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The History of Dipper Functions 

Joshua A. Solomon 

 

ABSTRACT 

Dipper-shaped curves often accurately depict the relationship between a baseline or 

“pedestal” magnitude and a just-noticeable difference in it. This tutorial traces the 45-

year history of the dipper function in auditory and visual psychophysics, focusing on 

when they happen, and why. Popular theories for both positive and negative masking 

(i.e. the “handle” and “dip,” respectively) are described. Sometimes, but not always, 

negative masking disappears with an appropriate re-description of stimulus 

magnitude. 

 

Introduction, part 1: Gaussian noise 

Did you ever have your walls dusted? I did, and the duster (who shall remain 

nameless) managed to knock all my pictures out of alignment. You can try, but it is 

impossible to hang a picture perfectly straight. Sometimes the right side seems a little 

too high, sometimes it is the left side. I would change my mind even without moving 

the picture. This uncertainty is manifest in psychometric functions for orientation 

discrimination. An example is shown in Figure 1. It summarises observer MM’s 

responses to visual targets having different tilts. Consider the big point. When forced 

to choose, observer MM said “clockwise” on 14 of 58 trials in which the true stimulus 

orientation was 1 deg anti-clockwise of vertical. 

 

 

Figure 1: A psychometric function for orientation discrimination. Each point shows 

how frequently MM responded “anti-clockwise” in Phase 1 of Solomon, Felisberti, 
and Morgan (2004; cf. their Figure 3, which was from Phase 2). Negative values 

indicate CW tilts. Error bars reflect 95% confidence intervals for the true probabilities. 

The solid curve is Equation 1.  

Notice that the psychometric function is well-fit by a Gaussian distribution. 

That is, 
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 Ψ θ( ) ≈ Φ θ σ( ),       (1) 

where Φ is the Normal Cumulative Distribution Function (CDF) and σ =1.2°. This 

fit suggests a Gaussian source of noise, intrinsic to the visual system, which corrupts 

the ability to estimate orientation.  

 

Introduction, part 2: Discriminating different levels of Gaussian noise 

Although persuasive, this suggestion is at odds with the way my pictures used to look, 

i.e. perfectly straight. If the apparent orientation of each picture was corrupted by 

Gaussian noise, then how could they ever seem to be aligned? This puzzle prompted 

Morgan, Chubb, & Solomon
*
 (2008) to speculate that maybe the visual system 

squelched its own noise. To test this possibility, they measured how well observers 

could discriminate between two textures, whose otherwise parallel elements were 

tilted with different amounts of Gaussian noise. 

 Figure 2a shows an example of their stimuli. Observers had a two-alternative, 

forced-choice (2AFC): they were shown two textures, and asked to select the one 

having greater variance. This variance was manipulated until observers were 

responding with an accuracy of 82%. 

 The horizontal position of each point in Figure 2b shows the standard 

deviation of orientations in the less-variable or “pedestal” texture. The vertical 

position of each point shows how much greater the standard deviation of the other 

texture needed to be for MM to identify it with 82% accuracy. This is the JND or just-

noticeable difference in standard deviation. The JND’s form a dipper-shaped function 

of pedestal magnitude. That is, as the pedestal increases from zero, the JND’s first 

decrease and then increase. This result may seem counter-intuitive, but dipper 

functions of this general shape, with a “dip” in the middle and a “handle” on the right, 

are ubiquitous in contemporary psychophysics. The historical review that follows 

should help to steer interested empiricists away from particularly contentious issues.  

 

                                                

*
 A referee thought it important that I highlight the fact that “Morgan et al” includes 

me. We did not fully appreciate the inelegance of our Figure 2 until after it had been 

submitted for publication. The first draft of this tutorial was submitted four months 

later. 
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Figure 2: Example stimuli and results from Morgan et al. (2008). The observer’s two-

alternative, forced-choice (or 2AFC) task was to report which of two images had 
higher variability in orientation.  In the example (a), there is zero variability in the 

image on the left. Orientations on the right were sampled from a Gaussian 

distribution with an 8-deg standard deviation. Each point in (b) shows observer MM’s 

(82% correct) JND in standard deviation.  

 

Weber’s Law 

Dipper functions are a subset of those functions that describe the relationship between 

a baseline magnitude ,
*
 and a just noticeable increment ΔI

JND
. An even simpler 

relationship, attributed to Weber (by Fechner 1860/1912), can be written 

 ΔI
JND

I = k ,         (2) 

where the “Weber fraction” k  does not vary with . So much has been written about 

Weber’s Law (and the “near-misses” thereto) that I feel unable to add anything 

intelligent on the topic. The reader is directed to Chapter 1 of Laming (1986). Chapter 

2 contains an unbeatable review of the psychophysical methods appropriate for 

obtaining Weber’s Law. 

 Conventional psychophysical methods (e.g. 2AFC) constrain the possible 

relationships between  and ΔI
JND

. A recent discussion of these constraints can be 

found in Doble, Falmagne, and Berg (2003) and Iverson (2006a, 2006b). All are 

satisfied by Weber’s Law.  

 

Luminance discrimination 

                                                

*
 I stands for intensity, which has a very precise physical definition. On the other 

hand, both the word “magnitude” and Weber’s Law are much more general. 
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Following many previous authors, Bartlett (1942) obtained Weber fractions for 

detecting luminance increments on a steady background. He obtained different Weber 

fractions when I  and I + ΔI  were presented on a background ≠ I . Like many other 

authors, Bartlett used the same symbol to denote both an arbitrary increment and a 

just noticeable one. I will reserve ΔI  for the former and ΔI
JND

 for the latter. 

 Following Bartlett (1942), Cornsweet and Pinsker (1965) distinguished 

between 2AFC detection of luminance increments on a steady background and 2AFC 

discrimination of luminance “pulses” on a dark background. Only the latter type of 

experiment produced dipper-shaped plots of logΔIJND vs log I  (cf. Blackwell, 1963). 

These dipper functions had long, straight handles with a gradient of 1. Thus Weber’s 

Law held for large values of I, i.e. whenever the pulses could be easily detected.  

 Plotting tip: I recommend using coordinate systems in which one log unit has 

the same length vertically and horizontally. This makes it relatively easy to visually 

estimate the handle gradient and thus the validity of Weber’s Law for large values of 

I . 

 

Variance discrimination 

The very first dipper function was published by Raab, Osman, and Rich (1963a). The 

task was to detect brief increments in the amplitude of continuous auditory noises of 

various intensity. Since loud background noises usually make it hard to hear quiet 

increments, their effect is often called masking. Raab et al coined the term “negative 

masking” to describe how the power of the just-detectable increment decreases as the 

background noise increases from zero. The funny thing is that Raab et al didn’t even 

do the experiment. The data were originally published by Miller in 1947. 

 Miller (1947) plotted the just-detectable increment in power, instead of the 

power of the just-detectable increment, and consequently did not get any negative 

masking. The distinction is important, so I will explain why no increase in the just-

detectable increment in power can actually be a decrease in the power of the just-

detectable increment.  

 A bit of physics might be useful here. Random fluctuations in pressure sound 

like noise. The power of an auditory noise is proportional to the variance in pressure. 

The amplitude of an auditory noise is typically expressed as the root-mean-squared 

(RMS) pressure, i.e. amplitude is proportional to the square-root of power. Finally, a 

quantity we will discuss later is energy. To get any signal’s energy, you need to 

integrate its power over both its extent (in time for auditory signals; in space and time 

for visual ones) and its bandwidth.  

 Now, consider the case of detection. That is, when there is no background 

noise. That is what the “0” means, under “Power of Background,” in the first row of 

Table 1. When the power is zero, the amplitude is also zero. Without loss of 

generality, we can assume that a short burst of noise requires an RMS amplitude of 

σ in order to be just detected in total quiet. The symbol σ is typically used to denote 

the standard deviation of a Gaussian distribution and that is how the amplitude of 

Gaussian noise is typically defined; as the standard deviation of pressure. 
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2
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2 
0.172aσ
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Table 1: Negative masking with a constant JND in power. 

 The total amplitude of a just-detectable noise-burst is thus 0 +σ =σ , and 

since power is proportional to pressure variance, the total power at detection threshold 

is some constant a, times σ 2. To calculate the just-noticeable increase in power, we 

subtract the background power from this value ( aσ 2
− 0 = aσ 2), and the power of the 

just-noticeable increment is the same constant a, times the same variance σ 2. 

 Moving on to the bottom row of Table 1, we now consider a just-detectable 

background. Its amplitude, as we have already assumed, will be at least approximately 

identical to that of the just-detectable noise-burst, σ, and its power is thus aσ 2.  

 Here is where it gets interesting. Assume that this very faint background 

produces no change in the just-noticeable increment in power. This is what Miller 

(1947) reported. Previously, we had a just-noticeable increase in power of aσ 2, so we 

will have a just-noticeable increase in power of aσ 2 here too. The total power is the 

power of the background plus the just-noticeable increase in power, so that is 

aσ 2
+ aσ 2

= 2aσ 2 . Since the total power must be a times the total amplitude squared, 

the total amplitude must be 2σ . The just-noticeable increment in amplitude is the 

difference between the total amplitude and that of the background alone. So that is 

2σ −σ = 2 −1( )σ ≈ 0.414σ , and at last we can calculate the power of the just-

noticeable increment. It is simply is a times this value squared: 

a 0.414σ( )
2

= 0.172aσ 2 , which is just a fraction of the power of a just-detectable 

noise. 

 The preceding example shows why Raab et al (1963) seemed to get “negative 

masking” when they re-plotted Miller’s (1947) data as the power of the just-

noticeable increment. The question remains, what if I re-plotted Morgan et al’s (2008) 

data in a similar way? That is, what if I plotted the just-noticeable differences in 

variance, rather than the just-noticeable differences in standard deviation? 
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 The answer appears in Figure 3. These are the same data as Figure 2, replotted 

in terms of orientation variance.
*
 In this case, there is almost no evidence of any 

“negative masking.” The take-home message from this exercise is that, in some cases, 

negative masking can disappear with an alternative description of stimulus magnitude. 

 

 

Figure 3: Re-plotted results from Morgan et al (2008). Here, the vertical axis 
describes the JND in orientation variance. The solid curve illustrates the performance 

of a two-parameter observer, whose otherwise-ideal decision is based on a limited 

number (19) of Gaussian-noise-perturbed  (σ = 4.4°) samples in each image. These 

two parameter values minimize the rms error in log degrees2 (cf. Morgan et al., who 
maximized the likelihood of their psychometric data). 

 Green (1960a) formulated the ideal observer for detecting various signals. He 

showed that when the signal is a sample of noise, the ideal observer is an energy 

detector. It is clear from his Equation 7b that Weber’s Law is a consequence of this 

optimal detector for a noise signal. 

 Human observers are not ideal for a variety of reasons. Typically, they are 

inefficient. This means they are unable to utilise all of the available information when 

making a decision. For example, when estimating signal variance, human observers 

must rely on a limited sample, and that sample may get corrupted by sensory noise. I 

fit a noisy, inefficient version of Green’s (1960a) ideal-observer model to Morgan et 

al’s (2008) discriminations of orientation variance. There are two free parameters in 

this model: the standard deviation of the putatively Gaussian noise that corrupts each 

estimate of orientation and the number of Gabor patterns whose orientations MM 

estimated in each texture, i.e. his sample size. The fit is shown in Figure 3. 

 One conclusion to draw from this high-quality fit is that acuity for variance is 

best described in terms of variance. Maybe that isn’t very surprising, but as will be 

discussed below, the appropriate scale for other acuities is not always this obvious. 

Note here that I am using the word “acuity” in its most general sense. It refers to an 

observer’s sensitivity for fine detail in the size or strength of some stimulus. 

 Before turning away from the dipper function for orientation variance, I must 

mention its similarity to the dipper function for blur discrimination (Watt & Morgan 

1983). Morgan et al (2008) noted that just as the sum of two independent sources of 

                                                

*
 JNDFig. 3 = (JNDFig. 2 + PedestalFig. 2)

 2
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noise (e.g. that in the stimulus and that intrinsic to the visual system) can be 

determined by convolving their Probability Density Functions (PDF’s), the combined 

effects of stimulus and intrinsic blurs can be determined by convolving their 

individual point-spread functions. Thus the dipper function for Gaussian blur and the 

dipper function for orientation variance may be modeled by the same noisy observer. 

 

 

Amplitude discrimination: Appropriate description 

Although Raab et al were the first to use the term “negative masking,” it was Green 

(1960b) who first reported evidence of it, when he measured how easy it was to detect 

changes in the amplitude of a pure tone. Specifically, a faint tone was easier to detect 

when it was presented in phase with another, near-threshold tone of the same 

frequency and duration. Pfafflin and Mathews (1962) introduced the term “pedestal” 

to describe Green’s facilitating tone.
*
 Although the energy detector is not ideal for 

discriminating between tone amplitudes, Pfafflin and Mathews found Green’s results 

with faint tones were nonetheless consistent with its behavior.  

 Due to the energy model’s success in explaining Green’s (1960b) negative 

masking and psychometric slopes, Raab et al (1963b) argued that discrimination 

results should be described and plotted in terms of energy differences, rather than 

amplitude differences. Like Raab et al, Laming (1986, page 13) reviewed the problem 

of appropriate scale for dipper functions, but he came to the opposite conclusion. The 

argument for amplitude appears in his Chapter 4. One reason is that amplitude 

frequently has a more “natural” unit of measurement (cf. degrees
2
).  

 Weber’s Law itself can supply an even better reason. Fechner (1860/1912) and 

many others believed that the intensity of sensory experiences increased in proportion 

to the ratio ΔI I . It follows that the accumulation of sensory noise should produce 

Gaussian perturbations in these intensities. Thus, psychometric functions of this ratio 

should resemble the Gaussian CDF, i.e. ψ ΔI I( ) ≈ Φ ΔI I( ). According to Laming 

(1986), this prediction is borne out when the pedestal I is easily detected and ΔI  is 

proportional to an amplitude difference, not a power or energy difference. Of course, 

Laming did not examine every type of acuity and there may be some exceptions. 

Orientation variance may be one of these exceptions. We do not know, because 

Morgan et al (2008) used a staircase procedure to quickly estimate JND’s.  

 Methodological tip: Try to collect complete psychometric functions, so that 

their shapes may be compared with the Gaussian CDF. 

 

Amplitude discrimination: Shape of the dipper function 

                                                

*
 Leshowitz, Taub, & Raab (1968), who replicated Cornsweet and Pinsker (1965), 

confused the terminology by introducing a hybrid paradigm, with pulsed signals of 

intensities I  and I + ΔI  added to a “pedestal” of intensity Ip . 
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Hanna, von Gierke, & Green (1986) obtained dipper functions for 2AFC amplitude 

discrimination of short tones. When these tones were presented against a background 

of auditory noise, their data were like those of Morgan et al (2008): negative masking 

did not survive the transformation into energy differences.
*
 However, when the tones 

were presented against a quiet background, Hanna et al found that negative masking 

survived the transformation. Implications of this result appear below. 

 Craig (1974) obtained a dipper function for discriminating amplitudes of 

vibrotactile stimulation. The handle had a gradient of 1. I re-plotted his JND’s as 

energy differences, and found that one point still strongly suggested negative 

masking. 

 A huge number of studies report dipper functions for the detection of contrast 

increments in sinusoidal luminance gratings. Campbell and Kulikowski (1966) were 

the first. They used the method of adjustment and plotted their dipper function upside-

down with respect to current conventions. The handle of their dipper function had a 

gradient of -1, seemingly consistent with Weber’s Law. 

 Nachmias and Sansbury (1974) published the next major study on contrast 

discrimination. They used the 2AFC paradigm. I transformed their data into energy 

differences, and found only one point that still suggested negative masking. This data 

point may be an outlier. Legge and Foley (1980) conducted a much larger study using 

a similar methodology, but none of their dipper functions suggest negative masking 

when re-plotted as terms of energy differences. Legge himself was one of the first to 

realize how the dipper function for contrast changes shape when replotted as a dipper 

function for contrast energy (Legge & Viemeister, 1988). However, even in today’s 

literature, most contrast dippers appear as Nachmias and Sansbury’s did: JND’s in 

contrast vs. pedestal contrast. 

 Nachmias and Sansbury’s (1974) study begat an even more heated 

controversy, because unlike Campbell and Kulikowski (1966) the handle of their 

dipper function had a gradient < 1, seemingly inconsistent with Weber’s Law. 

Kulikowski and Gorea (1978) responded with evidence suggesting that Campell and 

Kulikowski’s otherwise irreproducible finding could be attributed to contrast 

adaptation, a by-product of the method of adjustment.  However, Legge (1981) failed 

to replicate Kulikowski and Gorea using 2AFC. He speculated that their results (and 

Campbell and Kulikowski’s) might have been due to some other artifact of the 

method of adjustment. 

 

Explaining the dip: Sensory thresholds 

Now it is time to consider those cases in which negative masking does not disappear 

when the data are plotted in terms of variance (or power or energy) differences. As 

noted above, Cornsweet and Pinsker (1965) obtained dipper functions when I was the 

luminance
†
 of a flash against a dark background, and ΔI

JND
 was a just-noticeable 

                                                

*
 There is actually evidence for a tiny bit of negative masking in Figure 3. The JND 

for a 1-deg
2
 pedestal is slightly less than those for the 0 and 4- deg

2
 pedestals.  

†
 Yet another quantity proportional to power. 
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increment in that luminance. The ideal discriminator will consequently produce a 

monotonically increasing curve like the one in Figure 3. Something else must have 

been responsible for the dip. 

 Crozier (1950) speculated that the retina might absorb some quanta, which 

could not be used for vision until yet more were absorbed. In this  

“photosensitization” process, the retina acts like a kind of teapot, but light goes into it 

instead of water. Only when it is already “full” does additional light produce any 

output. This sensory threshold theory predicts a negative masking even when ΔI
JND

 

represents an energy difference. Morgan et al’s (2008) experiment was designed to 

reveal the existence of an analogous threshold for orientation variance. Although the 

evidence of negative masking in Figure 3 is meagre, a significantly better fit can be 

made to the raw data summarized therein, by bolting a sensory threshold onto the 

otherwise merely noisy and inefficient observer. (Details appear in Morgan et al.) 

 As the name suggests, high-threshold models have sensory thresholds so high 

that they prevent observers from ever perceiving visual noise. This type of model can 

be rejected on the basis of Swets, Tanner, and Birdsall’s (1961) two-response 4AFC 

experiment. Without visible noise, unlucky guesses are the only way to make errors in 

a forced-choice experiment. The high-threshold models predict that all 4AFC errors 

are caused by unlucky guesses. Contrary to this idea, Swets et al found that second 

responses were more often correct than could be attributed to guessing. Thus, some 

4AFC errors must have been due to visual noise.  

 Green and Swets (1966) identified one low-threshold theory not inconsistent 

with the extant data. As its name suggests, this theory supposes that visual noise is 

sometimes visible, and thus causes some forced-choice errors. The rest are caused by 

unlucky guesses. Although they did not attempt to fit Swets et al’s data with this 

model, I did (in Solomon 2007a
*
). The fit wasn’t very good.  

 Nonetheless, sensory thresholds might arise naturally in certain situations. One 

of these is spatial interval discrimination  (David Burr, personal communication), 

where what is measured is the acuity for the distance between two points of light. The 

idea is that each point gets blurred by the visual system, and that acuity might depend 

on the ratio of the distance between the peaks of the blur circles to the distance 

between the far edges of the blur circles. (See Figure 4.) When the points are 

sufficiently close, there is zero distance between the peaks of the bur circles, and thus 

they must be moved farther apart for their separation to be detected. (Dipper functions 

for this task and a variety of alternative models are discussed in Levi, Jiang & Klein 

1990.) 

 

 

 

 

                                                

*
 This reference is a tutorial on Signal-Detection Theory. It includes mathematical 

descriptions of low-threshold theory and intrinsic uncertainty. 
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Figure 4: Hypothetical computation of spatial intervals. Each panel shows two 

Gaussian density functions, each of which represents a blurred point of light, and 

their sum. If separation acuity depends the ratio of the distance between the peaks in 
this sum (d) to its overall width (D), then JND’s for large pedestals, which produce 

bimodal sums, may be smaller than the JND’s for small pedestals, which do not. 

 

Explaining the dip: Intrinsic uncertainty 

Green (1961) described the intrinsic-uncertainty model of pure tone detection. Tanner 

(1961) may have published the idea first, but Green actually specified the model. 

Basically, the idea was that observers monitored a whole bunch of irrelevant channels 

when trying to detect a weak stimulus. (See Figure 5.) Since these channels played no 

role in suprathreshold discrimination, detection (i.e. the case where I = 0) was 

effectively harder.  
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Figure 5: Intrinsic Uncertainty Theory. Observers monitor a whole bunch of irrelevant 

channels (thousands can be required to fit some data; Pelli 1985) when trying to 
detect a weak stimulus. 

 Intrinsic uncertainty is a powerful theory because with just two free 

parameters it adequately predicts the amount of negative masking, the second-

response accuracy in Swets et al’s (1961) 4AFC detection experiment (Solomon 

2007a) and the slope of the psychometric function for detection. When plotted on a 

logarithmic abscissa, this slope is completely determined by the number of irrelevant 

channels. The theory’s other free parameter is the amount of noise in each channel. 

Although powerful, intrinsic uncertainty remains unpopular. One reason for this is 

Watson, Franks, and Hood’s (1972) finding that psychometric functions for detecting 

pure tones in quiet were even steeper than those for detecting pure tones in noise. 

Legge, Kersten, and Burgess (1987) replicated Watson et al in the visual domain. 

They found that the addition of noise, which should not affect intrinsic uncertainty, 

nonetheless caused the slope of the psychometric function for detection to flatten. 

Consequently, they rejected intrinsic uncertainty.  

 

Explaining the dip: Non-linear transduction 

Taking their cue from Fechner, Nachmias and Sansbury (1974) suggested that JND’s 

simply reflected the perceived magnitude of a stimulus. Consequently, they inferred 

an accelerating transducer for small stimulus contrasts. In particular, they modeled the 

intensity of the “internal effect” as a power function of stimulus contrast, with an 

exponent between 2.2 and 2.9, depending on the observer. As the pedestal increases, 

so does the slope of this transducer, and consequently less of an increment in contrast 

is required for a significant difference in perceived contrast.  

 For a concrete example, assume that 2.5% is the necessary contrast for 

detecting some stimulus (with, for example, 75% accuracy in a 2AFC experiment). 
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Without loss of generality, we can say that the 2.5% stimulus created an internal 

effect that was Δr  greater than that created by a stimulus with 0% contrast. Now 

suppose further experimentation reveals that otherwise identical stimuli with 2 and 

3% contrasts can be similarly discriminated (i.e. with 75% accuracy in a 2AFC 

experiment). Thus the 3% stimulus must have created an internal effect that was Δr  

greater than that created by the 2% stimulus. Note that a plot of JND vs pedestal 

contrast would thus suggest negative masking. If we wanted to ascribe this dip to a 

power-law transducer, we would simply have to find the exponent p, which solves the 

simultaneous equation 

 0.025
p
− 0 = Δr = 0.03

p
− 0.02

p .      (3) 

In this case, p ≈ 2.5 . 

 Legge and Foley (1980) also fit their data with a non-linear transducer model; 

a modification of the version proposed by Stromeyer and Klein (1974). With four 

parameters, they showed it was possible to describe the entire dipper function (see 

Figure 6). 

 

Figure 6: Nonlinear transduction. The Transducer shows the relationship between 

stimulus magnitude (on an arbitrary dimension) and the response of one sensory 

mechanism. In general, two stimuli can be discriminated if and only if the responses 
they elicit differ by more than some criterion Δr , Negative masking will happen 

whenever the sensory response increases faster than the stimulus magnitude. 

Consider what happens when the pedestal is zero. The JND for detection is 

represented as the distance between the two vertical red lines. The vertical blue lines 
are closer together, thus the JND for small pedestals is smaller. And because the 

green lines are further apart, the JND for large pedestals is larger. 

 

One-mechanism explanations of the handle 

Thus, the simplest explanation of any dipper function is that it reflects the non-linear 

transduction of stimulus magnitude into a sensory response. However, it could be 

argued that the transducer isn’t much of an explanation. It is just an alternative way to 

describe the data.  

 Signal-Detection Theory revolutionized psychophysical theory, with its chief 

implication that all sensory signals are stochastic.  To fully account for their 4AFC 
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results, Swets et al (1961) proposed that the variance of sensory signals increased 

faster than their means. Pfafflin and Matthews (1962) recognised that this increasing 

noise had the potential to explain why Weber’s Law was at least approximately 

correct even for amplitude discriminations between non-stochastic stimuli. Non-linear 

transduction was not necessary. 

 Legge et al (1987) argued that compressive transduction and increasing noise 

models were generally equivalent. We could not confidently infer the transducer 

function from a dipper function, unless we knew the relationship between the sensory 

response and its variance. And we could not confidently infer the latter relationship 

from a dipper unless the transducer were known. Catch-22. Legge et al’s  argument, 

however, included certain assumptions about the distribution of sensory noise and the 

form of psychophysical task, which has left room for more recent attempts to 

differentiate between the two ideas. In the words of Georgeson and Meese (2006), 

“The jury’s still out.” Other significant contributions to this ongoing debate may be 

found in García-Pérez and Alcalá-Quintana (2007), Gorea and Sagi (2001), Katkov, 

Tsodyks, and Sagi (2006a,b), Klein (2006), Kontsevich, Chen, and Tyler (2002) and 

Solomon (2007b). 

 

Multiple-mechanism explanations of the handle 

Green (1983) was the first to articulate the suspicion that dipper functions were not 

necessarily indicative of any simple mapping between stimulus and a single sensory 

response, however noisy that response might be. He reported the results of a number 

of experiments, all of which suggest that amplitude discriminations are based on 

spectral shape (i.e. a “profile analysis” of the output from narrowly tuned channels) 

whenever possible (cf. Cornsweet and Pinsker’s 1965 “pulses” in the dark and Hanna 

et al’s 1986 short tones in quiet).  In one of these experiments, later adapted for vision 

by Nachmias (1993), the intensity of a noise masker varied from interval to interval 

(i.e. even within a single trial) in the range 30 ± X dB.
*
 The question was, how did the 

JND for a pure tone depend on X? When each interval was of sufficient length (i.e. 

115 ms), the answer was “not much!” As X increased from 0 to 20, the JND increased 

just 1 dB. 

 Laming (1986, 1988a, 1988b) proposed that all discriminations are effectively 

based on the spatiotemporal derivative of stimulus magnitude, rather than stimulus 

magnitude itself. (Some may be based on the second derivative.) When combined 

with an early source of Poisson (i.e. increasing) noise (e.g. that in the photon flux), 

this “differential coupling” effectively turns all magnitude discriminations into 

variance discriminations, and as shown by Green (1960a), ideal discriminations of 

variance obey Weber’s Law. Near-misses to Weber’s Law Laming attributed to the 

recruitment of less-well-tuned channels. Finally, Laming showed how noisy 

differential coupling, when combined with early noise and half-wave rectification, can 

produce an approximate square-law transformation of low-intensity sensory input. 

                                                

*
 A ten-decibel (dB) increase in the sound pressure level of a noise is a log-unit 

increase in its pressure variance. In this experiment, the same X dB that were added to 

the mask were also added to the tone. Thus, fluctuations in mask intensity did not 

affect the signal-to-noise ratio. 
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Negative masking is one result of this accelerating transduction. Possibly the most 

contentious aspect of Laming’s model is his attribution of all suprathreshold visual 

discrimination errors to quantal fluctuations. 

 

Conclusion 

Most dipper functions really aren’t that mysterious. The dip goes away when the data 

are re-plotted on arguably more appropriate axes. If the dip survives this 

transformation, it strongly suggests some kind of sub-optimal processing. Possibilities 

include a sensory threshold, intrinsic uncertainty, non-linear transduction, or a 

combination of the three. Morgan et al (2008) looked, but found only scant evidence 

for this sub-optimality. The question then remains, why do we not usually notice the 

visual system’s intrinsic noise? If the visual system does ordinarily squelch it (e.g. by 

applying a sensory threshold), it certainly does not do so when observers are actively 

trying to detect a stimulus that has been designed to imitate the noise. 
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