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Abstract: It has been postulated that a method of selecting terms in either routing 

or filtering using relevance feedback would be to evaluate every possible 

combination of terms in a training set and determine which combination yields the 

best retrieval results. Whilst this is not a realistic proposition because of the 

enormous size of the search space, some heuristics have been developed on the 

Okapi system to tackle the problem which are computationally intensive. This 

paper describes parallel computing techniques that have been applied to these 

heuristics to reduce the time it takes to select to select terms. 

 

 

1. Introduction 
 

 This paper describes parallel computing techniques that can be applied to a very 

large search space for relevance feedback for routing/filtering that has successfully been 

used on Okapi experiments at TREC [1-4]. The routing task we are considering is the 

situation where a number of relevance judgements have been accumulated and we want 

to derive the best possible search formulation for future documents. The filtering task is 

an extension of this, but a threshold for documents is applied i.e. a binary yes/no decision 

is made on one document at a time as to whether it will be presented to the user. In [1] it 

was stated that an alternative to some term ranking methods described would be to 

"evaluate every possible combination of terms on a training set and use some 

performance evaluation measure to determine which combination is best". Such a method 

is very computationally intensive, and certainly not practicable even with parallel 

machinery. The complexity of one routing session before re-weighting is 2t where t is the 

number of terms. For just 300 terms, our search space is 2
300

 or 2.04e+90 combinations. 

Since the term scores also can be re-weighted any number of times, the order for the 

algorithm's time complexity cannot be stated. Clearly some sort of limit must be set both 

on the number of times re-weighting is allowed and the total number of combinations 

inspected for an information need. We use combinatorial optimisation techniques on this 

search space and apply parallelism to improve the speed of the techniques studied.  The 

methods used by Okapi at TREC are briefly described in section 2 and the strategy for 

applying parallelism to these methods is described in section 3. The data and settings 

used for the experiments are described in section 4. Section 5 describes the experimental 

results. Conclusions and further work in the area are outlined in section 6. 



 

2. Methods used by Okapi at TREC 
 

 Okapi at TREC [1-4] applied three algorithms to the term selection problem. 

Find Best (FB), Choose First Positive (CFP) and Choose All Positive (CAP). With the FB 

algorithm each term is evaluated in one iteration and the term yielding the best score from 

the term set chosen: the algorithm stops when a pre-determined threshold is reached. An 

evaluation in this context is a retrieval followed by the application of some function on 

the search results to produce a score: for example average precision. Terms that increase 

this score are retained/removed (see below). The threshold that halts the procedure is 

reached when there is little or no increase in the score.  The other algorithms work in 

much the same way, but with minor differences. CFP works by choosing the term if it is 

the first term that increases the score. CAP is an extension of FB/CFP and works by 

including/excluding all terms that increase the score in an iteration. Each chosen term is 

accumulated in a query set, the final version of which is applied to a test set. Within each 

algorithm, two operations for choosing terms can be used: add term to the query or delete 

term from the query. The add term operation can be augmented by reweighing the 

retrieval selection value: in the case of the Okapi experiments this is either a reduction by 

a factor of 0.67 or an increase by a factor of 1.5. The Find Best and Choose All Positive 

algorithms are Steepest-ascent Hill-Climbers while Choose First Positive is a First-ascent 

Hill-Climber [5]. 

 

3. Applying parallelism to the Okapi methods 
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Fig 1 - Master/Slave Router Topology 

 

 An approach to applying parallel computation to term selection is to think in 

terms of term sets and what needs to be done to the Hill-Climber algorithms to reduce 

their run time. Since the evaluation of operations on terms can be done independently we 

can distribute the term set to a number of slave processes which apply the required Hill-

Climber algorithm to each sub-set of the term set: an individual term is only evaluated on 

one processor.  Thus by applying inter-set parallelism to the evaluation of terms in the 

evaluation set, we aim to speed up each iteration. We use a method of parallelism known 



as the domain decomposition strategy [6]:  the search space is divided amongst available 

slave processors, controlled by a master process (see fig 1). One of the advantages of this 

method is that communication costs are kept to a minimum as processes involved in 

evaluating terms do not need to communicate to complete their task: however there is an 

overhead associated with checking stopping criterion in every iteration. This overhead 

involves both the retrieval of the best yielding term or terms from all slaves by the master 

and broadcast of the best term data back to the slaves. Each slave has access to the 

training set on its own local disk in order to increase the flexibility of the parallel 

algorithms and reduce the overheads of broadcasting term information from the master 

process to slaves. This method of data distribution is known as Replication.  

The combinations of algorithms and operations described in this paper are: Find 

Best, Choose First Positive and Choose All Positive algorithms with add only, 

add/remove operations and add with re-weighting. It should be noted that the CAP 

algorithm is a purely sequential algorithm to which inter-set parallelism cannot be 

directly applied, as the results are the cumulative effect of evaluations in one iteration. 

However the CAP algorithm can be applied to each sub-set of the term set and we refer to 

revised version as the Choose Some Positive (CSP) algorithm: we can regard CSP as a 

compromise between the FB/CFP algorithms and CAP algorithm. In the CSP algorithm 

the best yielding sub-set of the term set from one process only is chosen. CSP is 

implemented in terms of CAP. Choose First Positive differs slightly in that it is possible 

that a better term could be chosen in one inner iteration for each smaller sub-set of the 

term set (or increasing number of processes). It is possible the terms selected by the Find 

Best algorithm may differ slightly over runs with varying numbers of processes, possibly 

affecting the evaluation score. This is because two or more terms may have the same 

effect when applied to the query and the term that is chosen first amongst these equal 

terms will be the term used. When the number of processors equals the number of 

evaluation terms, all term selection algorithms are identical; i.e. they all reduce to Find 

Best. 

 

4. Description of the data and settings used in experiments 
 

 The database used for the experiments was the Ziff-Davis collection from the 

TREC-4 disk 3 that is 349 Mb in size with a total number of 161,021 records [7]. Three 

databases were created for the Ziff-Davis collection: an extraction database, a selection 

database  (both of which form the training set) and a test database. Our focus here is on 

the training set. We use the extraction database to choose the initial set of terms for the 

queries using the relevance judgements, and then train the queries on the selection 

database using the Okapi Hill-Climbers. We used a total of 19 TREC-4 topics on the Ziff-

Davis database for these experiments. These topics were chosen on the basis of the 

number of relevance judgements available for routing/filtering: it was felt that topics with 

too few relevance judgements (i.e. one or two) would not be of much use in the 

optimisation process due to excessive overfitting (overfitting can occur when term 

selection mechanism overtrains). The distribution of relevance judgements for the 

database was as follows; 1868 (39%) for the extraction set, 1469 (30%) for the selection 

set and 1483 (31%) for the test set.  

 The timing metrics we use to measure retrieval efficiency are as follows. For 

each run we declare the average elapsed time in seconds for term selection over all topics. 



We define selection efficiency as the improvement in average elapsed time by using 

parallelism.  We use the standard parallel measures:  

 

· Speedup: defined as the increase in speed from 1 to n processors and found by 

dividing time spent on computation using 1 processor by time using n 

processors. 

· Parallel efficiency: defined as speedup divided by n processors giving an idea of 

how well processors are being used on a parallel system.  

· Load imbalance: we use a metric called LI that is the ratio of the maximum 

elapsed time over all the processors divided by the average elapsed time [8]: a 

perfect load balance would achieve an LI of 1.0.  

 

As our focus is on speeding up the algorithms, we do not discuss retrieval effectiveness 

issues: experiments done by Okapi at TREC have shown that an increase in retrieval 

effectiveness is available [1-4]. We present runs on 1 to 7 processors: the hardware used 

for the research was the Fujitsu AP3000 at the Australian National University.  

 

5 Experimental results 
  

5.1 Elapsed time for term selection 
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Fig 2. Add only average term selection 
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Fig 3. Add remove average term selection 

elapsed time in seconds 

 

 From figs 2 to 4 it can be seen how expensive the application of the term 

selection algorithms can be, with average elapsed time running into hundreds of seconds 

and in some cases thousands of seconds. Parallelism has different effects on individual 

term selection methods which can be either beneficial or detrimental. The FB algorithm is 

the term selection method which benefits most from the application of parallelism, 

showing a linear time reduction on all node set sizes. FB also outperforms the other term 

selection algorithms using more processors (this can be seen from all data presented in 

figs 2 to 4). Linear time reductions are also found with most parallel runs on CFP using 

any operation (this is most noticeable with add only operation - see fig 2). With regard to 

CSP using any operation, elapsed times do not follow any trend and vary unpredictably 

with slave node set size (particularly using add only operation - see fig 2). The most 

expensive operation in the majority of cases is add reweight: for example FB run times 

are roughly four times as slow on add reweight as the other operations. It is generally 



more expensive to use the add/remove operation compared with add only particularly 

with the FB algorithm. 
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Fig 4. Add reweight average term selection  
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5.2 Load imbalance 
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Fig 6. Add remove load imbalance for term 

selection 

 

The imbalance for term selection is low and does not reach a point where load balance is 

a significant problem for the algorithms: for example an LI of 2.0 would mean halving 

the effective speed of the machine and the LI figures in figs 5 to 7 are nowhere near that 

level.  However, general trend for load imbalance for most experiments is upwards. The 

exception is CSP with add remove operation which shows a reduced level of load balance 

over all runs. There is a clear increase in load imbalance as the number of slave nodes is 

increased, which demonstrates the need for some form of load balancing technique if 

many more slave nodes were to be used in optimising on a training set of this size. This 

imbalance contributes in part to the overall loss in term selection efficiency recorded.  
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Fig 7. Add reweight load imbalance for term selection 

 

5.3 Speedup and parallel efficiency 
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for term selection  
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 The speedup and efficiency figures are shown in figs 8 to 13. In terms of 

speedup and parallel efficiency, the FB method shows improvement on all levels of 

parallelism investigated. Speedup is near linear at 7 slave nodes with parallel efficiency 

above the 70% mark for any operation. However the speedup and parallel efficiency for 

CFP is very poor for all three term operations.  In most cases a speedup of less than two is 

registered: a number of factors are responsible for the poor parallel performance. An 

increase in evaluations with more slave nodes is a significant factor as well as the 

overhead at the synchronisation point together with load imbalance.  For example CFP 



with add reweight increases the evaluations per topic from 3787 on 1 slave node to 5434 

on 7 slave nodes: the same trend is found with other operations. 
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Much the same can be said for CSP, apart from add remove operation which 

does actually show some level of speedup. However, overheads are a much less 

significant factor for CSP while the increase in evaluations plays a more important part: 

for example the number of evaluations using the add reweight operation increased from 

2766 per topic on 1 slave node to 8234 on 7 slave nodes. There are fewer iterations with 

the CSP method, but individual iterations are much longer.  Slowdown for CSP on add 

only and add reweight is recorded for 2 slave nodes. It could be argued that using 

speedup and parallel efficiency to measure the parallel performance of the CSP algorithm 

is unfair as the parallelism itself imposes an extra workload for the method. However 

demonstrating that some parallel performance improvement is available while still being 

able to examine some of the search space is, we believe, worthwhile. 

 

6. Conclusion and further work 
 

 We have found a method of parallelism which by focusing on the main task, 

namely the evaluation of terms, can speed up the computation of the heuristics and 

examine more of the search space. We have shown that the speed advantage found with 

the FB selection method is significant. We believe it is possible to improve the selection 

efficiency of both FB and CSP using some form of dynamic re-distribution technique for 

terms in the query. Experiments with CFP are less conclusive and show difficulties 

particularly with load balance. It may be possible to improve the load balance of CFP but 

only at a large overhead cost. 

 We could consider the use of machine learning [9] tabu search [6] and pattern 

recognition [10] techniques in order to optimise routing/filtering queries. A great deal of 

research into search space methods has been done in machine learning using methods 

such as genetic algorithms and neural networks that are both very computationally 

intensive processes. Tabu search is a meta-heuristic which can be used to manage other 

heuristics in order to examine parts of the search space which would not normally be 

examined with a single search strategy. Some of the selection algorithms used in pattern 

recognition are similar to the Hill-Climbers used in this study [10], particularly Find Best 

with add only and remove only operations. We could therefore treat the query 

optimisation discussed in this research as a pattern recognition problem, treating different 



combinations of the query as a pattern. The problem would be to find the best yielding 

‘pattern’ in the query. Parallelism could be used to speed up these methods, providing 

they are able to show retrieval effectiveness benefit on the test set. 
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