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Abstract – This paper explores the potential of using multiple 
Fibre Bragg grating (FBG)-based sensors for acoustic emission 
(AE) detection, thus offering an effective alternative to 
conventional piezoelectric (PZT) sensors, especially where they 
have shown limitations in use, such as in the marine sector. A 
cascaded fibre optic acoustic sensor system, using optical filter 
signal demodulation has been developed and its performance 
extensively evaluated.  To undertake this under standardized 
conditions, the optical sensor system was evaluated using a glass 
plate to detect the acoustic signal, followed by an evaluation using 
a metal plate to identify the location of acoustic sources, when 
subjected to sonotrode excitation, mimicking acoustic detection in 
cavitation detection. Under these circumstances, a very good 
agreement has been reached between the outputs of the optical 
acoustic sensors and of the co-located PZT acoustic sensors.  This 
work confirms the utility of these sensors – they can detect not only 
weak AE signals, but also enable multipoint simultaneous 
measurement, showing their potential for condition monitoring 
applications, especially in the marine sector. 

 
Index Terms—Fibre Bragg Grating (FBG), acoustic emission, 

piezoelectric (PZT), cavitation, structural health monitoring 

I. INTRODUCTION 

In the marine industry, cavitation erosion has posed a key 
technical challenge to a variety of marine structures.  A series 
of phenomena is considered to be the cause of cavitation 
erosion, which cause multi-million dollar damage to marine 
structures across the world annually.  Effects such as bubble 
collapse and rebound, micro-jet formation and clouds of 
collapsing micro bubbles and cavitation vortices [1] do occur 
and cause the build-up of damage. Recent studies have 
suggested that a very high proportion of the collapse energy of 
a large cavity is then focused into a small region of the solid 
surface, which accordingly causes the erosion [2] and damage 
seen. In addition to problems from large cavities, the power 
created by the collapse of micro-cavities results in shock waves 
which cause the erosion of the solid material [3] from which 
marine structures are made.  The initiation of erosion produces  
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acoustic waves – these are high frequency waves which are 
believed related to crack formation and which propagate inside  
the vulnerable materials used [2].  In order to prevent the 
erosion seen, accurate acoustic emission detection is of real 
importance.  An analysis of the AE signals captured therefore 
can be of real value in the identification of cavitation erosion 
signatures and thus the prevention of the erosion seen.  

Piezoelectric (PZT) sensors have been widely used for this 
purpose as they are relatively inexpensive, highly sensitive and 
can measure signals with a broad bandwidth [4]. However, as 
electrically-based sensors, they have shown certain limitations 
when used for tests underwater and also when multiple sensors 
are required to be deployed simultaneously, as multiplexing 
large numbers of such sensors is cumbersome. 

The first acoustic systems based on fibre optic technology 
were reported in 1977 by Bucaro et al [5 -7]. The majority of 
optical fibre acoustic sensors to date have been based on 
interferometric configurations such as using Mach-Zahnder [8], 
Michelson [9], Fabry-Perrot [10] or Sagnac [11] techniques.   
Recently, distributed feedback (DFB) fibre lasers have been 
applied to this field (and their use has been reported elsewhere 
[12]).  

Fibre Bragg Grating (FBG)-based methods have previously 
been reported for AE detection [13]. Compared to conventional 
PZT ultrasonic sensors, the FBG sensors are of smaller size, 
showing potential for simultaneous, multi-node measurement 
using a single connection (multiplexing them on a single fibre).  
Their immunity to electromagnetic (EM) interference and 
resistance to the harsh operational conditions that damages 
many conventional sensors is an advantage, and being optical 
and not electrically-based, they are ideally suited to operation 
underwater (including highly conducting sea water).  

This paper focuses on the design and implementation of a 
cascaded FBG-based acoustic sensor system, allowing for 
multiple points to be measured simultaneously using optical 
filter demodulation.  The ultimate aim is that such sensors could 
be applied in practical marine applications.  To understand 
better the characteristics of these sensors, they were evaluated 
under ‘standard’ and reproducible conditions.  Thus a glass 
plate onto which was dropped a very small but standardized 
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mass (a 0.2g steel ball bearing) from a fixed height was 
monitored using both types of sensors – conventional and 
optical.  This was followed by a series of tests using a metal 
plate which is also instrumented using both types of sensors and 
placed in a water tank, with a sonotrode as an excitation source. 
The aim was to capture, evaluate and compare the signals 
obtained to determine the location of the acoustic source to 
simulate the effect of cavitation.  

II. FBG-BASED ACOUSTIC SENSOR DESIGN 

The FBGs used as the basis of the sensor devices are 
‘inscribed’ into a photosensitive optical fibre using a high 
power UV laser [14,15] and precision alignment.  This process 
creates a periodic change in the refractive index of the fibre 
core, thus enabling light to be reflected at a particular 
wavelength, B, (which then can readily be monitored).  The 
governing equation is shown as (1) where neff is the effective 
refractive index of the fibre core and Λ is the periodic spacing 
of the grating:  

  �� = 2 � � (1) 
 

The principle of operation of the FBG-based sensor system 
is based on monitoring the wavelength shift of one or more of 
these reflected signal, each at a specific wavelength, and 
modulated by the measurand, (strain or temperature changes 
applied to the FBG are frequently monitored this way.)  

The detection of acoustic emission (AE) is thus analogous to 
the measurement of dynamic strain, albeit at much higher 
frequencies. In order to detect very weak yet high frequency 
signals, two main interrogation methods have been reported 
[16,17]. Using the first of these familiar methods, a laser is 
required and tuned to be centered at a wavelength. The power 
measured is the power of the laser after it passes through the 
FBG sensor [18]. The main drawbacks of this technique are 
high costs and the difficulty in multiplexing. The second and 
simpler approach is based on optical filter demodulation by 
passing a narrowband optical signal reflected from the FBG 
through an optical filter where the intensity of the light signal 
transmitted through the optical filter varies with the acoustic 
pressure impinging on the FBG sensor [19, 20]. This latter 
approach is explored further in this work, both for ease of sensor 
multiplexing and for the efficient detection of acoustic signals. 
One issue tackled in this work is to validate the waveforms 
produced against those from conventional PZT devices (in 
terms of both shape and arrival time). In addition, capturing the 
weaker, low-amplitude acoustic signals is challenging – in 
particular when the familiar bespoke, high frequency 
interrogation systems are utilized [20]. 

To tackle this, Fig. 1 shows a typical cascaded FBG-based 
acoustic sensor system, coupled with a PZT acoustic sensor, co-
located with FBG sensor for cross-comparison and allowing the 
fast capture of the acoustic signals generated. 

Fig. 1 illustrates the light signal emitted from a C-Band ASE 
light source into port 1 of an optical circulator (with a maximum 
output of 20.9 dBm.) The signal reflected from the cascaded 
FBGs passes from port 2 to port 3 of the optical circulator. At 
port 3, a de-multiplexer is used to allow narrow-band signals, 

each containing a specific FBG signal, to be transmitted 
through an optical filter array and detected by the photodiode 
array. This configuration facilitates the capture of high- 
frequency acoustic signals and the signals obtained are cross-
compared with those detected by the PZT sensor, co-located 
with FBG sensors, as shown in Fig. 1. 

 
III  FBG SENSOR CHARACTERIZATION 

In order to achieve both the required sensing range and high 
measurement sensitivity, the spectral slope of each band pass 
filter shown in Fig.1 is required to match with that of a FBG. 

Fig.2 shows the typical spectral profile of the narrowband 
near infrared (NIR) optical filter (labeled BPOF1) and having a 
full width half maximum (FWHM) of 12 nm and central 
wavelength of 1548.3 nm.  

 
 

  
Fig. 1.   The experimental setup: the FBG-based cascaded acoustic sensor 
system, with a co-located PZT acoustic sensor for cross-comparison. 

 

 
Fig. 2.   Spectral slope of the optical filter used in combination with FBG1 

optical sensor. 

 
The spectral profile of the first Fibre Bragg Grating (FBG1) 

(illustrated in Figure 1) is shown in Fig. 2 (labeled FBG1) – the 
aim is for the centre wavelength of the FBG to lie on the 
steepest slope of the filter, to offer maximum sensitivity.  The 
same approach applies to the specification of the other filters 
matching to their corresponding FBGs in the sensor array.  

As indicated in Fig.2, FBG1 has a central Bragg wavelength 
of 1545.8 nm and has been written to have a high reflectivity of 
about 95%. The typical wavelength/strain sensitivity of a FBG-
based sensor is about 1pm/µε.  Thus the design of the sensors 
to have the ‘match’ shown in Fig.2 allows the measurement 
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range to be of approximately 2500 – 2800 µε, with a resolution 
of 8 µε. 

IV  GLASS PLATE TESTS 

A series of tests was conducted using a glass plate as an 
initial test sample, onto which both FBG and PZT acoustic 
sensors were bonded using a small amount of cyanoacrylate, 
creating the pattern shown in Fig.1. Dropping a tiny steel ball 
was used as an excitation source to create a reproducible 
acoustic signal – the glass plate was resting on 3 ball bearings. 
The location of the ball drop is also indicated in Fig.1.  

In order to analyze the arrival time and shape of the 
waveforms in the time domain, the captured waveforms from 
the 0.3 g ball-drop received from both a FBG and a PZT sensor 
are shown in Fig. 3.  

 
Fig. 3.   Time waveforms detected by both FBG based acoustic sensor and PZT 
based acoustic sensor when glass plate was excited using a steel ball.  

 
Comparing the acoustic signals produced, Fig. 3 shows the 
close similarity that exists between the waveforms received 
from both the PZT and FBG devices. The signal arrival times 
and waveform shapes are evident (as shown in the inset) – 
giving confidence in that the FBG-based sensor can give signals 
similar to that seen from the industry-standard PZT sensors.  
Cyanoacrylate as a bonding agent for the FBG-based sensor to 
the glass plate was specifically chosen to ensure a ‘true’ transfer 
of the acoustic wave profile and achieving the same arrival time 
of the acoustic signals using both sensors underpins this 
confidence. Considering the full waveform data for both 
sensors, it is evident that the level of background noise from the 
FBG sensor is higher than the PZT sensor. This is an effect 
caused by the interrogation setup used and may be improved 
further by using a higher-power optical ASE source or 
achieving greater reflectivity in the FBG: work is ongoing to 
improve this.  

Using the same experimental setup and method, an 
investigation of multipoint sensing was carried out using the 3 
cascaded FBGs (with a physical interval on the glass plate of 10 
mm.)  Their optical outputs were connected to the interrogation 
system (using the same optical filter demodulation scheme 
il lustrated in Fig.2.)  It was found that all the FBG sensors 
responded – showing a similar arrival time and the same 
waveform shape, when compared to the response of the PZT 
sensor to FBG1.  The signals received are shown in Fig. 4 – it 
can be seen that the background noise from the FBG data is 
higher than that for the PZT sensor. However, the signal to 

noise ratio (S/N) is satisfactory for a wide variety of acoustic 
sensing applications, particularly where the pulse arrival time is 
the most significant parameter (often it is more significant than 
the waveform shape.) It is interesting to note the effect of the 
location of the FBG (and the corresponding S/N.) – for 
example, FBG1 has the highest S/N (as it is closest to the 
source), whereas FBG3 has the lowest.  It implies that the 
further the FBG-based sensor is located from the source, lower 
the S/N is.  However, this demonstration has shown that it is 
possible to detect the very weak acoustic signal generated from 
the dropping of a very small ball on a glass plate, using a multi-
point FBG sensor array.  Further, knowing the speed of sound 
in solid glass (4540 m/s) and the time needed for the signal to 
propagate from the source to both FBG1 and the PZT, it is 
possible to calculate the distance of the sensors from the source 
of excitation, which is an important parameter in marine 
structural condition monitoring.  

Data collected show that the time for the first acoustic wave 
to arrive at the location of FBG1 is 26.43 µs which compares 
well to the time measured for the almost co-located PZT, of 
27.19 µs. This small time difference in the arrival times arises 
from their slight spatial mismatch, but shows clearly from the 
similarity of the data that those two sensors are located very 
close to each other.  It can thus be calculated that the distance 
from the excitation source to the two sensors is ~120 mm.   

 

 
Fig. 4.   Comparison of waveforms detected by both the PZT and multi-point 
FBGs. 

VI  METAL PLATE TEST FOR CAVITATION MONITORING 

Moving on from the tests carried out on glass plates, Fig. 5 
shows a test-rig set up for the acoustic tests on a metal plate 
which is placed in a water tank, with an excitation sonotrode 
mounted 1 mm above. The sonotrode standard frequency is 19.5 
kHz. Both the FBG and PZT acoustic sensors were fixed onto 
the bottom surface of the metal plate using cyanoacrylate.  
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Fig. 5.   Schematic of the setup for the acoustic tests of the steel plate 
instrumented with both FBG and PZT acoustic sensors. 

 

A similar set up to that shown in Fig. 1 is used, with the glass 
plate substituted for a metal plate and the sonotrode excitation 
(as illustrated in Fig. 5).  The waveforms detected by both the 
PZT and the co-located FBG sensors, when an excitation 
sonotrode is operated at a standard frequency of 19.5 kHz, are 
shown in Fig. 6.  This test was repeated several times in order 
to evaluate the repeatability of the measurements and to ensure 
that the sensors are reliable and give a reproducible signal. 

Fig.7 shows the frequency-domain data obtained from both 
types of sensors.  A Fast Fourier Transform (FFT) algorithm is 
used to process the time-domain data captured and the output is 
shown in Fig. 6.  It is noticeable that the same frequency 
element at 19.5 kHz, the excitation frequency from the 
sonotrode, has been captured by both sensors.  The figure shows 
that the FBG sensor has some additional second harmonic 
features (which can readily be filtered out) but which are the 
subject of on-going work.    
 The results obtained from both the glass plate and metal plate 
show good agreement between both the optical and the 
electrical acoustic sensors, giving confidence to the use of the 
FBG-based sensors in this application.  Their ease of being 
multiplexed has not been exploited in this work, but for marine 
condition monitoring applications, this shows significant 
potential.  
 

 

Fig. 6. Acoustic signals acquired by the co-located FBG-based and PZT 
acoustic sensors when the metal plate is subject to the excitation of the 
sonotrode at a frequency of 19.5 kHz 
    

 

Fig. 7.   Frequency response of a FBG-based acoustic sensor and a PZT 
acoustic sensor illustrating the close match (in this case with a standard 
sonotrode frequency of 19.5 kHz).  

 
 

 
 

Fig. 8.   Inner surface of a rudder mapped with 12 FBGs for acoustic emission 
monitoring.  

DISCUSSION 

The research undertaken has shown that the FBG-based 
sensor evaluated shows a similar satisfactory performance to 
the industry-standard PZT-based sensors for acoustic 
monitoring on glass and metal plates.  A cascaded FBG-based 
acoustic sensor system has thus been successfully developed 
and verified through both the glass plate and metal plate testing, 
with an aim to find key acoustic signatures.  Close cross-
comparison between the acoustic signals from both the FBGs 
and the co-located PZT acoustic sensors has been seen, with 
similar arrival times and shapes of the detected waveforms. On-
going work to enhance the signal-to-noise ratio from the FBG-
based sensors is being addressed both by increasing the output 
power of the optical ASE source used and the reflectivity of 
each FBG (the reflectivities of the FBGs tested in this work are 
~95%).   

The research done is directed towards Marine Structural 
Condition Monitoring and key results for that application 
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include both the familiar PZT type and the new FBG-based 
sensors detecting the same, known excitation frequency from 
the sonotrode source. Work is being done to apply these 
techniques to a commercial marine rudder, provided by our 
industrial partners. This has been instrumented with 12 
cascaded FBGs and a photograph of this instrumented rudder is 
shown in Fig. 8. An investigation of its characteristics on-going 
and experimental data from these 12 FBG-based acoustic 
sensors will be reported in due course.  The work carried out to 
date and reported in this paper gives confidence to that new 
investigation and ultimately to the use of these sensor arrays in 
the study of marine cavitation. 
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