X)] + c]

for any constant c ∈ R. This region is invariant as required, indeed:

Y + b ∈ Hc(X+ b) ⇔ Y + b ≤ ρ[F̂ (·|X+ b)] + c = ρ[F̂ (·|X)] + b+ c ⇔

Y ≤ ρ[F̂ (·|X)] + c ⇔ Y ∈ Hc(X).

It follows that P̂(Y − ρ[F̂ (·|X)] ≤ c|x) = P(Y − ρ[F̂ (·|X)] ≤ c) ∀c ∈ R. As this holds

for every c ∈ R, it is implied that the random variable W = Y − ρ[F̂ (·|X)] has the same

distribution under P̂(·|x) and P(·). Thus if G(w) = P(W ≤ w) and Ĝ(w|x) = P̂(W ≤ w|x)

it is G(w) = Ĝ(w|x) for all w. By law invariance of ρ it then is ρ[G(·)] = ρ[Ĝ(·|x)].

However, by the construction of the random variable W it is ρ[Ĝ(·|x)] = 0. Hence

ρ[G(·)] = ρ(Y − ρ[F̂ (·|X)]) = 0.

Suppose now that Y belongs to a scale family, with parameter θ = σ. We use the

prior π(θ) = 1/θ. If X = bZ, where b > 0, Z = (Z1, . . . , Zn) and Z ∼ F , then F̂ (y|bz) =

F̂ (y/b|z). Therefore,

ρ[F̂ (·|x)] = ρ[F̂ (·/b|z)] = bρ[F̂ (·|z)],

due to the positive homogeneity property of ρ.
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Proposition 4.3 shows that for scale-families the capital estimator ηbay(X) leads to

elimination of a scaled version of the residual risk.

Proposition 4.3. For scale families, using the capital estimator ηbay(X) = ρ[F̂ (·|X)]

yields

ρ

(

Y

ρ[F̂ (·|X)]
− 1

)

= 0.

Proof. The same procedure as in the proof of Proposition 4.2 is followed. The predictive

region is

Hc(X) = (−∞, cρ[F̂ (·|X)]]

for any constant c ∈ R. This region is invariant as required in Prop 4.1, since

bY ∈ Hc(bX) ⇔ bY ≤ cρ̂[F̂ (·|bX)] = cbρ̂[F̂ (·|X)] ⇔

Y ≤ cρ[F̂ (·|X)] ⇔ Y ∈ Hc(X).

It follows that:

P̂

(

Y

ρ[F̂ (·|X)]
≤ c|x

)

= P

(

Y

ρ[F̂ (·|X)]
≤ c

)

∀c ∈ R.

As this holds for every c ∈ R, it is implied that the random variable W = Y/ρ[F̂ (·|X)] has

the same distribution under P̂(·|x) and P(·). Thus if G(w) = P(W ≤ w) and Ĝ(w|x) =

P̂(W ≤ w|x) it is G(w) = Ĝ(w|x) for all w. By law invariance of ρ it then is ρ[G(·)] =

ρ[Ĝ(·|x)]. However, by the construction of the random variable W it is ρ[Ĝ(·|x)] = 1.

Hence ρ[G(·)] = ρ
(

Y

ρ[F̂ (·|X)]

)

= 1.

For the more general location-scale case, the effectiveness of using a predictive distri-

bution is demonstrated via the following example.

Example 10 (Normal, Bayes). For a normal distribution and prior π(µ, σ) = 1/σ, a

standard argument similar to Hogg et al. (2012, Example 11.3.1) shows that the predictive

distribution is a Student t distribution

F̂ (y|X) = tn−1

(

√

n− 1

n+ 1

y − µ̂

σ̂

)

, (20)
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where µ̂, σ̂ are the MLEs of µ, σ, and tn−1 is the distribution function of a standard

t variable with n − 1 degrees of freedom. The corresponding value of TVaR is (McNeil

et al., 2005, Example 2.19)

ηbay(X) = TVaRp[F̂ (y|X)] = µ̂+ σ̂

√

n+ 1

n− 1

(

gn−1(t
−1
n−1(p))

1− p

)(

n− 1 + (t−1
n−1(p))

2

n− 2

)

,

(21)

where gn−1 is the density of a standard t variable with n − 1 degrees of freedom. The

Student t predictive distribution is heavy-tailed, which generally leads to higher estimated

capital levels than the normal.

In Table 9 the corresponding normalized residual risks are reported. Once more, the

effectiveness of using ηbay is apparent, with a near elimination of residual risk observed.

The performance is comparable to the second-order bootstrap estimator seen in Table 8,

though ηbay appears to slightly overcompensate in increasing capital estimates, leading to

slightly negative residual risks. �

Table 9: Normalized residual estimation risk for a normally distributed risk with sample
size n, risk measure TVaRp, and the Bayes capital estimator ηbay.

n=20 n=50 n=100
p=0.95 -0.007 -0.003 -0.001
p=0.99 -0.005 -0.002 -0.001
p=0.995 -0.005 -0.002 -0.001

4.5 The presence of a shape parameter

There are location-scale families that have additional shape parameters, such as the

Student t distribution. For such distributions, the computational savings present for

location-scale families cannot be fully achieved, but their parametric structure can still

be exploited.

Consider a Student t random variable Y with parameters θ = (µ, σ, ν), such that

Y
d
= µ + σZν , where Zν has a standard t distribution with ν degrees of freedom. Let
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θ̂ = (µ̂, σ̂, ν̂) be an estimator of θ. For many classes of estimators, such as MLEs and

the simple estimator described in Section 6.3, the random variables µ̂, σ̂ will still follow

a (location-)scale distribution, such that we may write, µ̂ = µ+ σUν , σ̂ = σVν , ν̂ = Wν ,

where the distribution of (Uν , Vν ,Wν) does not depend on µ or σ but depends on ν.

For parameter estimator θ̂, the unadjusted capital estimator is η(X) = ρ[F (·; θ̂)] =

µ̂+ σ̂ρ[tν̂ ], where tν is the distribution of a standard Student t variable with ν degrees of

freedom. Consequently, the residual estimation risk can be written as

RR(θ, η) = ρ (µ+ σZν − µ̂− σ̂ρ[tν̂ ]) = σζ(ν),

where ζ(ν) = ρ(Zν − Uν − Vνρ[tν̂ ]). (22)

Hence we can define the bootstrap estimator as

ηbs1(X) = µ̂+ σ̂ (ρ[tν̂ ] + ζ(ν̂)) . (23)

To implement this estimator, numerical evaluation of the function ζ(ν) is required. But,

as ζ does not depend on the distribution parameters, nested simulations are avoided.

These ideas are demonstrated via the following example, where the issue of model

error is also briefly discussed.

Example 11 (Student t, bootstrap, empirical, model error). In this example we work

with an RVaRp1,p2 risk measure, with p1 = 0.95, p2 = 0.997 and a Student t distribution

with θ = (µ, σ, ν) = (0, 1, 5), with all three parameters considered unknown in the capital

estimation. The RVaR measure of a standard t variable is given in Section 6.5). Sample

sizes n = 50, 10, 200, 500, 1000 are considered.

Subsequently we calculate the residual estimation risk for different capital estimators.

Details about how each of those capital estimators (and in particular the numerical ap-

proximation of ζ) simulated is given in Section 6.2; the assessment of residual risk for

each estimator is as described in Section 6.1.

Student t: This is an unadjusted estimator of RVaRp1,p2 obtained by estimating

(µ̂, σ̂, ν̂) from X and setting η(X) = µ̂+ σ̂RVaR[tν̂ ].
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Student t (bootstrap): This is a bootstrap corrected estimator of RVaRp1,p2 obtained

as ηbs1(X) = µ̂+ σ̂(RVaR[tν̂ ] + ζ(ν̂)), with ζ(ν) as in (22).

Empirical: The RVaRp1,p2 measure is directly applied in a model-free way, by the

empirical distribution of the sample X.

Normal: The possibility of model error is considered, by assuming in capital es-

timation that the data are actually from a normal distribution and applying the

standard normal MLE of RVaR.

Table 10: Normalized residual estimation risk for a Student t5 distributed risk with sample
size n, risk measure RVaR0.95,0.997, and various capital estimators.

Estimation method n=50 n=100 n=200 n=500 n=1000
Student t 0.054 0.026 0.017 0.009 0.004
Student t (bootstrap) 0.009 0.005 0.004 0.001 0.000
Normal 0.100 0.075 0.061 0.051 0.047
Empirical 0.051 0.023 0.005

The resulting residual estimation risk figures are shown in Table 10. For ηemp results

are only reported for n ≥ 200, as estimation of the given RVaR measure is not meaningful

on smaller samples. The results demonstrate how the residual estimation risk of the

unadjusted estimator η is nearly eliminated by the bootstrap corrected estimator ηbs1.

The estimator ηnorm, accounting for the case of model error, presents a substantially

higher residual risk, due to the underestimation of required capital arising by the lighter

normal tail that it assumes. Furthermore, residual risk does not tend to zero for increasing

sample sizes. On the other hand, for n ≥ 200, the model-free empirical estimator ηemp

beats ηnorm, while at the same time performing worse than the estimators ηt, ηbst that

make use of the parametric family that the data come from. �
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5 Conclusions

We introduce the notion of residual estimation risk for measuring the impact that the

volatility of risk estimators has on capital adequacy. Residual risk quantifies the capital

that needs to be added to a portfolio, consisting of a random loss and a random capital

estimator, in order to make the total position acceptable with reference to a risk measure.

In a parametric setting, this interpretation motivates the design of modified capital setting

procedures, based on bootstrapping and Bayesian predictive distributions. The good

performance of these approaches is demonstrated by numerical examples, both for general

distributions and for location-scale families, where exact elimination of residual risk is

always possible.

While our focus here is on parameter uncertainty, the idea of residual risk retains

its meaning in the broader context of model uncertainty. Under model uncertainty, it

is customary to consider a number of candidate models (families of distributions) for

the loss (Cairns, 2000; Kerkhof et al., 2010; Barrieu and Scandolo, 2013; Breuer and

Csiszár, 2014; Alexander and Sarabia, 2012; Boucher et al., 2014). Based on a random

sample, a suitable model may be chosen using either statistical criteria (e.g. goodness of

fit) or a worst-case scenario approach. Any such estimation procedure can be expressed

via a capital estimator as in this paper, such that the corresponding residual risk can be

quantified. An investigation of residual estimation risk in the context of model uncertainty

is performed by Bignozzi and Tsanakas (2013), where a disentangling of the distinct

impacts of parameter and model uncertainty is attempted.

Finally, we note that the proposed capital estimation procedures typically lead to an

increase in the calculated capital requirements, compared to e.g. MLE. However, this

does not mean that, if one of those procedures is followed, sufficient capital will certainly

be present for each individual portfolio. The proposed capital increases are designed

to be effective at an aggregate (e.g. market) level, with the outer risk measure in the

definition of residual risk calculated under the true loss model. A regulatory perspective
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is thus implicit in our use of a frequentist statistical framework, where the volatility of

random samples may be best understood as variability in the experience of a group of

economic/statistical agents.

6 Appendix

6.1 Numerical evaluation of residual risk

Here we explain how the residual risk for different estimators is obtained via Monte-Carlo

simulation, using a simple importance sampling scheme. In all examples, we need to

calculate the quantity ρ(Y − η(X)), where ρ may be VaRp, TVaRp or RVaRp1,p2.

First m = 107 samples are simulated from the random variable η(X); denote these

as η1, . . . , ηm. (Details about simulation of η(X) are given in Section 6.2.) Subse-

quently, λm simulated values, y1, . . . , yλm, are obtained from the conditional distribution

Y |Y > VaRu(Y ) and (1 − λ)m simulated values, yλm+1, . . . , ym, from Y |Y ≤ VaRu(Y ).

Throughout, we use the values λ = 0.9 and u = 0.9. This ensures that a high fraction of

simulations is obtained for high values of Y leading to more frequent exceedances of η(X)

by Y . For each i = 1, . . . ,m set zi = yi − ηi. Note that it is

P(Y − η(X) ≤ z) = (1− u)P(Y − η(X) ≤ z|Y > VaRu(Y ))

+ uP(Y − η(X) ≤ z|Y ≤ VaRu(Y )). (24)

Hence we can approximate the distribution of Y − η(X) using the conditional empirical

distributions

P(Y − η(X) ≤ z) ≈ 1− u

λm

λm
∑

j=1

I{zj≤z} +
u

(1− λ)m

m
∑

j=λm+1

I{zj≤z} := ξ(z). (25)

An estimate of VaRs(Y − η(X)) at some confidence level s ∈ (0, 1) is the value zs that

makes the right-hand-side of (25) equal to s, i.e. ξ(zs) = s. A numerical search is carried

out (e.g. via MATLAB’s fzero function) to obtain such zs.

After estimating VaR at levels p, p1, p2, by zp, zp1 , zp2 as above, the TVaRp and RVaRp1,p2
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measures are estimated by

TVaRp(Y − η(X)) ≈ 1

1− p

(

1− u

λm

λm
∑

j=1

zjI{zp<zj} +
u

(1− λ)m

m
∑

j=λm+1

zjI{zp<zj}

)

,

(26)

RVaRp1,p2(Y − η(X)) ≈ 1

p2 − p1

(

1− u

λm

λm
∑

j=1

zjI{zp1<zj≤zp2} +
u

(1− λ)m

m
∑

j=λm+1

zjI{zp1<zj≤zp2}

)

.

(27)

6.2 Simulation of η(X)

We now describe how to compute η(X) for different capital estimation procedures.

General method: Since the function η is given (either explicitly or in a form that can

be numerically evaluated), it is always possible to simulate m realizations of the random

vector X, (x1, . . . ,xm) leading to m realizations of η(X), η1 = η(x1), . . . , ηm = η(xm).

MLE: In Examples 1, 2, 3, some saving in computational time is made by exploiting

the known distributions of estimators. In those examples we have η(X) = ρ[F (·, θ̂)],

with θ̂ ∼ G(·; θ). To obtain a sample of size m from η(X) it is sufficient to simulate m

random numbers, θ̂1, . . . , θ̂m from the distribution G(·; θ) and then set ηi = ρ[F (·, θ̂i)] for

i = 1, . . . ,m.

Bayes: For the Bayes approach implemented in Examples 6, 7,10, the predictive distri-

bution takes a parametric form that once more depends on the MLE θ̂ ∼ G(·; θ). Con-

sequently m values are again sampled from θ̂ and m values of ηbay(X) are subsequently

obtained. In the case of the log-normal and Pareto distributions, the integrals in (12)

and (14), which are functions of θ̂, are evaluated numerically (using MATLAB’s quadv

function).

Bootstrap: In order to compute the first order bootstrap capital estimator in Examples

4 and 5, we need to simulate from ηbs1(X) = η(X) + r1(θ̂), where η(X) is the MLE as

above. The adjustment r1(θ̂) is simulated as follows. First a sample of size m is simulated

from θ̂ ∼ G(·; θ), call this again θ̂1, . . . , θ̂m. For for each i = 1, . . . ,m, r1(θ̂i) is numerically
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evaluated as follows.

i) Simulate m′ = 104 samples from the distributions F (·; θ̂i) and G(·; θ̂i); denote these

respectively as y∗ij and θ̂∗ij for j = 1, . . . ,m′.

ii) Evaluate z∗ij = y∗ij − ρ[F (·; θ̂∗ij)] for j = 1, . . . ,m′.

iii) Estimate r1(θ̂i) ≈ ρ[F̂z
∗
i
], where F̂z

∗
i
is the empirical distribution of the sample

z∗i1, . . . , z
∗
im′ .

In the case of location-scale families, (equations (18), (19) and Example 9), the capital

estimator takes the form µ̂+σ̂c, where c is a constant that can be calculated by simulation

without reference to the true parameters; hence the above bootstrap scheme is not used.

Estimators in Example 11: The unadjusted capital estimator is η(X) = µ̂+σ̂RVaRp1,p2 [tν̂ ].

The samples (x1, . . . ,xm) are simulated as in the general method above. From that

consequently m sets of parameter estimates (µ̂1, σ̂1, ν̂1), . . . , (µ̂m, σ̂m, ν̂m) are obtained by

the estimation method of Section 6.3. The simulated values of the capital estimator then

are µ̂i + σ̂iRVaRp1,p2 [tν̂i ] for i = 1, . . . ,m.

To simulate the bootstrap corrected estimator ηbs1, the function ζ(ν̂) needs to be evaluated

at the m simulated values of ν̂ obtained as above. For each different sample size n, the

function ζ(ν) is numerically evaluated at points ν = 0.7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. First, for

each ν,m = 106 values of an n-dimensional vectorX∗ and a variable Y ∗ are simulated from

a standard Student tν distribution, using the importance sampling algorithm of Section

6.1. For each simulated sample of X∗, parameter estimates (µ̂∗, σ̂∗, ν̂∗) are derived and

the corresponding capital is evaluated as η(X∗) = µ̂∗+ σ̂∗RVaR[tν̂∗ ]. Subsequently ζ(ν) is

estimated as the RVaRp1,p2 measure applied to the empirical distribution of Y ∗ − η(X∗).

For intermediate values of ν, ζ(ν) is calculated by linear interpolation. For ν > 10 we let

ζ(ν) = ζ(10) and similarly for ν < 0.7 we let ζ(ν) = ζ(0.7). These approximations affect

the quality of the bootstrap correction but not the accuracy of the results reported in the

example.
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For the empirical estimator ηemp, m samples are simulated from X. Denote the ith simu-

lated sample xi. VaRp1 [F̃xi
], VaRp2 [F̃xi

] are calculated as in Section 6.4. Then capital in

the ith scenario is evaluated as the average of all xi that are between those two percentiles:

ηemp(xi) =
1

∑n
j=1 I{VaRp1 [F̃xi

]<xij≤VaRp2 [F̃xi
]}

n
∑

j=1

xijI{VaRp1 [F̃xi
]<xij≤VaRp2 [F̃xi

]}

In the case of model error, the capital estimator is ηnorm(X) = X + S · RVaR[Φ], where

X is the sample mean, S is the sample standard deviation from a simulated sample, and

RVaRp1,p2 [Φ] =
φ(Φ−1(p1)−φ(Φ−1(p2)

p2−p1
, which can be obtained by direct integration.

6.3 Robust estimation for the 3-parameter Student t family

Robust estimates of location and scale parameters in heavy tailed models are typically

percentile-based, such as the median and interquartile range (see Brys et al. (2006) for

a comprehensive discussion). Such arguments are used here to derive a simple robust

estimator of the parameters of a Student t distribution. The calculation of estimates

is fast, which is necessary for estimation on multiple simulated samples. For a random

sample X of size n, let each observation Xi be equal in distribution to µ+ σZν , where Zν

has a standard t distribution with ν degrees of freedom.

Empirical percentiles are derived using the method of Section 6.4. The location pa-

rameter estimated by the sample median, setting µ̂ = VaR0.5[F̃X]. Consider the ratio

ĥ =
VaR0.95[F̃X]− VaR0.05[F̃X]

VaR0.75[F̃X]− VaR0.25[F̃X]
.

By the location-scale properties of the Student t distribution, ĥ only depends on ν, but

not on µ, σ. Consider the population version of the same quantity, that is, the function

h(ν) =
t−1
ν (0.95)− t−1

ν (0.05)

t−1
ν (0.75)− t−1

ν (0.25)
,

where t−1
ν is the inverse of the standard t distribution. The degrees of freedom are then

estimated by solving numerically the equation h(ν̂) = ĥ. Finally, given ν̂, the scale

parameter can be simply estimated as

σ̂ =
VaR0.75[F̃X]− VaR0.25[F̃X]

t−1
ν̂ (0.75)− t−1

ν̂ (0.25)
.
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6.4 Calculation of empirical percentiles

Consider a random sample X of size n. There are different ways of estimating percentiles

directly from the sample. Here we describe the method implemented in MATLAB (via

the quantile function). The empirical distribution of the sample is the step-function

F̂X(x) =
1
n

∑n
i=1 I{Xi≤x}. Let X1:n, ..., Xn:n be increasing order statistics. The distribution

function F̃X is defined by assigning values

F̃X(Xk:n) = F̂X

(

Xk:n −X(k−1):n

2

)

,

and then performing linear interpolation to obtain F̃X(x) for intermediate values x. Then

a percentile is estimated by inverting the the piecewise linear function F̃X, i.e. solving

F̃X(x) = p for some p ∈ (0, 1). Therefore, an empirical estimator for VaRp can be

expressed as VaRp[F̃X].

6.5 RVaR for the Student t distribution

For standard a Student t random variable Z with distribution tν and density gν , by direct

integration:

RVaRp1,p2(Z) =
1

p2 − p1

∫ t−1
ν (p2)

t−1
ν (p1)

zgν(z)dz =
1

p2 − p1

∫ t−1
ν (p2)

t−1
ν (p1)

z
Γ
(

ν+1
2

)

√
νπ Γ

(

ν
2

)

(

1 +
z2

ν

)− ν+1
2

dz

=
1

p2 − p1

Γ
(

ν+1
2

)

√
νπ Γ

(

ν
2

)

ν

2

[

(1 + z2/ν)−(ν+1)/2+1

−(ν + 1)/2 + 1

]t−1
ν (p2)

t−1
ν (p1)

=
1

p2 − p1

1

1− ν

(

gν(t
−1
ν (p2))(ν + (t−1

ν (p2))
2)− gν(t

−1
ν (p1))(ν + (t−1

ν (p1))
2)
)

.
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