
MacFarlane, A., Robertson, S. E. & McCann, J. A. (2003). Parallel Computing for Term Selection in

Routing/Filtering. In: F. Sebastiani (Ed.), Advances in Information Retrieval. Lecture Notes in

Computer Science, 2633. (pp. 537-545). Berlin: Springer-Verlag. ISBN 9783540012740

City Research Online

Original citation: MacFarlane, A., Robertson, S. E. & McCann, J. A. (2003). Parallel Computing

for Term Selection in Routing/Filtering. In: F. Sebastiani (Ed.), Advances in Information Retrieval.

Lecture Notes in Computer Science, 2633. (pp. 537-545). Berlin: Springer-Verlag. ISBN

9783540012740

Permanent City Research Online URL: http://openaccess.city.ac.uk/5386/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/29018089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Parallel Computing for Term Selection in

Routing/Filtering

A. MacFarlane
1
, S.E.Robertson

1,2
 and J.A.McCann

3

 1

Centre for Interactive Systems Research, City University, London

2
Microsoft Research Ltd, Cambridge CB2 3NH

3
Department of Computing, Imperial College London

{email: andym@soi.city.ac.uk}

Abstract: It has been postulated that a method of selecting terms in either routing

or filtering using relevance feedback would be to evaluate every possible

combination of terms in a training set and determine which combination yields the

best retrieval results. Whilst this is not a realistic proposition because of the

enormous size of the search space, some heuristics have been developed on the

Okapi system to tackle the problem which are computationally intensive. This

paper describes parallel computing techniques that have been applied to these

heuristics to reduce the time it takes to select to select terms.

1. Introduction

 This paper describes parallel computing techniques that can be applied to a very

large search space for relevance feedback for routing/filtering that has successfully been

used on Okapi experiments at TREC [1-4]. The routing task we are considering is the

situation where a number of relevance judgements have been accumulated and we want

to derive the best possible search formulation for future documents. The filtering task is

an extension of this, but a threshold for documents is applied i.e. a binary yes/no decision

is made on one document at a time as to whether it will be presented to the user. In [1] it

was stated that an alternative to some term ranking methods described would be to

"evaluate every possible combination of terms on a training set and use some

performance evaluation measure to determine which combination is best". Such a method

is very computationally intensive, and certainly not practicable even with parallel

machinery. The complexity of one routing session before re-weighting is 2t where t is the

number of terms. For just 300 terms, our search space is 2
300

 or 2.04e+90 combinations.

Since the term scores also can be re-weighted any number of times, the order for the

algorithm's time complexity cannot be stated. Clearly some sort of limit must be set both

on the number of times re-weighting is allowed and the total number of combinations

inspected for an information need. We use combinatorial optimisation techniques on this

search space and apply parallelism to improve the speed of the techniques studied. The

methods used by Okapi at TREC are briefly described in section 2 and the strategy for

applying parallelism to these methods is described in section 3. The data and settings

used for the experiments are described in section 4. Section 5 describes the experimental

results. Conclusions and further work in the area are outlined in section 6.

2. Methods used by Okapi at TREC

 Okapi at TREC [1-4] applied three algorithms to the term selection problem.

Find Best (FB), Choose First Positive (CFP) and Choose All Positive (CAP). With the FB

algorithm each term is evaluated in one iteration and the term yielding the best score from

the term set chosen: the algorithm stops when a pre-determined threshold is reached. An

evaluation in this context is a retrieval followed by the application of some function on

the search results to produce a score: for example average precision. Terms that increase

this score are retained/removed (see below). The threshold that halts the procedure is

reached when there is little or no increase in the score. The other algorithms work in

much the same way, but with minor differences. CFP works by choosing the term if it is

the first term that increases the score. CAP is an extension of FB/CFP and works by

including/excluding all terms that increase the score in an iteration. Each chosen term is

accumulated in a query set, the final version of which is applied to a test set. Within each

algorithm, two operations for choosing terms can be used: add term to the query or delete

term from the query. The add term operation can be augmented by reweighing the

retrieval selection value: in the case of the Okapi experiments this is either a reduction by

a factor of 0.67 or an increase by a factor of 1.5. The Find Best and Choose All Positive

algorithms are Steepest-ascent Hill-Climbers while Choose First Positive is a First-ascent

Hill-Climber [5].

3. Applying parallelism to the Okapi methods

 master Interconnecting Network

 slave j slave j+1 …… slave n

 Process

Processors

Fig 1 - Master/Slave Router Topology

 An approach to applying parallel computation to term selection is to think in

terms of term sets and what needs to be done to the Hill-Climber algorithms to reduce

their run time. Since the evaluation of operations on terms can be done independently we

can distribute the term set to a number of slave processes which apply the required Hill-

Climber algorithm to each sub-set of the term set: an individual term is only evaluated on

one processor. Thus by applying inter-set parallelism to the evaluation of terms in the

evaluation set, we aim to speed up each iteration. We use a method of parallelism known

as the domain decomposition strategy [6]: the search space is divided amongst available

slave processors, controlled by a master process (see fig 1). One of the advantages of this

method is that communication costs are kept to a minimum as processes involved in

evaluating terms do not need to communicate to complete their task: however there is an

overhead associated with checking stopping criterion in every iteration. This overhead

involves both the retrieval of the best yielding term or terms from all slaves by the master

and broadcast of the best term data back to the slaves. Each slave has access to the

training set on its own local disk in order to increase the flexibility of the parallel

algorithms and reduce the overheads of broadcasting term information from the master

process to slaves. This method of data distribution is known as Replication.

The combinations of algorithms and operations described in this paper are: Find

Best, Choose First Positive and Choose All Positive algorithms with add only,

add/remove operations and add with re-weighting. It should be noted that the CAP

algorithm is a purely sequential algorithm to which inter-set parallelism cannot be

directly applied, as the results are the cumulative effect of evaluations in one iteration.

However the CAP algorithm can be applied to each sub-set of the term set and we refer to

revised version as the Choose Some Positive (CSP) algorithm: we can regard CSP as a

compromise between the FB/CFP algorithms and CAP algorithm. In the CSP algorithm

the best yielding sub-set of the term set from one process only is chosen. CSP is

implemented in terms of CAP. Choose First Positive differs slightly in that it is possible

that a better term could be chosen in one inner iteration for each smaller sub-set of the

term set (or increasing number of processes). It is possible the terms selected by the Find

Best algorithm may differ slightly over runs with varying numbers of processes, possibly

affecting the evaluation score. This is because two or more terms may have the same

effect when applied to the query and the term that is chosen first amongst these equal

terms will be the term used. When the number of processors equals the number of

evaluation terms, all term selection algorithms are identical; i.e. they all reduce to Find

Best.

4. Description of the data and settings used in experiments

 The database used for the experiments was the Ziff-Davis collection from the

TREC-4 disk 3 that is 349 Mb in size with a total number of 161,021 records [7]. Three

databases were created for the Ziff-Davis collection: an extraction database, a selection

database (both of which form the training set) and a test database. Our focus here is on

the training set. We use the extraction database to choose the initial set of terms for the

queries using the relevance judgements, and then train the queries on the selection

database using the Okapi Hill-Climbers. We used a total of 19 TREC-4 topics on the Ziff-

Davis database for these experiments. These topics were chosen on the basis of the

number of relevance judgements available for routing/filtering: it was felt that topics with

too few relevance judgements (i.e. one or two) would not be of much use in the

optimisation process due to excessive overfitting (overfitting can occur when term

selection mechanism overtrains). The distribution of relevance judgements for the

database was as follows; 1868 (39%) for the extraction set, 1469 (30%) for the selection

set and 1483 (31%) for the test set.

 The timing metrics we use to measure retrieval efficiency are as follows. For

each run we declare the average elapsed time in seconds for term selection over all topics.

We define selection efficiency as the improvement in average elapsed time by using

parallelism. We use the standard parallel measures:

· Speedup: defined as the increase in speed from 1 to n processors and found by

dividing time spent on computation using 1 processor by time using n

processors.

· Parallel efficiency: defined as speedup divided by n processors giving an idea of

how well processors are being used on a parallel system.

· Load imbalance: we use a metric called LI that is the ratio of the maximum

elapsed time over all the processors divided by the average elapsed time [8]: a

perfect load balance would achieve an LI of 1.0.

As our focus is on speeding up the algorithms, we do not discuss retrieval effectiveness

issues: experiments done by Okapi at TREC have shown that an increase in retrieval

effectiveness is available [1-4]. We present runs on 1 to 7 processors: the hardware used

for the research was the Fujitsu AP3000 at the Australian National University.

5 Experimental results

5.1 Elapsed time for term selection

0

100

200

300

400

500

1 2 3 4 5 6 7

slave nodes

T
im

e
:
s

e
c
s

FB

CFP

CSP

Fig 2. Add only average term selection

elapsed time in seconds

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7

slave nodes

T
im

e
:
s

e
c
s

FB

CFP

CSP

Fig 3. Add remove average term selection

elapsed time in seconds

 From figs 2 to 4 it can be seen how expensive the application of the term

selection algorithms can be, with average elapsed time running into hundreds of seconds

and in some cases thousands of seconds. Parallelism has different effects on individual

term selection methods which can be either beneficial or detrimental. The FB algorithm is

the term selection method which benefits most from the application of parallelism,

showing a linear time reduction on all node set sizes. FB also outperforms the other term

selection algorithms using more processors (this can be seen from all data presented in

figs 2 to 4). Linear time reductions are also found with most parallel runs on CFP using

any operation (this is most noticeable with add only operation - see fig 2). With regard to

CSP using any operation, elapsed times do not follow any trend and vary unpredictably

with slave node set size (particularly using add only operation - see fig 2). The most

expensive operation in the majority of cases is add reweight: for example FB run times

are roughly four times as slow on add reweight as the other operations. It is generally

more expensive to use the add/remove operation compared with add only particularly

with the FB algorithm.

slave nodes

T
im

e
:

s
e
c
s

0

500

1000

1500

2000

1 2 3 4 5 6 7

FB

CFP

CSP

Fig 4. Add reweight average term selection

elapsed time in seconds

5.2 Load imbalance

1

1.05

1.1

1.15

1.2

2 3 4 5 6 7

slave nodes

L
I

FB

CFP

CSP

Fig 5. Add only load imbalance for term

selection

1

1.05

1.1

1.15

1.2

2 3 4 5 6 7

slave nodes

L
I

FB

CFP

CSP

Fig 6. Add remove load imbalance for term

selection

The imbalance for term selection is low and does not reach a point where load balance is

a significant problem for the algorithms: for example an LI of 2.0 would mean halving

the effective speed of the machine and the LI figures in figs 5 to 7 are nowhere near that

level. However, general trend for load imbalance for most experiments is upwards. The

exception is CSP with add remove operation which shows a reduced level of load balance

over all runs. There is a clear increase in load imbalance as the number of slave nodes is

increased, which demonstrates the need for some form of load balancing technique if

many more slave nodes were to be used in optimising on a training set of this size. This

imbalance contributes in part to the overall loss in term selection efficiency recorded.

1

1.05

1.1

1.15

1.2

2 3 4 5 6 7

slave nodes

L
I

FB

CFP

CSP

Fig 7. Add reweight load imbalance for term selection

5.3 Speedup and parallel efficiency

0

1

2

3

4

5

2 3 4 5 6 7

slave nodes

S
p

e
e
d

u
p

FB

CFP

CSP

Fig 8. Add only operation speedup for

term selection

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7

slave nodes

E
ff

ic
ie

n
c
y FB

CFP

CSP

Fig 9. Add only parallel efficiency for

term selection

0

1

2

3

4

5

2 3 4 5 6 7

slave nodes

S
p

e
e
d

u
p

FB

CFP

CSP

Fig 10. Add remove operation speedup

for term selection

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7

slave nodes

E
ff

ic
ie

n
c
y FB

CFP

CSP

Fig 11. Add remove operation parallel

efficiency for term selection

 The speedup and efficiency figures are shown in figs 8 to 13. In terms of

speedup and parallel efficiency, the FB method shows improvement on all levels of

parallelism investigated. Speedup is near linear at 7 slave nodes with parallel efficiency

above the 70% mark for any operation. However the speedup and parallel efficiency for

CFP is very poor for all three term operations. In most cases a speedup of less than two is

registered: a number of factors are responsible for the poor parallel performance. An

increase in evaluations with more slave nodes is a significant factor as well as the

overhead at the synchronisation point together with load imbalance. For example CFP

with add reweight increases the evaluations per topic from 3787 on 1 slave node to 5434

on 7 slave nodes: the same trend is found with other operations.

0

1

2

3

4

5

2 3 4 5 6 7

slave nodes

S
p

e
e
d

u
p

FB

CFP

CSP

Fig 12. Add reweight operation speedup

for term selection

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7

slave nodes

E
ff

ic
ie

n
c
y FB

CFP

CSP

Fig 13. Add reweight operation parallel

efficiency for term selection

Much the same can be said for CSP, apart from add remove operation which

does actually show some level of speedup. However, overheads are a much less

significant factor for CSP while the increase in evaluations plays a more important part:

for example the number of evaluations using the add reweight operation increased from

2766 per topic on 1 slave node to 8234 on 7 slave nodes. There are fewer iterations with

the CSP method, but individual iterations are much longer. Slowdown for CSP on add

only and add reweight is recorded for 2 slave nodes. It could be argued that using

speedup and parallel efficiency to measure the parallel performance of the CSP algorithm

is unfair as the parallelism itself imposes an extra workload for the method. However

demonstrating that some parallel performance improvement is available while still being

able to examine some of the search space is, we believe, worthwhile.

6. Conclusion and further work

 We have found a method of parallelism which by focusing on the main task,

namely the evaluation of terms, can speed up the computation of the heuristics and

examine more of the search space. We have shown that the speed advantage found with

the FB selection method is significant. We believe it is possible to improve the selection

efficiency of both FB and CSP using some form of dynamic re-distribution technique for

terms in the query. Experiments with CFP are less conclusive and show difficulties

particularly with load balance. It may be possible to improve the load balance of CFP but

only at a large overhead cost.

 We could consider the use of machine learning [9] tabu search [6] and pattern

recognition [10] techniques in order to optimise routing/filtering queries. A great deal of

research into search space methods has been done in machine learning using methods

such as genetic algorithms and neural networks that are both very computationally

intensive processes. Tabu search is a meta-heuristic which can be used to manage other

heuristics in order to examine parts of the search space which would not normally be

examined with a single search strategy. Some of the selection algorithms used in pattern

recognition are similar to the Hill-Climbers used in this study [10], particularly Find Best

with add only and remove only operations. We could therefore treat the query

optimisation discussed in this research as a pattern recognition problem, treating different

combinations of the query as a pattern. The problem would be to find the best yielding

‘pattern’ in the query. Parallelism could be used to speed up these methods, providing

they are able to show retrieval effectiveness benefit on the test set.

7. Acknowledgements

 This work was supported by the British Academy under grant number IS96/4203. We are

grateful to the Australian National University, Canberra for the of their Fujistsu AP3000

parallel computer in order to conduct these experiments. We owe particular thanks to

Gordon Smith, David Hawking and David Sitsky for their advice on many issues. We

would also like to thank David Hawking for suggesting the use of replication for the

method of data distribution.

References

1. S.E. Robertson, S.Walker, S. Jones, M.M. Hancock-Beaulieu and M Gatford, Okapi

at TREC-3. In: D.K.Harman, (ed.): Proceedings of the Third Text Retrieval

Conference, NIST Gaithersburg (1995) 109-126

2. S.E. Robertson, S. Walker, S. Jones, M.M. Beaulieu M. Gatford and A. Payne, Okapi

at TREC-4. In: D.K.Harman, (ed.): Proceedings of the Fourth Text Retrieval

Conference, , NIST Gaithersburg (1996) 73-96

3. M.M. Beaulieu, M. Gatford, X. Huang, S.E. Robertson, S. Walker and P. Williams,

Okapi at TREC-5. In: Voorhees E.M and D.K.Harman, (eds.): Proceedings of the

Fifth Text Retrieval Conference, NIST Gaithersburg (1997) 143-166.

4. S. Walker, S.E.Robertson and M Boughanem, OKAPI at TREC-6. In: Voorhees

E.M and D.K.Harman, (eds.): Proceedings of the Sixth Text Retrieval Conference,

NIST Gaithersburg (1998) 125-136

5. A. Tuson, Optimisation with Hillclimbing on Steriods: An Overview of

Neightbourhood Search Techniques. Proceedings of the 10th Young Operational

research Conference, Operational Research Society (1998) 141-156

6. F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997.

7. D. Harman, Overview of the Fourth Text REtrieval Conference (TREC-4). In:

D.K.Harman, (ed.): Proceedings of the Fourth Text Retrieval Conference, NIST

Gaithersburg (1996) 1-24

8. D. Hawking, “The Design and Implementation of a Parallel Document Retrieval

Engine”, Technical Report TR-CS-95-08, Department of Computer Science,

Australian National University (1995)

9. A. Hutchinson, Algorithm Learning, Clarendon Press (1994)

10. J. Kittler, Feature selection and extraction. In: T.Y. Young and K. Fu, (ed.):

Handbook of Pattern Recognition and Image Processing, Academic Press (1986) 59-

83

