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1 Introduction

A guaranteed annuity option provides the holder of the contract the right to
either receive at retirement a cash payment or receive an annuity which would
be payable throughout his/her remaining lifetime and which is calculated at a
guaranteed rate, depending on which has the greater value. This guarantee of
the conversion rate between cash and pension income was a common feature
of pension policies sold in the UK during the 1970s and 1980s. Thus, in a
survey conducted by Bolton et al. (1997), annuity conversion guarantees were
found to apply to just over 10% of the long term liabilities of the responding
insurance companies.

Until recently, the cash benefit was more valuable than the guaranteed
annuity payment since a higher pension could be obtained by applying the
cash on the best annuity rates available in the market (the so-called “open
market option”). After the reduction in the level of market interest rates over
recent years, and particularly since 1998, the position has become reversed
and the guaranteed annuity is now usually worth more than the cash benefit;
improvements in mortality rates since these policies were issued have also
made them more valuable to policyholders. As a result of these two com-
bined effects, many insurance companies have experienced solvency problems
requiring the setting up of extra reserves (using ad hoc methods) and lead-
ing one large life insurer (Equitable Life, the world’s oldest life insurance
company) to be closed to new business.

In this paper, we concentrate on unit-linked deferred annuity contracts
purchased originally by a single premium. The pricing of options embedded
in insurance contracts with guarantees has been addressed in the literature
over the past 25 years. Thus, Brennan and Schwartz (1976) and Boyle and
Schwartz (1977) analyzed unit-linked life insurance contracts with maturity
guarantees using an approach centered on financial economics theory while
the MGWP (1980) used a simulation-based methodology. More recently,
Grosen and Jørgensen (2000) have analyzed with profit policies, allowing for
the bonus guarantee and surrender option.

The approach advocated in this paper follows the above-cited literature
and exploits the traditional option valuation procedure in order to provide in-
dications in terms of pricing, reserving and hedging of the guaranteed annuity
option contract. In this regard, our methodology differs from that proposed
by Yang et al. (2001), who use a simulation-based asset model which is
not arbitrage free. The approach also differs from that of Bezooyen et al.
(1998), Pelsser (2002) and Yang et al. (2002) who each model the dynam-
ics of the annuity price rather than modelling the term structure of interest
rates. We believe that a methodology that begins with the term structure
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of interest rates is more sound in that it allows the effect of changes in the
term structure on the value of the guaranteed annuity option contract to be
explored. At the time of writing, we have become aware of the work of Boyle
and Hardy (2002) which follows a similar methodology to the one described
below. Other work in this area has compared the guaranteed annuity option
to swaption contracts: Lee (2001).

The option pricing approach we propose to valuation of these guaran-
tees is based on the similarity between the payoff structure of the contract
under consideration and a call option written on a coupon-bearing bond.
The model makes use of a one-factor Heath-Jarrow-Morton framework for
the term structure of interest rates. This choice is justified by the need
to avoid dependence of the model on the market price of interest rate risk,
which usually implies an arbitrary specification of the model’s parameters
leading to arbitrage opportunities (Heath, Jarrow and Morton, 1992). Also,
single-factor models allow a mathematically tractable solution to the coupon
bond option pricing problem (Jamshidian, 1989). We present two alterna-
tive formulations of the HJM framework based on different specifications for
the forward rate volatility. The first relies on the assumption of constant
volatility, while the second uses an exponentially decaying volatility struc-
ture, typical of the Vasicek (1977) class of models. Under the additional
assumption of an unsystematic mortality risk, independent of the financial
risk, a general pricing framework is proposed and closed analytical formulae
for the value of the guaranteed annuity option are obtained. In both mod-
els, the pricing formulae derived implicitly contain the dynamic investment
strategy that replicates the contract. Numerical results for both models are
investigated and the sensitivity of the price of the option to changes in the
key parameters is also analyzed.

The paper is organized as follows. Section 2 describes the financial model.
Section 3 presents the guaranteed annuity option as a contingent claim. Sec-
tion 4 considers in details two models for the dynamic of the term structure
(in the HJM framework) and obtains closed form solutions for the value of
the guaranteed annuity option at inception of the contract. In section 5, we
present some numerical examples and sensitivity analysis results.

2 The financial model

Assume a frictionless market with continuous trading, no taxes, no transac-
tion costs, no restrictions on borrowing or short sales and perfectly divisible
securities. The insurance company invests the single premium paid by each
policyholder in an equity fund, S, whose dynamic under the risk-neutral
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equivalent martingale measure P̂ is described by the following.

dSt = rtStdt + σSStdẐt,

where
(

Ẑt : t ≥ 0
)

is a standard one-dimensional P̂-Brownian motion and

σS ∈ R
+. Assume also that the evolution of the forward rate is modeled in

a single-factor Heath, Jarrow and Morton (1992) framework, that is

df (t, T ) =

(

σf (t, T )

∫ T

t

σf (t, u) du

)

dt + σf (t, T ) dŴt, (1)

where the volatility function σf (t, T ) is Ft-adapted satisfying

∫ T

0

σ2
f (s, T ) ds < ∞ a.s.,

and
(

Ŵt : t ≥ 0
)

is a standard one-dimensional P̂-Brownian motion corre-

lated with Ẑ, so that
dŴtdẐt = ρdt,

for any ρ 6= 0. Hence
Ẑt = ρŴt +

√

1 − ρ2Ŵ ′

t ,

where
(

Ŵ ′

t : t ≥ 0
)

is a P̂-Brownian motion independent of Ŵt. Under these

assumptions, the price of a zero-coupon bond with redemption date at T is

Pt (T ) = e−
∫ T

t
f(t,u)du,

while the money market account is given by

Bt = e
∫ t

0 rudu,

where rt := limT→t f (t, T ) is the short rate.
Assume further that the mortality risk is independent of the financial risk

and is unsystematic. Finally, let τx be a random variable which represents
the remaining lifetime of the policyholder and which depends on the age, x,
of the policyholder at the time of issue. The survival function of the random
variable τx is given by

tpx = P (τx > t) .

4



3 The guaranteed annuity option

We consider now a guaranteed annuity option, which is a contract giving the
holder the right to receive at retirement the greater of (a) a cash payment
equal to the current value of the investment in the equity fund, S, and
(b) the expected present value of the life annuity obtained by converting
this investment at the guaranteed rate. In other words, if at inception the
policyholder is aged x, and if N is the normal retirement age, then the
guaranteed annuity option payoff at maturity is

CT =



gST

w−(T+x)
∑

t=0

tpT+xPT (T + t) − ST





+

,

where T = N − x is the option lifetime, w is the largest survival age and g
is the guaranteed annuity rate. Note that

CT = gST





w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+

,

where K = 1/g. This last equality shows the similarity between the payoff of
the guaranteed annuity option and a call option written on a coupon bond,
with “coupon dates” T < T + 1 < ... < w − x. Applying the risk-neutral
valuation procedure and bearing in mind that the mortality risk is assumed
to be unsystematic and independent of the financial risk, the value of the
contract entered at time t = 0 by a policyholder aged x is

Vx (x, t = 0, T = N − x) = Ê
[

B−1
T CT 1(τx>T )

]

= Ê
[

B−1
T CT

]

Ê
[

1(τx>T )

]

= Ê
[

B−1
T CT

]

E
[

1(τx>T )

]

= T pxC0 ,

where
C0 = Ê

[

B−1
T CT

]

.

Define a probability measure P̃ ∼ P̂ by the density process (Geman, El Karoui,
Rochet, 1995)

ηT :=
dP̃

dP̂

∣

∣

∣

∣

∣

FT

=
ST

S0BT

. (2)
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Then

C0 = Ê
[

B−1
T CT

]

= Ê



B−1
T gST





w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+



= gÊ



ηT S0





w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+



= gS0Ê [ηT ] Ẽ









w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+



= gS0Ẽ









w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+

 ,

where Ẽ denotes the expectation under the probability measure P̃ which takes
the asset S as numeraire.

Since the proposed framework makes use of a single-factor model of in-
terest rates and the mortality risk is assumed independent of the financial
risk, the correspondence previously observed between the guaranteed annuity
option and an option contract on a coupon bond suggests the possibility of
following the approach introduced by Jamshidian (1989), and rewriting the
annuity option payoff as the payoff generated by a portfolio of zero-coupon
bond options with appropriate strike prices, Kt, and weights equal to the
survival probabilities, tpT+x, for t = 0, 1, ..., w − (T + x) . In fact, since the
bond price is a monotonic (decreasing) function of the interest rate, it is
possible to find that critical value such that

w−(T+x)
∑

t=0

tpT+xPT (T + t) = K,

and define a new “artificial” strike price Kt as the bond price which is cal-
culated to correspond to this critical interest rate level, that is

Kt = P ∗

T (T + t) .

From the relationship between interest rates and bond prices, it follows that




w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+

=

w−(T+x)
∑

t=0

tpT+x (PT (T + t) − Kt)
+ ,
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which implies that

C0 = gS0Ẽ









w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+



= gS0

w−(T+x)
∑

t=0

tpT+xẼ
[

(PT (T + t) − Kt)
+] . (3)

To value this contingent claim, expression (3) demonstrates that we need to
define the dynamic of the forward rate under the stock-risk-adjusted prob-
ability measure P̃. We specify this dynamic and also illustrate how the ab-
stract pricing procedure presented in this section works in practice with two
concrete examples in the next section.

4 Term structure movements and option pric-

ing

This section presents two examples to illustrate in details the valuation pro-
cedure introduced in section 3.

In the first example, we assume that the volatility of the forward rate
process (1) is a positive constant, σf (t, T ) = σf ∈ R

+. This is a continuous
time limit of Ho and Lee’s (1986) model which may prove useful in practical
applications due to its computational simplicity. However, according to this
model, all rates fluctuate in the same way. Another related disadvantage is
that this model has no mean-reversion. Therefore, in the second example, we
use an exponentially decaying structure for the forward rate volatility. This
leads to a governing process for the short rate resembling the Vasicek (1977)
model.

4.1 Contingent claim valuation: constant volatility

If σf (t, T ) = σf > 0, the stochastic process for the forward rate under the

risk-neutral equivalent martingale measure P̂ is described by

df (t, T ) = σ2
f (T − t) dt + σfdŴt.
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Equation (2) defines the equivalent martingale measure P̃ through the fol-
lowing density process

ηT =
ST

S0BT

= e−
σ2

S
2

T+σS ẐT

= e−ρ2 σ2
S
2

T−(1−ρ2)
σ2

S
2

T+σSρŴT +σS

√
1−ρ2Ŵ ′

t .

The multidimensional version of the Girsanov theorem implies that

W̃t : = Ŵt − ρσSt

W̃ ′

t : = Ŵ ′

t − σS

√

1 − ρ2t

are P̃-standard Brownian motions. The new dynamic of the forward rate is
then

df (t, T ) =
(

σ2
f (T − t) + ρσfσS

)

dt + σfdW̃t;

which implies that the price of a zero-coupon bond maturing at T is

Pt (T ) =
P0 (T )

P0 (t)
e−

σ2
f

2
Tt(T−t)−ρσf σS(T−t)t−σf (T−t)W̃t .

The corresponding stochastic process for the short rate rt is

rt = f (0, t) +
σ2

f

2
t2 + ρσfσSt + σfW̃t. (4)

Therefore

Pt (T ) =
P0 (T )

P0 (t)
e−

σ2
f

2
Tt(T−t)−ρσf σS(T−t)t−σf (T−t)W̃t

=
P0 (T )

P0 (t)
e
−

σ2
f

2
t(T−t)2−(T−t)

(

σ2
f

2
t2+ρσf σSt+σf W̃t

)

=
P0 (T )

P0 (t)
e−

σ2
f

2
t(T−t)2−(T−t)(rt−f(0,t)).

Let σ2
r (t) = σ2

f t be the variance of the short rate, then

Pt (T ) =
P0 (T )

P0 (t)
e−

1
2
(T−t)2σ2

r(t)−(T−t)(rt−f(0,t)). (5)

As equation (5) shows, the bond price is a monotonic function of the current
short rate. Therefore it is possible to find that level r∗ such that

w−(T+x)
∑

t=0

tpT+x

P0 (T + t)

P0 (T )
e−

1
2
t2σ2

r(T )−t(rT−f(0,T )) = K, (6)
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and define the artificial strike price Kt as

Kt =
P0 (T + t)

P0 (T )
e−

1
2
t2σ2

r(T )−t(r∗T −f(0,T )). (7)

It is now possible to evaluate the expectation in equation (3) :

Ẽ
[

(PT (T + t) − Kt)
+] .

Equation (5) implies that

Ẽ
[

(PT (T + t) − Kt)
+]

= Ẽ

[

(

P0 (T + t)

P0 (T )
e−

1
2
t2σ2

r(T )−t(rT−f(0,T )) − Kt

)+
]

.

Since (rT − f (0, T )) ∼ N

(

σ2
f

2
T 2 + ρσfσST, σ2

fT

)

under P̃, if we set mr (T ) =

σ2
f

2
T 2 + ρσfσST , then

Ẽ
[

(PT (T + t) − Kt)
+]

=

∫

R

(

P0 (T + t)

P0 (T )
e−

1
2
t2σ2

r(T )−t(mr(T )+σr(T )y) − Kt

)+
1√
2π

e−
y2

2 dy,

where y ∼ N (0, 1). The last equality is equivalent to

Ẽ
[

(PT (T + t) − Kt)
+]

=

∫ dt

−∞

(

P0 (T + t)

P0 (T )
e−

1
2
t2σ2

r (T )−t(mr(T )+σr(T )y) − Kt

)

1√
2π

e−
y2

2 dy,

where

dt =
1

tσr (T )

[

ln
P0 (T + t)

KtP0 (T )
− 1

2
σ2

r (T ) t2 − mr (T ) t

]

. (8)

Hence

Ẽ
[

(PT (T + t) − Kt)
+]

=
P0 (T + t)

P0 (T )
e−

1
2
t2σ2

r(T )−tmr(T )

∫ dt

−∞

1√
2π

e−
1
2(y2+2tσr(T )y)dy

−Kt

∫ dt

−∞

1√
2π

e−
y2

2 dy

=
P0 (T + t)

P0 (T )
e−

1
2
t2σ2

r(T )−tmr(T )e
1
2
t2σ2

r(T )

∫ dt

−∞

1√
2π

e−
1
2
(y+tσr(T ))2dy

−KtN (dt)

=
P0 (T + t)

P0 (T )
e−tmr(T )N (d′

t) − KtN (dt) , (9)
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where N (·) is the cumulative distribution function of a standard Normal
random variable and

d′

t = dt + tσr (T )

=
1

tσr (T )

[

ln
P0 (T + t)

KtP0 (T )
+

1

2
σ2

r (T ) t2 − mr (T ) t

]

.

Equations (3) and (9) imply that the value of C0 is given by

gS0

P0 (T )

w−(T+x)
∑

t=0

tpT+x

[

P0 (T + t) e−tmr(T )N (d′

t) − P0 (T )KtN (dt)
]

.

Therefore the guaranteed annuity option value at inception1 is

Vx (x, t = 0, T = N − x)

=
T pxgS0

P0 (T )

w−(T+x)
∑

t=0

tpT+x

[

P0 (T + t) e−tmr(T )N (d′

t) − P0 (T )KtN (dt)
]

(10)

with

dt =
1

tσr (T )

[

ln
P0 (T + t)

KtP0 (T )
− 1

2
σ2

r (T ) t2 − mr (T ) t

]

and
d′

t = dt + tσr (T ) .

1Equation (10) can be simplified further substituting for Kt as in (7) into both (8) and
(10) . In fact

dt =
1

tσr (T )

[

ln
P0 (T + t)

KtP0 (T )
− 1

2
σ2

r (T ) t2 − mr (T ) t

]

=
1

tσr (T )
[t (r∗T − f (0, T )) − mr (T ) t] .

Since (r∗T − f (0, T )) ∼ N
(

mr (T ) , σ2
r (T )

)

, then

dt = y∗,

where y∗ is the value of the standard Normal random variable which solves (6) . Hence

Vx (x, t = 0, T = N − x)

=
T pxgS0

P0 (T )

w−(T+x)
∑

t=0

tpT+xP0 (T + t) e−tmr(T )
[

N (d′t) − e−
1

2
σ2

r
(T )t2−tσr(T )y∗

N (y∗)
]

with
d′t = y∗ + tσr (T ) .
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4.2 Contingent claim valuation: exponentially decay-

ing volatility

In this second part, we assume that the volatility of the forward rate follows
an exponentially decaying structure, that is

σf (t, T ) = σe−λ(T−t),

where σ > 0, λ > 0. Hence, the forward rate dynamic is given by

df (t, T ) =

(

σ2e−λ(T−t)

∫ T

t

e−λ(u−t)du

)

dt + σe−λ(T−t)dŴt,

under P̂, while under P̃ is

df (t, T ) =

(

σe−λ(T−t)

(

σ

∫ T

t

e−λ(u−t)du + ρσS

))

dt + σe−λ(T−t)dW̃t. (11)

Under these assumptions, it follows that the short rate process is

rt = f (0, t) +

∫ t

0

µ̃f (v, t) dv + σ

∫ t

0

e−λ(t−v)dW̃v, (12)

where

µ̃f (v, t) = σe−λ(t−v)

(

σ

∫ t

v

e−λ(x−v)dx + ρσS

)

= σe−λ(t−v)
[σ

λ

(

1 − e−λ(t−v)
)

+ ρσS

]

. (13)

Therefore

rt = f (0, t)+
(

1 − e−λt
)

[

σ2

2λ2

(

1 − e−λt
)

+
ρσσS

λ

]

+σ

∫ t

0

e−λ(t−v)dW̃v. (14)

As the last equation shows, the exponentially decaying structure of the for-
ward rate volatility leads to a mean-reverting form of the short rate that
closely resembles an extended version of the Vasicek (1977) model.

Since
Pt (T ) = e−

∫ T

t
f(t,u)du,

equations (11) and (13) imply that

Pt (T ) =
P0 (T )

P0 (t)
e−

∫ T

t (
∫ t

0 µ̃f (v,u)dv+σ
∫ t

0 e−λ(u−v)dW̃v)du.

11



In particular

∫ T

t

(
∫ t

0

µ̃f (v, u) dv + σ

∫ t

0

e−λ(u−v)dW̃v

)

du

=

∫ t

0

dv

∫ T

t

µ̃f (v, u) du + σ

∫ t

0

dW̃v

∫ T

t

e−λ(u−v)du.

Notice that since v ∈ [0, t],

∫ T

t

e−λ(u−v)du =

∫ T

t

e−λ(u−t)−λ(t−v)du

= e−λ(t−v)

∫ T

t

e−λ(u−t)du

= e−λ(t−v)

(

1 − e−λ(T−t)

λ

)

= e−λ(t−v)γ (t, T ) , (15)

where

γ (t, T ) =

(

1 − e−λ(T−t)

λ

)

. (16)

Analogously, using equation (16) and following for example Jarrow and Turn-
bull (1994) and Chiarella and Kwon (2001), we get

∫ T

t

e−λ(u−v)

∫ u

v

e−λ(x−v)dxdu

= e−λ(t−v)

∫ T

t

e−λ(u−t)

(
∫ t

v

e−λ(x−v)dx +

∫ u

t

e−λ(x−t)−λ(t−v)dx

)

du

= e−λ(t−v)

∫ T

t

e−λ(u−t)du

∫ t

v

e−λ(x−v)dx + e−2λ(t−v)

∫ T

t

e−λ(u−t)

∫ u

t

e−λ(x−t)dxdu

= γ (t, T ) e−λ(t−v)

∫ t

v

e−λ(x−v)dx + e−2λ(t−v)

∫ T

t

γ (t, u)

(

d

du
γ (t, u)

)

du

= γ (t, T ) e−λ(t−v)

∫ t

v

e−λ(x−v)dx +
1

2
γ2 (t, T ) e−2λ(t−v). (17)
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Equations (13), (15) and (17) imply that

∫ T

t

(
∫ t

0

µ̃f (v, u) dv + σ

∫ t

0

e−λ(u−v)dW̃v

)

du

=

∫ t

0

dv

∫ T

t

µ̃f (v, u) du + σ

∫ t

0

dW̃v

∫ T

t

e−λ(u−v)du

= σ

∫ t

0

dv

∫ T

t

e−λ(u−v)

(

σ

∫ u

v

e−λ(x−v)dx + ρσS

)

du + σγ (t, T )

∫ t

0

e−λ(t−v)dW̃v

= γ (t, T )

∫ t

0

µ̃f (v, t) dv +
1

2
γ2 (t, T )σ2

∫ t

0

e−2λ(t−v)dv + σγ (t, T )

∫ t

0

e−λ(t−v)dW̃v

= γ (t, T ) (rt − f (0, t)) +
1

2
γ2 (t, T )σ2

(

1 − e−2λt

2λ

)

,

where the last equality follows in virtue of (12) . According to (14), under P̃

(rt − f (0, t)) ∼ N
(

mr (t) , σ2
r (t)

)

where

mr (t) =
(

1 − e−λt
)

[

σ2

2λ2

(

1 − e−λt
)

+
ρσσS

λ

]

,

σ2
r (t) = σ2

(

1 − e−2λt

2λ

)

.

Therefore

Pt (T ) =
P0 (T )

P0 (t)
e−

1
2
γ2(t,T )σ2

r(t)−γ(t,T )(rt−f(0,t)). (18)

Although equations (14) and (18) are similar to the expressions derived by
Vasicek (1977), they differ in the fact that they are obtained taking the
initial term structure as exogenous, while for the Vasicek model the initial
term structure is endogenous.

As in section 4.1, it is possible to find the critical value r∗ such that

w−(T+x)
∑

t=0

tpT+x

P0 (T + t)

P0 (T )
e−

1
2
γ2(T,T+t)σ2

r (T )−γ(T,T+t)(rT−f(0,T )) = K, (19)

so that

Kt =
P0 (T + t)

P0 (T )
e−

1
2
γ2(T,T+t)σ2

r(T )−γ(T,T+t)(r∗
T
−f(0,T )). (20)
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Hence, the expectation in equation (3) can be solved as follows.

Ẽ
[

(PT (T + t) − Kt)
+]

= Ẽ

[

(

P0 (T + t)

P0 (T )
e−

1
2
γ2(T,T+t)σ2

r(T )−γ(T,T+t)(rT−f(0,T )) − Kt

)+
]

=

∫ dt

−∞

(

P0 (T + t)

P0 (T )
e−

1
2
γ2(T,T+t)σ2

r(T )−γ(T,T+t)(mr(T )+σr(T )y) − Kt

)

1√
2π

e−
y2

2 dy

where y ∼ N (0, 1) and

dt =
ln P0(T+t)

KtP0(T )
− 1

2
σ2

r (T ) γ2 (T, T + t) − mr (T ) γ (T, T + t)

γ (T, T + t)σr (T )
.

Therefore

Ẽ
[

(PT (T + t) − Kt)
+]

=
P0 (T + t)

P0 (T )
e−

1
2
γ2(T,T+t)σ2

r(T )−γ(T,T+t)mr(T )

∫ dt

−∞

1√
2π

e−
1
2(y2+2γ(T,T+t)σr(T )y)dy

−Kt

∫ dt

−∞

1√
2π

e−
y2

2 dy

=
P0 (T + t)

P0 (T )
e−γ(T,T+t)mr(T )

∫ dt

−∞

1√
2π

e−
1
2
(y+γ(T,T+t)σr(T ))2dy

−KtN (dt)

=
P0 (T + t)

P0 (T )
e−γ(T,T+t)mr(T )N (d′

t) − KtN (dt) ,

where

d′

t = dt + γ (T, T + t) σr (T )

=
ln P0(T+t)

KtP0(T )
+ 1

2
σ2

r (T ) γ2 (T, T + t) − γ (T, T + t) mr (T )

γ (T, T + t) σr (T )
.

Hence,

C0 =
gS0

P0 (T )

w−(T+x)
∑

t=0

tpT+x

[

P0 (T + t) e−γ(T,T+t)mr(T )N (d′

t) − P0 (T ) KtN (dt)
]

,
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while2

Vx (x, t = 0, T = N − x)

=
T pxgS0

P0 (T )

w−(T+x)
∑

t=0

tpT+x

[

P0 (T + t) e−γ(T,T+t)mr(T )N (d′

t) − P0 (T )KtN (dt)
]

(21)

with

dt =
ln P0(T+t)

KtP0(T )
− 1

2
σ2

r (T ) γ2 (T, T + t) − γ (T, T + t) mr (T )

γ (T, T + t) σr (T )

and
d′

t = dt + γ (T, T + t) σr (T ) .

Equation (21) shows that the price of the guaranteed annuity option closely
resembles the price of a bond option as in the standard Black-Scholes frame-
work. However, the payoff of the guaranteed annuity option depends not
only on the interest rate, likewise the bond option, but also on the dynamics
of the equity fund. This last aspect is captured by the “correction factor”
mr (T ) γ (T, T + t). Analogous considerations hold for equation (10), which
expresses the value of the contract for the constant volatility case and which
can be derived also as a particular case of equation (21) for the limiting case
λ → 0.

The two pricing equations (10) and (21) also contain a first indication
in terms of hedging strategy. In fact, according to the valuation formula,
the guaranteed annuity option can be seen as a portfolio consisting of a long
position in the (T + t)-zero coupon bond which has to be funded by a short
position in the T -zero coupon bond.

2As in section 4.1, the pricing equation can be simplified further. If y∗ is the value of
the standard Normal random variable which solves (19) , then equation (20) implies:

Vx (x, t = 0, T = N − x)

=
T pxgS0

P0 (T )

w−(T+x)
∑

t=0

tpT+xP0 (T + t) e−γ(T,T+t)mr(T )
[

N (d′t) − e−
1

2
σ2

r
(T )γ(T,T+t)2−γ(T,T+t)σr(T )y∗

N (y∗)
]

with
d′t = y∗ + γ (T, T + t) σr (T ) .
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4.3 Uncorrelated markets: the case of ρ = 0

As shown in section 3, the fair value of the guaranteed annuity option contract
is

Vx (x, t = 0, T = N − x) = T pxÊ
[

B−1
T CT

]

= T pxgÊ



B−1
T ST





w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+

 ,

where BT = e
∫ T

0 rtdt is the money market account. Since

ST = S0e
∫ T

0
rtdt−

σ2
S
2

T+σSẐT ,

Vx (x, t = 0, T = N − x) = T pxgS0Ê



e−
σ2

S
2

T+σS ẐT





w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+

 .

But Pt (T ) = e−
∫ T

t
f(t,u)du, i.e. the bond price depends only on the process

W independent of Z when ρ = 0. Therefore

Vx (x, t = 0, T = N − x) = T pxgS0Ê

[

e−
σ2

S
2

T+σS ẐT

]

Ê









w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+



= T pxgS0Ê









w−(T+x)
∑

t=0

tpT+xPT (T + t) − K





+



= T pxgS0

w−(T+x)
∑

t=0

tpT+xÊ
[

(PT (T + t) − Kt)
+] ,

where the last equality follows in virtue of Jamshidian’s decomposition.
In other words, when ρ = 0, only the initial value of equity fund affects

the contract price whilst its dynamics becomes irrelevant. For this reason
the second change of measure is now unnecessary. Hence, the value of the
guaranteed annuity option contract is given by

Vx (x, t = 0, T = N − x)

=
T pxgS0

P0 (T )

w−(T+x)
∑

t=0

tpT+x

[

P0 (T + t) e−tmr(T )N (d′

t) − P0 (T )KtN (dt)
]

(22)
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with

dt =
1

tσr (T )

[

ln
P0 (T + t)

KtP0 (T )
− 1

2
σ2

r (T ) t2 − mr (T ) t

]

,

d′

t = dt + tσr (T ) ,

mr (T ) =
σ2

f

2
T 2,

when we assume constant forward rate volatility, and

Vx (x, t = 0, T = N − x)

=
T pxgS0

P0 (T )

w−(T+x)
∑

t=0

tpT+x

[

P0 (T + t) e−γ(T,T+t)mr(T )N (d′

t) − P0 (T )KtN (dt)
]

(23)

with

dt =
ln P0(T+t)

KtP0(T )
− 1

2
σ2

r (T ) γ2 (T, T + t) − γ (T, T + t) mr (T )

γ (T, T + t)σr (T )
,

d′

t = dt + γ (T, T + t) σr (T ) ,

mr (T ) =
(

1 − e−λT
)

[

σ2

2λ2

(

1 − e−λT
)

]

,

when we assume instead an exponentially decaying structure for the volatility
of the forward rate.

5 Numerical results and sensitivity analysis

The results obtained in the previous section have been used to study the be-
haviour of the guaranteed annuity option under different scenarios. Through-
out the following analysis, unless otherwise stated, the basic set of parameters
is

S0 = 100; σS = 0.2; ρ = 1; g = 0.111; x = 50; T + x = N = 65.

In particular, the choice of the parameter g follows the indication of Bolton
et al. (1997) as the most common parameter value in the UK. As far as the
volatility function of the forward rate is concerned, we fix σf = 0.001 for the
constant volatility model (section 4.1), and σ = 0.01 and λ = 0.15 for the
exponentially decaying volatility model (section 4.2). In order to compute the
initial bond prices P0 (T ) and P0 (T + t), t = 0, ..., w − (T + x) , a flat initial
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term structure is assumed and fixed at 4%, i.e. f (0, ·) = f0 = 0.04. Although
the valuation procedure presented in section 3 makes allowance for stochastic
mortality trends (provided that mortality risk is still assumed independent
of the financial risk), we use UK mortality tables for the calculation of the
survival probabilities. In particular, results are obtained for the PMA92-
C20 mortality table and then extended also to the PA90 and PMA80-C10
mortality tables3. Finally, we assume that the annuity has a 5-year guarantee
period (so that the first five annual payments of the annuity scheme would
be definitely payable, providing that the policyholder survives to age 65).

Table 1 contains the extra premia that the insurer should charge at in-
ception for the option embedded in the policy. In order to perform a sensible
comparison between the two models, the table contains also the values cor-
responding to the exponentially decaying volatility parameters σ = 0.001
and λ = 0.001. In fact, as outlined in section 4.2, the constant volatility
model can be retrieved from the exponentially decaying volatility one as the
limiting case for λ → 0. As we can see, for the most recent mortality table,
the initial cost of the guaranteed annuity option is about 45% of the original
single premium, S0, paid by the policyholder at inception.

The sensitivity of the annuity option to the correlation coefficient between
the equity fund and interest rates is shown in Figure 1 for the constant
volatility case and in Figure 2 for the exponentially decaying model. An
inspection of equations (4) and (5) (for the constant volatility model), and
equations (14) and (18) (for the exponentially decaying volatility model)
reveals that the expected present value of the annuity payment is a decreasing
function of ρ. In fact, the so-called open market option, i.e. the opportunity
to invest the cash amount at the current market rates, becomes more and
more attractive the more that equity and interest rates move in the same
direction. Hence, the patterns shown in Figures 1 and 2 of the value of the
option decreasing as the correlation parameter, ρ, moves from −1 to 1 are as
expected.

The same equations also show that the expected present value of the
annuity payments is an increasing or decreasing function of the equity fund

3These mortality tables have been produced by the Continuous Mortality Investigation
Bureau of the Institute and Faculty of Actuaries for insurance company data on male pen-
sioner mortality. They are extensively used for the calculation of premiums and reserves.
The PA90 table is based on data for the period 1967-70 projected to 1990, PMA80-C10
is based on data for the period 1979-82 projected to 2010 and PMA92-C20 is based on
data for the period 1991-94 projected to 2020. Because of the declining trend in mortality
rates over time, and hence the increasing trend in survival probabilities tpT+x, the ex-
pected present value of the life annuity increases as we move the assumption from PA90
to PMA80-C10 to PMA92-C20.
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volatility according to whether ρ is negative or positive. When ρ < 0 and
the volatility in the equity market is high, a decreasing trend in the interest
rates might induce the policyholder to expect a corresponding increase in
the equity value. This would make the fraction locked in by the guarantee
and the guaranteed rate itself appear very attractive. On the other hand,
if interest rates are increasing, the policyholder might prefer not to exercise
the option. When ρ is positive, instead, the expectation of an increase in
the equity value induced by increasing interest rates makes the open market
option appear very competitive, and therefore the value of the guaranteed
annuity option drops. This kind of behaviour is reflected in the patterns
shown in Figure 3 and Figure 4.

The behaviour of the annuity option value for different values of the
forward rate volatility for the constant volatility model, with all the other
parameters left unchanged, is represented in Figure 5. The observed de-
creasing pattern finds a first explanation in equation (5), which shows that
if the rates of interest are very volatile, the present value of the annuity
payment falls. When ρ is close to its minimum value, this effect is offset
by the attractiveness of the guarantee. Thus, as the forward rate volatility
increases, the chance that interest rates will perform very well or very badly
increases. The policyholder may benefit from falls in interest rates since the
guaranteed payment appears more competitive; but the policyholder faces
a limited downside risk in the event of a rise in interest rates because of
the option scheme embedded in the contract. However, as the correlation
between the equity market and interest rates becomes less and less negative,
the decreasing effect induced by the drop in the expected present values of
the annuity payments prevails. In fact, as Figure 5 shows, as ρ increases,
the policyholder seems to prefer not to exercise the option, but to take the
cash payment instead and reinvest it at more favorable conditions. Similar
patterns apply for the other mortality tables; details are not presented here
but are available from the authors. The changes in the value of the guar-
anteed annuity option under the exponentially decaying volatility model are
summarized in Figure 6 and Figure 7. The sensitivity to the parameter σ
(Figure 6) can be justified using the same argument as before. In fact, as
equation (18) shows, the short rate volatility, σr, is an increasing function
of σ, while the bond price, and therefore the expected present value of the
annuity payments, is a decreasing function of σr. However, the volatility of
the short rate is a monotonic decreasing function of the speed of adjustment,
λ, and hence the pattern is inverted relative to Figure 6, as shown in Figure
7.

The behaviour of the contract for different ages of the policyholder at
inception of the contract (for the PMA92-C20 mortality table) is analyzed
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in Figure 8 for the constant volatility model and in Figure 9 for the ex-
ponentially decaying volatility model. We note that the observed patterns
represent the dynamics over time of the guaranteed annuity option. In fact,
by virtue of the no-arbitrage principle, if the contract had been tradable in
the secondary market, its price should have been such that

Vx (x + t, t ∈ (0, T ] , τ = T − t) = Vx+t (x + t, t ∈ (0, T ] , τ = T − t) .

In other words, the value at time t of the policy entered at age x by a
policyholder now aged x + t and with time to maturity (T − t) would have
been the same as the value of a policy entered at time t by a policyholder aged
x + t and with expiration date τ = T − t. Both Figure 7 and Figure 9 show
an increasing time evolution for the value of the guaranteed annuity option,
which is mainly due to the time value of money: the later the policyholder
enters the contract, the shorter is the time horizon over which the value of
the annuity is discounted.

Figure 10 and Figure 11, instead, show a negative correlation between the
annuity option value and the initial redemption yield: higher current interest
rates make the guaranteed annuity payment locked in by the contract less
attractive than the current rates available in the market.

This last analysis suggests the idea of tracking guaranteed annuity options
values for contracts entered in 1970 using historical data of interest rates, and
following their evolution over time up to the present day in order to analyze
in more detail the effects produced on these contracts by the drop in both
interest rates and mortality rates. In particular, for the initial term structure
values, we used the annual average of retail bank’s base rates over the past 32
years (Bank of England, September 2001 updated to February 2002). The
T-year survival probability for an individual aged x (i.e. pre-retirement),

T px, has been computed using a fixed mortality table, namely the AM92
mortality table. However, in order to take into account the improvements
in mortality rates, post-retirement, the survival probabilities linked to each
annuity payment due after maturity, tpT+x, are instead computed using the
most up-to-date mortality table available for practical use at the moment at
which the valuation is performed. If the option contract is evaluated during
the period from 1970 to 1990, tpT+x is calculated using the PA90 mortality
table. The PMA80-C10 table was introduced in 1991 and is used here over
the 1991-1999 valuation period, while the PMA92-C20 is used from year
2000 onward. In order to separate the “mortality effect” from the “interest
rate effect”, values have been computed also for the case of post-retirement
survival probabilities obtained using the PA90 table only. The pattern of this
contract for a policyholder aged 20 at inception in 1970 is shown in Figures 12
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and 13 for the two volatility models considered. (The patterns for other ages
at inception show similar results and are available from the authors). As we
can see from these plots, the guaranteed annuity option contract had zero-
value for most of its life, precisely from 1973 to 1992 when the level of interest
rates was oscillating between 9.5% and 15%. As the rates dropped in 1993 to
5.50%, the option price rose to about 11.5%. We also note the effect induced
on the contract’s value by neglecting improvements in mortality rates: the
results based on the PA90 table only, in fact, produce a relative underpricing
of the guaranteed annuity option of about 60% in year 2002, with a peak
of about 90% in year 1998. These results indicate the relative contributions
made to the value of the guaranteed annuity option from falling interest rates
and falling mortality rates (and anticipated future falls).

6 Conclusions

In this paper we have introduced a theoretical model, based on the one-
factor Heath-Jarrow-Morton term structure framework, for the valuation of
guaranteed annuity conversion options attached to single premium deferred
annuity contracts. The approach depends on the correspondence between
the contingent claim under consideration and an option contract written on
a coupon paying bond. Two set of results are derived for the cases of (a)
constant volatility and (b) of exponentially decaying volatility of the forward
rate. Insurance company expenses, tax, profits and pre-retirement death
benefits are ignored.

The model has been illustrated with numerical results and a sensitivity
analysis. This indicates how the value of the annuity option varies with
the key parameters, including the forward rate volatility, the equity fund
volatility, the correlation coefficient between the equity and bond markets,
mortality tables used in the calculation of the expected present value of the
annuity payments, age at inception and initial term structure. In particular,
we note the estimated value of the guarantee in relation to the single pre-
mium, S0 = 100, and the effects of lower mortality rates on this estimated
value. This evidence strongly suggests the need for a stochastic model for
hazard rates; a first attempt based on the example of Milevsky and Promis-
low (2001) is currently in progress. We notice that the valuation framework
proposed in this paper relies on a single-factor HJM model for the term
structure of interest rates, and on the assumption of independence between
the financial risk and the mortality risk for the Jamishidian (1989) decom-
position to work. We also highlight that the model presented in this paper
is based on a geometric Brownian motion-driven uncertainty in the equity
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market. Limitations of this assumption are well known in literature since
Black (1975); given the durations involved in the contract specification, a
stochastic volatility model would be a more suitable choice.

Although pension contracts with guaranteed annuity conversion options
may no longer be being issued (eg. in the UK), there remains a significant
practical problem of estimating appropriate reserves for those contracts sold
in the past and where the option has not yet been exercised (Bolton et al.,
1997). Thus, we believe that results (10) and (21) will be of considerable
assistance to insurance companies for estimating such reserves, and for re-
porting and regulatory purposes.

As we note above, equations (10) and (21) provide some guidance as to
the theoretical hedging strategy which should be employed. We acknowledge
that there are practical considerations to take into account, for example,
the question of the availability of (T + t)-zero coupon bonds for such long
maturities as the ones implied by the contract.
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Constant Exponentially decaying volatility
volatility (the benchmark case) (the limiting case)

σf = 0.001 σ = 0.01, λ = 0.15 σ = 0.001, λ = 0.001
PMA92-C20 45.8083 42.0175 45.8667
PMA80-C10 29.7541 26.5497 29.7971
PA90 16.3342 13.7925 16.3651

Table 1: Price of the guaranteed annuity option. Parameter set: S0 =
100; σS = 0.2; ρ = 1; g = 11.1%; f0 = 0.04; x = 50; N = 65.
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Figure 1: Sensitivity to the correlation coefficient: the constant volatility case.
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Figure 2: Sensitivity to the correlation coefficient: the exponentially decaying
volatility model.
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Figure 3: Sensitivity to the equity fund volatility: the constant volatility model.
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Figure 4: Sensitivity to the equity fund volatility: the exponentially decaying
volatility model.
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Figure 5: Sensitivity to the forward rate volatility: the constant volatility case.
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Figure 6: Exponentially decaying volatility model: guaranteed annuity option
sensitivity to the diffusion term.
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Figure 7: Exponentially decaying volatility model: guaranteed annuity option
sensitivity to the speed of adjustment.
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Figure 8: Time evolution of the guaranteed annuity option: the constant volatility
model.
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Figure 9: Time evolution of the guaranteed annuity option: the exponentially
decaying volatility model.
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Figure 10: Sensitivity to the initial term structure: the constant volatility model.
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Figure 11: Sensitivity to the initial term structure: the exponentially decaying
volatility model.
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Figure 12: ”Historical evolution” of the guaranteed annuity option from 1970 to
the present day: the constant volatility model.
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Figure 13: ”Historical evolution” of the guaranteed annuity option from 1970 to
the present day: the exponentially decaying volatility model.
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