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Abstract. Typically, beams that form part of structural systems are subjected to vertical 

distributed loading along their length. Distributed loading affects moment and shear 

distribution, and consequently spread of inelasticity, along the beam length. However, the 

finite element models developed so far for seismic analysis of frame structures either ignore 

the effect of vertical distributed loading on spread of inelasticity or consider it in an 

approximate manner. In this paper, a beam-type finite element is developed, which is capable 

of considering accurately the effect of uniform distributed loading on spreading of inelastic 

deformations along the beam length. The proposed model consists of two gradual spread 

inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. 

Following this approach, the effect of distributed loading on spreading of inelastic flexural 

and shear deformations is properly taken into account. The finite element is implemented in 

the seismic analysis of reinforced concrete (R/C) frame structures with beam members 

controlled either by flexure or shear. It is shown that to obtain accurate results the influence of 

distributed beam loading on spreading of inelastic deformations should be taken into account 

in the inelastic seismic analysis of frame structures. 
 

 

Keywords: seismic analysis; finite element; distributed inelasticity; beam members; 

distributed loading. 

 

 

1. Introduction 

 

In recent years, nonlinear analysis procedures, although more complex and 

computationally demanding, have gained favour over the conventional linear elastic 

methods for the seismic analysis of structures. This is the case because they model 

realistically structural response and provide reliable and accurate analytical 

predictions. Nevertheless, the inherent assumptions of these procedures may, in some 

cases, jeopardize their credibility and drive the analysis to erroneous results.  

It is well known that beam members are subjected to distributed vertical loading along 

their length. Beam distributed loading arises from the supported slab area distributed 

loads, the overlying infill walls, and beam self-weight. Distributed loading generates 

nonlinear bending moment diagrams and variation of the acting shear forces along the 

member length.  

In the vast majority of inelastic seismic analyses, beam distributed loading is either 

ignored or treated in an approximate manner. Typically, end-moments arising from 

distributed loading are added to the seismic end-moments, but the moment diagram is 

assumed to be linear and the acting shear force constant along the beam length. This 

approach originates from the assumption that under a strong earthquake, distributed 
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loading moments and shears represent a negligible fraction of the respective seismic 

demand. However, this is not the actual situation in a number of cases arising in real 

structures. This is particularly the case in buildings with long-span beams and/or 

heavy slabs and infill walls, and in all buildings subjected to low seismic actions, 

especially in their upper floors. The significance of accurately modelling the effect of 

distributed beam loading on spreading of inelastic flexural and shear deformations 

increases if one considers the fact that capacity design principles, adopted by all 

modern seismic design guidelines, dictate development of plastic hinges at the beam 

ends, so that a beam-sway mechanism develops and a soft-storey mechanism is 

prevented. 

The above remarks point to the need for a finite element capable of consistently 

modelling distributed beam loading effects in inelastic seismic analysis of structures. 

A large number of finite element models of the beam-column type have been 

proposed for inelastic seismic analysis of frame structures. The most common and 

widely used ones are the concentrated (lumped) plasticity models (Clough and 

Johnston 1966; Giberson 1967). These models, while computationally attractive, may 

yield inaccurate predictions because the assumed inelastic zone length is in reality a 

function of the boundary conditions and member moment distribution 

(Anagnostopoulos 1981). 

In recent years, flexural force-based distributed finite elements (Spacone et al. 1996; 

Neuenhofer and Filippou 1997) have gained favour, because this approach provides 

fairly accurate prediction of inelastic response with a single element discretization of 

the structural member. Moreover, a number of these elements have been enhanced to 

account for shear flexibility (Ceresa et al. 2007). Nevertheless, distributed inelasticity 

elements using Gauss or Gauss-Lobatto integration techniques are not 

computationally efficient for members with inelastic deformations only at their ends 

(Lee and Filippou 2009), as the case typically is with seismic loading. In this case, the 

aforementioned finite elements behave like an element with an inelastic zone of fixed 

length at each end, if only the integration point closest to the end of the member 

experiences yielding (Lee and Filippou 2009). The length of the inelastic zone equals 

the integration weight of the end monitoring section. Increasing the number of 

integration points is computationally inefficient, unless the element is subdivided into 

an inelastic region at each end and an intermediate elastic region (Addessi and Ciampi 

2007). Even so, it is possible that only the integration point closest to the end 

experiences plastic deformations, particularly for small strain hardening ratios (Lee 

and Filippou 2009).  

Lee and Filippou (2009) compared the performance of conventional distributed 

inelasticity force-based elements applying the Gauss-Lobatto integration technique 

and that of a new finite element with variable inelastic end-zones (named SIZE 

model) proposed in their study. They found that under double curvature conditions 

(typical case under seismic loading), the distributed inelasticity element with 5 fixed 

integration points may lead to significant deviations from the exact solution. On the 

other hand, the SIZE model was found to provide very good convergence with less 

computational cost. To achieve the same level of accuracy, 10 equal-length finite 

elements with 5 Gauss-Lobatto integration points were applied by these researchers 

for the structural member under investigation. 

When distributed vertical loading is present, the problem of capturing the spread of 

inelasticity by conventional distributed inelasticity elements, with fixed monitoring 

sections, becomes less significant for sagging moments, but it becomes more 

important for hogging moments. This is the case because, when distributed loading is 
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present, the bending moment diagram decreases from the support to the mid-span 

more rapidly in the hogging moment region and less rapidly in the sagging moment 

region, compared to the case that there is no distributed loading (which is never true 

for beams). Hence, for the same end moments (controlled by the member’s flexural 

capacity), the length of the inelastic end zone becomes smaller for hogging moments 

and larger for sagging moments with respect to the zero distributed loading case. As a 

result, the possibility that only the integration point closest to the end experiences 

plastic deformations increases for the end with hogging moment and decreases for the 

end with sagging moment. Both these effects of distributed vertical loading are 

further explained in the remainder of the paper. 

Furthermore, for these conventional distributed inelasticity elements incorporating 

shear flexibility, the lengths of the flexural and shear inelastic end regions are 

restricted to be identical and equal to the integration weight of the monitoring section. 

Hence, the possibility that the inelastic flexural and shear deformations expand along 

different lengths due to the different moment and shear force variation along the 

structural member cannot be modelled explicitly by these elements. 

To capture the gradual spreading of inelastic deformations, a spread inelasticity 

formulation with variable length inelastic zones is needed. Several research studies 

have introduced such flexural inelasticity elements. Meyer et al. (1983), Reinhorn et 

al. (2009), Lee and Filippou (2009) and Roh et al. (2012) proposed flexural gradual 

spread inelasticity models, which ignore influence of distributed loading. Soleimani et 

al. (1979) and Filippou and Issa (1988) suggested similar flexural spread inelasticity 

beam models, where distributed loading is taken into account approximately by 

assuming constant shear force in the plastic hinge regions. Kyakula and Wilkinson 

(2004) proposed a flexural spread plasticity model, where the inelastic zones ends are 

determined by linear interpolation between fixed monitoring sections, where 

differences between acting and yielding moments change sign. This approach may 

take into account the influence of distributed loading. Nevertheless, it is an 

approximate method and it may require a significant number of monitoring sections. 

None of the aforementioned gradual spread inelasticity elements, apart from the 

model of Roh et al. (2012), considers variation of shear flexibility along beam 

members.  

Mergos and Kappos (2009, 2012) developed a shear spread inelasticity model to 

capture shear-flexure interaction effect for R/C members with constant shear force. 

The model assumes inelastic shear end zones with variable length defined by the 

respective zones of the flexural sub-element. A similar approach has been adopted by 

Roh et al. (2012). 

Furthermore, in an earlier work (Mergos and Kappos 2008), the authors introduced 

the concept of a shear spread plasticity model which captures variation of shear 

flexibility, when distributed loading is present and acting shear varies along the 

member length. However, since this analytical work focussed on shear-flexure 

interaction of single R/C column members, the complete formulation of the proposed 

model to account for the beam distributed loading effect on spreading of both inelastic 

flexural and shear deformations was not developed. Moreover, the analytical model 

was not applied in seismic analysis of beam members with distributed loading. 

The main goal of the present study is to investigate the influence of beam vertical 

distributed loading on seismic response of frame structures. To this purpose, a new 

flexural and shear gradual spread inelasticity beam finite element for inelastic seismic 

analysis of plane frame structures is presented. The proposed model is developed for 

the special case of uniform distributed loading. However, it is straightforward to be 
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extended to cope with different types of vertical loading. The analytical model 

formulation is described in detail, together with its inherent assumptions. Finally, the 

analytical model is implemented in a computer code for inelastic static and dynamic 

analysis and applied to plane frames with different configurations. Useful conclusions 

are drawn regarding the influence of beam vertical loading on seismic response of 

R/C frame structures. 

 

2. Finite Element Model Formulation 

 

2.1 General description 

 

The proposed, member-type, finite element is based on the flexibility approach (force-

based element) and belongs to the class of phenomenological models. It consists of 

two sub-elements representing flexural and shear element response (see Fig. 1). The 

total flexibility matrix [F] is calculated as the sum of the flexibilities of its sub-

elements and can be inverted to produce the element stiffness matrix [K]; hence: 

   fl shF F F         (1) 

where, [F], [F
fl
], [F

sh
] are the basic total, flexural, and shear, respectively, tangent 

flexibility matrices. [K] is the basic tangent stiffness matrix of the element, relating 

incremental moments ǻΜǹ, ǻΜǺ and rotations ǻθǹ, ǻθǺ at the ends A and B of the 

flexible part of the element (Fig. 1).  

The flexural sub-element is used for modelling flexural behaviour of the beam 

member subjected to cyclic loading before, as well as after, flexural yielding. It 

consists of a set of rules governing the hysteretic moment-curvature (M-φ) behaviour 

of the member end sections, and the flexural spread plasticity model. The flexural 

spread plasticity model is composed of the model for flexural stiffness distribution 

and the model for determination of the variable length of the inelastic flexural end-

zones. 

The shear sub-element is defined in the same way as its flexural counterpart. It is 

determined by a set of rules governing the hysteretic shear force vs. shear distortion 

(V-γ) behaviour of the member end sections and the shear spread plasticity model; the 

latter is composed of the model for shear stiffness distribution and the model for 

defining the variable length of the inelastic shear end-zones. 

Due to their similarity, the individual components of the flexural and shear sub-

elements are developed in parallel in the following sections. Analytical model 

assumptions and limitations are also discussed.  

Closing this general description, it is worth noting that additional sub-elements may 

be added in series to the afore-described formulation in order to account for other 

sources of flexibility. This may be the case, for example, for the fixed-end rotations 

developing at the R/C beam-column interfaces due to anchorage slippage in the 

neighbouring joint regions (Mergos and Kappos 2009, 2012). 
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Figure 1: Proposed finite element model: a) geometry of R/C beam member with distributed 

vertical loading; b) beam finite element with rigid offsets; c) flexural sub-element; d) shear 

sub-element 

 

2.2 End-section hysteretic relationships  

 

An appropriate M-φ and V-γ hysteretic model is applied to determine the hysteretic 

response of end-sections of the flexural and shear sub-element, respectively. These 

hysteretic models are described by the primary (skeleton) curve and the rules 

determining section response under cyclic loading. 

In this study, it is assumed that envelope M-φ and V-γ responses can be adequately 

approximated by a bilinear skeleton curve (Fig. 2). This skeleton curve consists of an 

elastic and a post-elastic linear branch separated at the level of flexural My or shear 

yielding Vy. Furthermore, it is assumed herein that shear yielding is independent of 

flexural yielding and vice versa. The latter assumption may not be accurate for some 

classes of structural members like for example shear-flexure critical RC members 

(Mergos and Kappos 2012). Nevertheless, for the vast majority of structural members, 

especially those designed according to modern seismic design principles, shear-

flexure interaction maybe disregarded with reasonable accuracy (Lehman and Moehle 

1998; Beyer et al. 2011). 

  
Figure 2: M-φ (V-γ) sub-element end-section hysteretic models 
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The multi-linear, ‘yield-oriented’ with slip, hysteretic model of Sivaselvan and 

Reinhorn (2000) is adopted herein for describing M-φ and V-γ cyclic behaviour. This 

model accounts for stiffness degradation, strength deterioration, pinching effect and 

non-symmetric response. However, its original formulation is based on a trilinear 

envelope curve. Hence, its hysteretic rules were appropriately modified by the authors 

(Mergos and Kappos 2008) to make them compatible with a bilinear skeleton curve. 

In general, different hysteretic parameters are applied to describe hysteretic flexural 

and shear response. 

 

2.3 Stiffness distribution 

 

To capture the current distribution of section flexural and shear stiffness along the 

beam, a gradual flexural and shear, respectively, spread inelasticity model is assigned 

(Soleimani et al. 1979; Mergos and Kappos 2008, 2012). Following this model, each 

sub-element is divided into two inelastic end-regions and one elastic intermediate 

zone.  

Inelastic end-zones determine the part of the flexural or shear sub-element where 

flexural or shear yielding, respectively, have occurred. The length of these inelastic 

zones generally varies throughout member response and the way it is defined at each 

analysis step is described in the following sections. 

Stiffness along the intermediate zone is assumed to be constant and equal to the 

elastic stiffness EIo of the end-section M-φ envelope curve for the flexural sub-

element and GAo of the end-section V-γ envelope curve for the shear sub-element. If 

the elastic stiffnesses of the two end-sections are different, then an average value is 

assigned to the intermediate zone (Eq. 2) as also suggested by Reinhorn et al. (2009), 

where EIoA, EIoB, GAoA, GAoB are the elastic stiffnesses at the ends A and B 

respectively. 

 
2 oA oB

o

oA oB

EI EI
EI

EI EI

   ; 
2 oA oB

o

oA oB

GA GA
GA

GA GA

    (2) 

Stiffness distribution within the inelastic zones depends on the loading state of the end 

section hysteretic response. In particular, Fig. 3 illustrates hysteretic response of four 

cross-sections located inside one region of the flexural (shear) sub-element. It can be 

seen that when all sections remain on the strain hardening branch (loading state), 

flexural (shear) stiffness remains constant in the inelastic zone and equal to r·EIo 

(r·GAo) (0<r<1). 

However, when the end sections are in the unloading and reloading state, stiffness 

varies from a minimum value r1·EIo (r1·GAo) and r2·EIo (r2·GAo) (0<r1,r2<1) 

corresponding to the end section, to a maximum value, which is equal to EIo (GAo).  

Hence, under the general assumption that the loading state of all sections of the 

yielded region remains the same, it can be considered that when M-φ (V-γ) end 

section hysteretic response is on the strain hardening branch, stiffness distribution 

remains uniform in the inelastic zone. In the case where end-section M-φ (V-γ) 
behaviour is in the unloading or reloading state, it is assumed that the stiffness varies 

linearly from end section flexural (shear) stiffness to their elastic counterparts. 



-7- 

 

Figure 3. M-φ (V-γ) hysteretic response of cross-sections inside a plastic hinge 

 

In line with the previous observations, stiffness distribution along the member may be 

assumed to have one of the shapes shown in Fig. 4, where L is the length of the 

member; EIo (GAo) is the stiffness in the intermediate part of the element and EIA 

(GAA) and EIB (GAB) are the current tangent flexural (shear) rigidities of the sections 

at the ends A and B respectively. The flexural (shear) rigidities EIA (GAA) and EIB 

(GAB) are determined by the M-φ (V-γ) hysteretic relationships of the corresponding 

end sections. Similar assumptions are made by Soleimani et al. (1979) and Roh et al. 

(2012).  

Nevertheless, it should be kept in mind that these assumptions remain a compromise 

between the need for low computational cost, as assured by the use of only two 

monitoring end-sections, and the need for accurate representation of the stiffness 

distribution along the member length. The validity of these assumptions increases as 

the length of the inelastic zones decreases (Soleimani et al. 1979). Hence, for the 

typical cases of seismic response, where the lengths of the inelastic zones remain 

relatively small, the aforementioned assumptions are deemed as adequate. 

 

Figure. 4. Element stiffness distribution: (a) when ends A and B are in the loading state; (b) 

when ends A and B are both in the unloading or reloading state; (c) when end A is in the 

loading and end B is in the unloading or reloading state; (d) when end A is in the unloading or 

reloading state and end B is in the loading state 
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2.4 Inelastic end-zone lengths 

 

In Fig. 4, αA and αB are the inelastic zone coefficients. The inelastic zone coefficients 

specify the proportion of the member that has yielded either in flexure (αAf and αBf) or 

in shear (αAs and αBs). By definition, αAf and αBf represent the part of the flexural sub-

element, where acting moment exceeds section yield moment and αAs and αBs 

represent the part of the shear sub-element, where acting shear exceeds shear yielding 

capacity. 

It is known that due to the presence of uniform distributed loading, the moment 

diagram becomes parabolic, while shear force varies linearly along the beam length. 

Fig. 5 illustrates the determination of moment and shear inelastic zone lengths for a 

beam member subjected to uniform distributed loading, when end-moments (shears) 

have opposite signs. It is noted that the moment and shear force distributions shown in 

this figure do not correspond to the same loading condition of the beam member; they 

are grouped together herein simply because the same methodology can be applied for 

the determination of their corresponding inelastic zone coefficients. In Fig. 5a, it can 

be seen that for sagging moments the actual inelastic zone lengths may be 

significantly underestimated and for hogging moments they may be seriously 

overestimated, when parabolic moment distribution is not taken into account. 
 

 

Figure 5. Determination of inelastic end-zone lengths when end-moments (shears) have 

different signs: (a) flexural sub-element; (b) shear sub-element 

 

When end-moments (shears) have different signs, inelastic zone lengths may be 

determined by the location of the moment (shear) distribution, where acting moment 

(shear) becomes equal to the respective end-section yield moments (MyA, MyB) or 

shears (VyA, VyB). Hence, the flexural yielding penetration coefficients αAfp and αBfp, 

which take into consideration nonlinear moment distribution, are given by Eq. (3), 

where q>0 is the value of the uniform distributed loading and shear forces VA and VB 

are given by Eq. (4).   

 
 2 2

1
A A yA A

Afp

V V q M M

q L
      ; 

 2 2
1

B B yB B

Bfp

V V q M M

q L
        (3) 

 
2

B A
A

M Mq L
V

L

  ; 
2

B A
B

M Mq L
V

L

    (4) 

It is noted that, when end-moments have opposite signs (Fig. 5a), Eq. (3) provides 

always a unique solution in the range [0, 1], when end-moments exceed the respective 

end-section yield moments. 
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It is also worth noting that, in some cases (e.g. variation of longitudinal reinforcement 

along R/C beam members), the yielding moments in the interior of the structural 

member may be different from the respective values at its end sections. This issue can 

be easily resolved by solving Eq. (3) for the different yield moment values and 

selecting the unique solution of the inelastic zone coefficient, which lies in the range 

of the respective yield moment. 

For the calculation of the shear yielding coefficients αAs and αBs, Eq. (5) holds. It is 

worth noting that the same equation provides the solution for the flexural yielding 

coefficients αAfl and αBfl, when linear distribution is assumed, if the shear forces are 

substituted by the respective bending moments. Eqs. (3) and (5) are valid for both 

sagging and hogging moments as long as the absolute values of the acting moments 

(shears) are greater than their yielding counterparts. In these equations, the yield 

moments (shears) must be introduced with the same signs as the respective acting 

values. 

 
A Ay

As

A B

V V

V V
   ; 

B By

Bs

B A

V V

V V
    (5) 

Fig. 6 illustrates the determination of moment and shear inelastic zone lengths for a 

beam member subjected to uniform distributed loading, when end-moments (shears) 

have the same sign; the figure presents the case, where only one member end (end A) 

yields.  

It is noted that Fig. 6a does not represent the typical scenario for bending moments 

under seismic loading, but it is addressed herein since it is required for the generality 

of the analytical solution. Again, it can be seen that for hogging moments the actual 

inelastic zone lengths may be significantly overestimated when parabolic moment 

distribution is not taken into account.  
 

 
 

Figure 6. Determination of inelastic end-zone lengths when end-moments (shears) have same 

signs: (a) flexural sub-element; (b) shear sub-element. 
 

When end-moments (shears) have same signs, inelastic zone lengths may reach high 

values (Fig. 6b). Hence, it is proposed herein that they are determined by the location 

of the moment (shear) distribution, where acting moment (shear) meets the line 

connecting end-section yield moments, as shown in Fig. 6. Under this assumption, the 

flexural inelastic zone coefficients αAfp and αBfp are given by Eq. (6), where values 

VA,eq and VB,eq are given by Eq. (7). It is noted that Eq. (6) applies only to the member 

ends, where acting moments exceed the corresponding yield moments. 
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 2

, , 2A eq A eq yA A

Afp

V V q M M

q L
      ; 

 2

, , 2B eq B eq yB B

Bfp

V V q M M

q L
        (6) 

 ,

yB yA

A eq A

M M
V V

L

  ; ,

yB yA

B eq B

M M
V V

L

  ; (7) 

Similarly, for the shear yielding coefficients αAs and αBs, Eq. (8) holds, which 

provides also the solution for the flexural yielding coefficients αAfl and αBfl, by 

substituting shear forces with the corresponding bending moments. 

 
A yA

As

A yA yB B

V V

V V V V
     ;

B yB

Bs

B yB yA A

V V

V V V V
      (8) 

When one acting end-moment (shear) is higher than the respective value at yield 

while the other is not, then Eqs. (6 to 8) provide unique solutions in the range [0, 1]. 

Furthermore, for the case of sagging parabolic moments and linearly distributed shear 

forces, if both end-moments (shears) are higher than their yield counterparts, then the 

entire moment (shear) diagram exceeds the line connecting the yield values of the 

member ends. Consequently, the entire beam member can be considered to be 

‘yielded’. For these cases, following the suggestions of Reinhorn et al. (2009), it is 

assumed that  

 0.5Af  ; 0.5Bf  ; 0.5As  ; 0.5Bs  ; 
2 A B

o

A B

EI EI
EI

EI EI

   ; 
2 A B

o

A B

GA GA
GA

GA GA

    (9) 

For hogging parabolic moments, if both end-moments are higher than their yield 

values, then two cases may arise: Eq. (6) has either two or no solutions in the range 

[0, 1]. In the first case, the solution providing the lower value of the inelastic zone 

lengths αAfp and αBfp is adopted. In the second case, the complete member is 

considered as having yielded and Eq. (9) is applied. 

In all cases, inelastic zone coefficients are first calculated for the current moment 

(shear) distribution. Then, they are compared with their previous maximum values; 

inelastic zone coefficients cannot be smaller than their previous maxima (Soleimani et 

al. 1979; Reinhorn et al. 2009). Moreover, special measures are taken to adjust 

flexibility distribution of members, when the sum of the two inelastic zone 

coefficients at the member ends exceeds unity (αA + αB>1). In such cases, the elastic 

stiffness EIo (GAo) is properly modified to capture actual flexibility distribution 

(Reinhorn et al. 2009). 

Finally, Fig. 7 illustrates the development of an internal flexural inelastic zone. In this 

case, yielding of an interior part of the beam member occurs prior to yielding of the 

member ends. The formulation of the proposed element model does not address this 

case, for several reasons. First, this situation is highly unlikely to develop (although 

the shape of this moment diagram is quite common at early stages of the response), 

since in most cases hinges form due to seismic loading, at the member ends. Second, 

for beam members dominated by gravity loading, seismic loading is not critical and 

does not contribute significantly to the bending moments in the mid-span. Moreover, 

hysteretic response of the internal inelastic zone cannot be properly captured by the 

hysteretic behaviour of the member end-sections. Monitoring hysteretic behaviour of 

several cross sections along the member length is typically required, which increases 

considerably the computational cost. However, this removes the main advantages of 

the proposed model, which are simplicity, transparency, and efficiency. Hence, for the 



-11- 

cases where internal hinges are expected, e.g. in analysis considering the vertical 

component of the earthquake, it is proposed herein that the beam member is divided 

into a sufficient number of finite elements. In most cases this can be omitted, since 

these members are not the critical ones in the assessment of the structure. 

 
Figure. 7. Development of internal inelastic zone 

 

2.5 Flexibility coefficients 

 

Having established the flexural and shear stiffness distributions along the beam 

member at each step of the analysis, the coefficients of the flexibility matrix of the 

flexural and shear sub-element can be derived by applying the principle of virtual 

work.  

For the flexural flexibility coefficients, the general Equation (10) holds, where mi(x) 

and mj(x) are the moment distributions due to a virtual unit end moment at end A and 

B respectively, and EI(x) is the tangent flexural stiffness distribution along the beam 

member. 

 
    0

L
i jfl

ij

m x m x
f dx

EI x

   (i,j=A,B) (10) 

For the stiffness distributions shown in Fig. 4, Eq. (10) yields the closed-form 

solution of Eq. (11), where the parameters co, cA, cB are defined in Table 1. 

  
12 12

fl fl
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f c c c

EI EI
         ; 1o
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EI

EI
   ; 1o

B

B

EI

EI
    (11) 

For the shear flexibility coefficients, the general Eq. (12) holds, where vi(x) and vj(x) 

are the shear distributions due to a virtual unit end moment at end A and B 

respectively, and GA(x) is the tangent shear stiffness distribution along the beam 

member. 

 
    0

L
i jsh

ij

v x v x
f dx

GA x

   (i,j=A,B) (12) 

It can be shown that for the stiffness distributions shown in Fig. 4, Eq. (12) yields the 

closed-form solution of Eq. (13), where the parameters do, dA, dB are defined in Table 

1. 

  1 1sh sh

ij o A A B B ij
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f d d d
GA L GA L
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Fig. 8 illustrates the variation of the normalized flexural flexibility coefficients φfl
ii 

and φfl
ij (i≠j) with the flexural inelastic zone coefficients for the typical range of 

ΜǺ 
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values developed under seismic loading 0≤αi, αj≤0.25 (Filippou and Issa 1988). It is 

assumed that the stiffness distribution is uniform in the inelastic zones and that the 

ratio of the post elastic to the elastic flexural stiffness is equal to 1%. Two limit cases 

are examined. In the first case, the yielding penetration coefficient of the j section is 

equal to zero and in the second case it is equal to 0.25. The strong dependence of the 

flexibility matrix coefficients from the inelastic zone coefficients is evident. This 

observation emphasizes the need for accurate simulation of the spread of inelasticity. 

 

 

Table 1. Determination of flexural and shear flexibility matrix coefficient parameters  

Flexibility 

coefficient 

Stiffness 

distribution 

co cA cB do dA dB 

fAA Fig. 4a 4 12αǹf -12αǹf
2+4αǹf

3 4αǺf
3 1 αǹs αBs 

fBB Fig. 4a 4 4αǹf
3 12αǺf -12αǺf

2+4αǺf
3 1 αǹs αBs 

fAB Fig. 4a -2 4αǹf
3-6αǹf

2 4αǺf
3-6αǺf

2 1 αǹs αBs 

fAA Fig. 4b 4 6αǹf  -4αǹf
2+αǹf

3 αǺf
3 1 αǹs/2 αBs/2 

fBB Fig. 4b 4 αǹf
3 6αǺf -4αǺf

2+αǺf
3 1 αǹs/2 αBs/2 

fAB Fig. 4b -2 αǹf
3-2αǹf

2 αǺf
3-2αǺf

2 1 αǹs/2 αBs/2 

fAA Fig. 4c 4 12αǹf  -12αǹf
2+4αǹf

3 αǺf
3 1 αǹs αBs/2 

fBB Fig. 4c 4 4αǹf
3 6αǺf -4αǺf

2+αǺf
3 1 αǹs αBs/2 

fAB Fig. 4c -2 4αǹf
3-6αǹf

2 αǺf
3-2αǺf

2 1 αǹs αBs/2 

fAA Fig. 4d 4 6αǹf  -4αǹf
2+αǹf

3 4αǺf
3 1 αǹs/2 αBs 

fBB Fig. 4d 4 αǹf
3 12αǺf -12αǺf

2+4αǺf
3 1 αǹs/2 αBs 

fAB Fig. 4d -2 αǹf
3-2αǹf

2 4αǺf
3-6αǺf

2 1 αǹs/2 αBs 
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Figure 8. Variation of the normalized flexural flexibility matrix coefficients with the yielding 

penetration coefficients for hardening ratio 1% and uniform stiffness distribution in the 

inelastic zones. 

 

 

3. Numerical model validation 

 

In this section, the proposed numerical model is validated against the analytical 

solutions provided in Anagnostopoulos (1981) for prismatic beam members whose 

cross section response can be adequately represented by a bilinear M-φ curve (with 

hardening ratio r) in monotonic loading (Fig. 2). Shear flexibility is ignored in both 

the numerical and the analytical solutions. 
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In the analytical study by Anagnostopoulos (1981), beam loading consists of two end 

rotation increments (Fig. 1) ǻθǹ and ǻθǺ (differences between maximum and yield 

rotations) with ratio ǻθǹ/ǻθǺ=n. It is also assumed that before these rotations are 

applied, the member is bent by two end moments MA and MB where MA=c·My and 

MB=My. My is the common yield moment of both end sections, assumed the same in 

positive and negative bending. The imposed end rotations are assumed to act with or 

without the presence of a uniform distributed loading q, superimposing a bending 

moment MG=q·L
2
/8 in the middle of the beam member.  

The analytical solutions provide the post-yield secant stiffness ratios Si (i=A,B) as a 

function of the imposed rotation ductility demands μθi for both member ends. The 

post-yield secant stiffness ratios are defined as 

 

 

i

i

i

i

S
K


       (14) 

where ǻΜi is the moment increment at end i (difference between maximum and yield 

moment) and Ki is the elastic stiffness, which is equal to 6EIo/L for n=1 

(antisymmetric bending). 

In the following, the analytical solutions will be compared with the results of the 

proposed numerical model for the following conditions: n=1, c=1, r=0.05. Regarding 

beam distributed loading q, two separate cases are examined: MG=0 (i.e. q=0) and 

MG=0.5My.  

To simulate the above conditions, a symmetric beam member with properties 

EIo=10
4
kNm

2
, My=10

3
kNm, φy=10

-1
m

-1
, L=10m, r=0.05 and q=0 or q=40kN/m, was 

subjected to pushover analysis using the proposed finite element model. 

Fig. 9 compares the predicted Si values as a function of the imposed μθi by the 

proposed numerical model and the analytical solutions by Anagnostopoulos (1981). 

Circles represent some discrete results of the analytical solutions (obtained by the use 

of special software for digitizing graphical data) and the continuous lines the 

predictions of the proposed numerical model. It is seen that the matching between the 

two solutions is excellent. 
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Figure 9. Comparison of the calculated post-yield secant stiffness ratios as a function of the 

imposed rotation ductility derived by the proposed numerical model and the analytical 

solutions by Anagnostopoulos (1981) 
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It is important to note that post-yield secant stiffness decreases faster with μθi for 

sagging moments (Mi>0) than for hogging moments, when distributed beam loading 

q is present. This occurs because the length of the inelastic zone is greater for the 

member end with the sagging moment for the same value of ǻΜi. The solution 

without distributed loading lies between the solutions for sagging and hogging 

moments, when distributed loading is applied. All curves tend to Si=1 for μθi=1. 

 

4. Numerical model implementation 

 

The proposed member-type model is implemented in a computer program 

(IDARC2D) for the nonlinear dynamic analysis of R/C structures (Reinhorn et al. 

2009). It is then used for the inelastic static and dynamic analyses of plane frame 

structures with beam members dominated either by flexure or shear. In these analyses, 

the column members are modelled by the existing column element of IDARC2D, 

which accounts for axial flexibility and it is accurate for linear moment diagrams. In 

addition to the above, parametric analyses are conducted in order to investigate the 

influence of beam gravity loading on inelastic seismic response of frame structures. 

 

4.1 R/C Frame structure with flexure dominated beam members 

 

The six-storey frame examined herein is part of an R/C building designed according 

to EC8 for a ground acceleration of 0.36g. The materials used in the structure are 

C25/30 (characteristic cylinder strength of 25 MPa) concrete and B500c steel 

(characteristic yield strength of 500 MPa). The total dead and live loads on the floor 

slabs are assumed to be 6.5kN/m
2
 and 2.0kN/m

2
, respectively. In addition, infill walls 

represented by linear distributed loads 10kN/m are present on the first four storeys of 

the frame. Frame layout, vertical loads for the seismic combination and cross-section 

details are presented in Fig. 10. It is noted that due to the application of capacity 

design principles, only flexural yielding is expected to be developed for the beam 

members of the frame. 

To investigate the importance of distributed loading, three different models are set up 

for the inelastic seismic analysis of this frame. Model 1 assumes a constant hinge 

length equal to 0.08Ls, where Ls is the member shear span; Ls is taken equal to L/2 for 

all beam and column members; this is a reasonable average value within the range 

resulting during the response to seismic loading. Anchorage slip effect is not included 

in this study, in order to obtain a clearer picture of the effect of gravity loading on 

spreading of inelasticity. Model 2 employs a gradual spread inelasticity element, but 

distributed beam loading effect is not considered for the calculation of the inelastic 

end-zone lengths (i.e. moment diagram is assumed to be linear). Finally, model 3, 

which is the one proposed in this study, takes into account distributed beam loading 

effects in a consistent manner. All models consider nodal moments arising from beam 

distributed loading. During inelastic analyses described later on, no internal flexural 

inelastic zones developed in the beam members. 
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Figure 10. R/C frame layout with flexure-dominated beam members 

 

Fig. 11 illustrates pushover curves derived using the three analytical models for the 

examined frame. It can be seen that the three models yield insignificant differences in 

terms of lateral stiffness. However, noticeable variations are observed for the 

maximum displacement capacities assumed to coincide with the first exceedance of 

curvature capacity in a base column. Top displacement capacity over building height 

is predicted as 3.7%, 4.1% and 4.6% by analytical models 1, 2 and 3, respectively. 
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Figure 11. Pushover curves derived using the three different analytical models 

 

Fig. 12a presents column maximum curvature ductility (μφ) demands at 3% top 

drift, which can be considered as a conventional limit for lateral failure (Kappos 

1991). These demands are almost identical except for the base columns, where model 

1 slightly overestimates μφ demand. 

In addition, Fig. 12b shows variation of beam maximum μφ demands, also at 3% 

top drift. In contrast with column demands, predicted beam μφ demands differ 

substantially. Higher μφ demands are calculated by the proposed analytical model of 

the present study. Hence, ignoring beam distributed loading may drive the analysis to 

serious underestimation of end-section curvature demands. The common assumption 

of linear moment distribution underestimates μφ demands at the beam ends subjected 
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to hogging moments. At these ends, inelastic zone lengths are over-predicted (Fig. 5) 

and similar rotations are calculated for lower μφ demands. 

 

Figure 12. Maximum curvature ductility demands at 3% top drift: (a) columns; (b) beams 

 

This can be seen also in Fig. 13, which illustrates the expansion of flexural 

inelastic zone coefficient in relation to end section curvature demand for the first story 

middle beam. Results up to 3% top drift are presented for all applied analytical 

models. Fig. 13a refers to the beam end subjected to sagging moments and Fig. 13b to 

the member end developing hogging moments. It is clear that the assumption of linear 

moment distribution overestimates inelastic zone coefficient and underestimates 

curvature demand for hogging moments; the opposites hold for sagging moments. 

 

 
Figure 13. Variation of inelastic zone coefficients with end-section curvature demand for the 

middle 1st storey beam: (a) sagging; (b) hogging moments 

 

In the following, the response of the R/C frame of Fig. 10 under the near-field ground 

motion recorded at JMA Kobe Observatory (NS component) with PGA=0.59g is 

investigated. In particular, Fig. 14a illustrates top displacement history responses 

derived by the three analytical models. Differences are small, albeit not negligible. 

Deviations become more significant, when comparing maximum story drifts, shown 

in Fig. 14b. Model 1 overestimates drift at the lower storeys and underestimates them 

at the high storeys. Models 2 and 3 predict similar drifts at the first story level, but 

yield significant deviations at the top two storeys. 
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Figure 14. R/C frame responses under JMA Kobe NS component ground motion: (a) top 

displacement; (b) maximum story drifts 

 

Finally, Fig. 15 shows maximum μφ demands derived using the three analytical 

models for the specific ground motion. It is clear that significant discrepancies are 

observed for the three analytical models. This points to the need of properly 

modelling the effect of distributed loading on gradual spreading of inelastic flexural 

deformations, in the inelastic response history analysis of frame structures. 

Figure 15. Maximum μφ demand predictions under JMA Kobe NS component ground motion: 

(a) columns; (b) beams 

 

4.2 Portal frame with shear-dominated beam member 

 

The following example, taken from the IDARC2D report (Reinhorn et al. 2009), is a 

theoretical example intended to demonstrate the program’s capability for modelling 

frame structures with beams yielding in shear. It is a portal frame composed of two 

columns with similar sectional characteristics and one beam (Fig. 16). 

 For the two columns, shear deformations can be neglected without loss of accuracy. 

However, this is not the case for the connecting beam member, which is characterized 

by low initial shear stiffness GA and limited shear yield capacity Vy. Furthermore, 

unlike the example included in the IDARC report, the beam member of the frame 

examined herein is subjected to a uniformly distributed vertical loading q=2kN/m. 

Hence, the total weight of the frame becomes 48.4kN. 

Pushover analysis of this frame is conducted up to the point where curvature demand 

reaches column curvature capacity φu. The beam member does not yield in flexure. 
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Nevertheless, the beam does yield in shear at its right end. The same is not observed 

for the left and middle sections of the beam, which remain in the elastic range. The 

reason for this behaviour becomes evident in Fig. 17a. In this figure, it can be seen 

that, due to the existence of the distributed loading, shear forces vary along the beam 

member. In particular, as analysis progresses, shear forces at the three different 

sections increase in a proportional manner. The constant differences between these 

lines represent the influence of the distributed loading. In the same figure, it is clear 

that right section shear force exceeds yield shear at analysis step 530. At the same 

step, the value of the right shear yielding penetration coefficient (Fig. 17b) begins to 

increase from zero to 0.46 at the end of the analysis. The latter value agrees well with 

the middle line of Fig. 17a, which shows that the middle beam section is very close to 

yielding in shear. 

Fig. 18 illustrates pushover curves obtained by three different analytical models for 

the frame. Model 1 neglects beam shear flexibility.  Model 2 accounts for beam shear 

flexibility. However, distributed loading effect is ignored and shear force is assumed 

to be constant along the beam member and equal to the actual shear force at the 

middle section (uniform distributed loading yields zero shear in the middle of the 

beam). Finally, model 3 is the one proposed in this study. 

It is evident that ignoring shear flexibility leads the pushover analysis to serious 

overestimation of frame lateral stiffness and strength and significant underestimation 

of displacement capacity. Furthermore, comparing models 2 and 3, it can be seen that 

the proposed model deviates from model 2, when yielding of the beam right end 

section occurs. Neglecting gradual spread of inelastic shear deformations by model 2, 

drives the analysis to considerable overestimation of lateral stiffness and strength and 

under-prediction of displacement capacity. 

 

 

Figure 16. Frame with shear-dominated beam member 
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Figure 17. Beam member response: (a) progression of shear forces at different sections; (b) 

gradual increase of the shear-yielding penetration coefficient 
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Figure 18. Pushover analysis curves derived by three different analytical models 

 

5. Conclusions 

 

A new gradual spread inelasticity finite element was developed for seismic analysis of 

beam members with uniform distributed loading. Unlike common inelastic beam 

elements, the proposed model is able to account consistently for the effect of 

distributed loading on the variation of flexural and shear stiffness along the beam 

members throughout their inelastic response. The finite element is accurate for beam 

members subjected typically to uniaxial bending without axial loading, as well as 

computationally efficient since it requires monitoring hysteretic response only at the 

member end sections.  

The numerical model was implemented in a general inelastic dynamic analysis finite 

element code and was used for the analysis of R/C plane frames with beam members 

dominated either by flexure or shear. It was shown that distributed beam loading 

effect should be properly and accurately taken into account in the inelastic static and 

dynamic analysis of frame structures. 
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