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1 Introduction

The integrability approach to the gauge/string correspondence has provided strong evi-

dence for the duality between certain strongly coupled gauge theories and their gravita-

tional string duals. For a review and a complete list of references see [1]. The principal

success of this approach has been the maximally supersymmetric dual pair of N = 4 su-

per Yang-Mills theory (SYM) and Type IIB string theory on AdS5 × S5, which has 32

real supercharges (see for example [2]).1 Following the discovery of 2+1-dimensional super

Chern-Simons theories with a large amount of supersymmetry [4–7] and their gravitational

duals [7], the integrability approach was extended to N = 6 ABJM theory and its grav-

itational dual the Type IIA string theory on AdS4 × CP
3, see for example [8–12]. This

dual pair has 24 real supercharges. It was found that many of the integrability methods

employed in the study of the maximally supersymmetric AdS5/CFT4 example could easily

be extended and adapted to the AdS4/CFT3 case. One novelty of the AdS4/CFT3 dual

pair is the presence in the spectrum of the string theory of excitations of different masses.

This is easiest to see in the plane-wave limit of the theory [13, 14], where we see that there

are ‘light’ states of mass 1
2 and ‘heavy’ states of mass 1. These two types of excitations

enter the integrability machinery in a different way to one another. The ‘light’ states can

be thought of as elementary particles in the spin-chain description while the ‘heavy‘ states

appear from the spectrum of these elementary particles.

The integrability approach has more recently been applied to the AdS3/CFT2 cor-

respondence [15]. The AdS3/CFT2 dual pairs have at most 16 supersymmetries and

there are two classes of string geometries with 16 supercharges: AdS3 × S3 × T 4 and

AdS3×S3×S3×S1.2,3 In these spacetimes the radii of the AdS3 and S3 spaces are related

to one another. For AdS3 × S3 × T 4 one has

RAdS3
= RS3

, (1.1)

while for AdS3 × S3 × S3 × S1 one has

1

R2
+

+
1

R2
−

=
1

R2
, (1.2)

where R± are the radii of the two 3-spheres and R is the AdS3 radius. This latter rela-

tionship leads one to define

cos2 φ ≡ R2

R2
+

. (1.3)

The moduli of T 4 and S1 are free parameters of the dual pairs. The presence of this

moduli space (when combined also with S-duality) is one of the major novel feature of the

1Integrability methods can be extended to orbifolds, orientifolds and deformations of this dual pair. See

for example [3].
2The backgrounds AdS3 × S3 ×K3 for the purpose of this paper can be simply thought of as orbifolds

of AdS3 × S3 × T 4.
3Throughout this paper we restrict our attention to these cases of the AdS3/CFT2 correspondence

with Ramond-Ramond (R-R) background. The mixed Neveu Schwarz-Neveu Schwarz (NS-NS) R-R flux

background for AdS3/CFT2 was also shown to be integrable in [16]. Since then there has been much

progress in understanding the integrability properties of these backgrounds [17–19].
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AdS3/CFT2 correspondence as compared with its higher-dimensional higher-supersymmetric

cousins. Another important difference is the presence of massless as well as massive exci-

tations. In the plane-wave limit of AdS3×S3×T 4 one finds states with m = 0 and m = 1,

while the plane-wave limit of AdS3 × S3 × S3 × S1 has states of mass m = 0, sin2 φ, cos2 φ

and m = 1.4

The two classes of AdS3/CFT2 pairs are expected to be dual to 1+1-dimensional

CFTs whose super-Virasoro algebras are, respectively, the small and large N = (4, 4)

superconformal algebras [25–27]. These infinite-dimensional symmetry algebras have finite-

dimensional Lie sub-superalgebras psu(1, 1|2)2 and d(2, 1;α)2, where α = cos2 φ. It is

expected that the CFT2 dual of AdS3×S3×T 4 is a deformation of the SymN (T 4) sigma-

model [25]. Beyond representation-theoretic statements, very little is known about the

CFT2 dual of the AdS3 × S3 × S3 × S1 string theory [28].

In the last few years, integrability has been used to investigate these dual pairs.5 It was

observed in [15], that upon picking a suitable κ-gauge, Type IIB string theory equations of

motion on these backgrounds admit a Lax representation and so the theory is classically

integrable. The Lax operator was used [15] to write down integral equations known as

the finite-gap equations for this system. The finite-gap equations were discretised and an

all-loop Bethe ansatz was proposed for the system in [15, 29]. An integrable spin-chain

whose spectrum was described by the weak coupling limit of this all-loop Bethe ansatz was

constructed in [29, 30]. The all-loop Bethe ansatz has also been obtained from a different

direction, by deriving the S-matrix from the symmetries of the theory and writing down the

Bethe-ansatz for the associated spin-chain [31–33]. The near-BMN limit of string theory

on AdS3 has been investigated in [34]. One-loop energy corrections have been computed

for giant magnons in [35–37] and for spinning strings in [38, 39]. Worldsheet scattering

amplitudes have been calculated in [40–42] and compared to the S-matrices in [31] as well

as in [43, 44]. The S-matrix crossing relations have been solved in [45] and compared to

the one-loop string computations of [37, 38, 41]. Further, unitary methods have been used

in [46, 47] to study the S-matrix. Integrability has also been investigated in the context of

BTZ black-holes [48, 49].

It was already observed in [15] that the finite-gap equations (and hence the all-loop

Bethe ansatz) captured the dynamics of massive modes, but not the massless modes.6 In

this paper we show how to incorporate these missing massless modes into the finite-gap

equations. We begin in section 2 with a brief review of the BMN limit of AdS3×S3×S3×S1.

4The massless modes in the AdS3 × S3 × T 4 theory come from the T 4 bosons and their superpartners.

In the AdS3 × S3 × S3 × S1 theory one of the massless bosons comes from the S1 direction, while the

other comes from the fact that, in choosing the light-like geodesic needed for the plane-wave limit, there is

freedom in which linear combination of geodesics on the two S3 factors one picks. The plane-wave limits of

the AdS3 backgrounds were investigated in [20–24].
5From the string theory point of view the two AdS3 backgrounds could be treated in parallel, and,

what is more, the α → 0 limit of the AdS3 × S3 × S3 × S1 theory gives the (partially decompactified)

AdS3 × S3 × T 4 theory.
6Because of the presence of integrability, it is expected that the integrable description of massive modes

will get modified in a controlled fashion by adding the massless modes, rather than changing the all-loop

Bethe Ansatz completely.

– 3 –
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Then, in section 3 we re-examine the way that the Virasoro constraints are imposed on the

finite-gap equations. We find that the way the constraints had been imposed previously

in the literature (for example in [15]) is, in general, too strict. We identify the precise

condition placed on the finite-gap equations by the Virasoro constraints. We shall refer

to this condition as the generalised residue condition (GRC). The GRC is generically less

restrictive than the condition used in much of the previous literature.7

To illustrate the role of the GRC, in section 4 we focus on the bosonic mode of the

AdS3 × S3 × S3 × S1 theory not associated with the S1 direction. We show that classical

string solutions that excite this mode satisfy finite-gap equations when the GRC is im-

posed. On the other hand, these solutions do not satisfy the constraints previously used

in the literature, further explaining the absence of massless modes from the old finite-gap

equations. Then, in sections 5 and 6 we show how the complete spectrum of string theory

on AdS3×S3×S3×S1 in the BMN limit can be reproduced from the finite-gap equations

and the GRC condition. We also show that the complete spectrum for string theory on

AdS3 × S3 × T 4 in the BMN limit can also be obtained using the GRC.

In appendices B and C, we show that for the finite-gap equations of the AdS5 × S5

and AdS4 × CP
3 backgrounds the GRC reduces to the old conditions imposed previously

in the literature. This is to be expected, as it is well known that for those backgrounds the

finite-gap equations previously used in the literature do reproduce the complete spectrum.

It is only for backgrounds such as the AdS3 cases we investigate here that the GRC does

not reduce to the conditions used in the previous literature.

2 BMN limit of AdS3 × S3 × S3 × S1

In this section we will briefly review the BMN limit [13, 14] of string theory on AdS3 ×
S3 × S3 × S1 [20, 24] and see how the modes of different masses appear.8 Starting from

the metric

ds2 = R2

[

dρ2 − cosh2 ρdt2 + sinh2 ρdγ2 +
1

cos2 φ

(

dθ21 + cos2 θ1dψ
2
1 + sin2 θ1dϕ

2
1

)

+
1

sin2 φ

(

dθ2 + cos2 θ2dψ
2
2 + sin2 θ2dϕ

2
2

)

+ dχ2

]

, (2.1)

we change coordinates as follows (with ζ being any real constant for now):

t = x+ +
x−

R2
, ρ =

x̃2
R
, θ1 = cosφ

x̃4
R
, θ2 = sinφ

x̃6
R
, χ =

x8
R
,

ψ1 = cos ζ cosφ

(

x+ − x−

R2

)

− sin ζ cosφ
x1
R
, ψ2 = sin ζ sinφ

(

x+ − x−

R2

)

+ cos ζ sinφ
x1
R

(2.2)

7The O(4) sigma model, which shares some of the features of the AdS3 backgrounds we consider here

was investigated in [50].
8The BMN limit of string theory on AdS3 × S3 × T 4 is discussed in [21–23].
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and keep only the leading term in the limit R→ ∞. The metric reduces to

ds2 = −4dx+dx− +
8
∑

i=1

m2
ix

2
i (dx

+)2 +
8
∑

i=1

dx2i , (2.3)

with

(x2, x3) = (x̃2 cos γ, x̃2 sin γ),

(x4, x5) = (x̃4 cosϕ1, x̃4 sinϕ1), (2.4)

(x6, x7) = (x̃6 cosϕ2, x̃6 sinϕ2)

and masses mi, given by

m2 = m3 = 1, m4 = m5 = cos ζ cosφ, m6 = m7 = sin ζ sinφ, m1 = m8 = 0 . (2.5)

The parameter ζ defines a 1-parameter family of metrics obtained from AdS3 × S3 ×
S3×S1 via Penrose limits. This freedom comes from the choice of a relative angle between

the geodesics in the two S3 factors. Type II string theory on AdS3×S3×S3×S1 preserves

16 supersymmetries. These remain symmetries of the plane wave limit metric (2.3); in

addition for special values of ζ there are extra supersymmetries [26]. If we choose ζ = φ,

string theory on (2.3) preserves 20 supersymmetries [20, 24]. From now on, it will be

assumed that we are making this choice, and that the BMN limit has masses

m2 = m3 = 1 , m4 = m5 = cos2 φ , m6 = m7 = sin2 φ , m1 = m8 = 0. (2.6)

To find the bosonic spectrum of string theory, we impose conformal gauge gab = ηab
and lightcone gauge x+ = κτ . The equation of motion for xi then becomes

(−∂2τ + ∂2σ)xi = κ2m2
ixi (2.7)

and x− is determined uniquely from the Virasoro constraints, which in this gauge are

∂τx
− =

1

4κ

∑

i

((∂τxi)
2 + (∂σxi)

2 − κ2m2
ix

2
i ), ∂σx

− =
1

2κ

∑

i

(∂τxi)(∂σxi) . (2.8)

In lightcone gauge x+ and x− become non-dynamical variables and the gauge-fixed Hamil-

tonian is

H =
1

4πα′

∫ 2π

0
dσ

8
∑

i=1

[

(2πα′)2p2i + (∂σxi)
2 + κ2m2

ix
2
i

]

. (2.9)

Solving the equations of motion (2.7), the xi have the following mode expansion:

xi=Xi
0 +

√

α′

2

∞
∑

n=1

1
√

ωin

(

aine
−i(ωinτ+nσ)+ain

†ei(ω
i
nτ+nσ)+ãine

−i(ωinτ−nσ)+ãin
†ei(ω

i
nτ−nσ)

)

,

(2.10)

where

ωin =
√

n2 + κ2m2
i , (2.11)
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and

Xi
0 = xi0 cosκmτ +

α′

κm
pi0 sinκmτ (2.12)

for massive modes and

Xi
0 = xi0 + α′pi0τ + wiσ (2.13)

in the massless case mi = 0.9

We can insert this mode expansion into the lightcone Hamiltonian (2.9). Define the

zero modes, for the massive case, as

ai0 = ãi0 =
1

2

√

α′

κmi
pi0 +

i

2

√

κmi

α′ x
i
0 , (2.14)

then we have

H =

8
∑

i=1

∞
∑

n=0

ωinN
i
n +

1

2α′
[

(α′p10)
2 + (w1)2 + (α′p80)

2 + (w8)2
]

, (2.15)

with N i
n the number operator defined as

N i
n = ain

†ain + ãin
†ãin . (2.16)

Now we consider conserved Noether charges. From the independence of the metric

on the coordinates x+ and x− we get conserved charges P+ and P− upon integrating the

conjugate momenta p+ and p−. These are related to more natural charges: the energy

E = i∂τ , and an angular momentum J = −i∂η coming from the spatial coordinate

η = x+ − x−

R2
. (2.17)

Then we have

P+ = i∂+ = i(∂t + ∂η) = E − J, P− = i∂− =
i

R2
(∂t − ∂η) =

E + J

R2
(2.18)

and

P+ =
H

κ
= E − J =

1

κ

8
∑

i=1

∞
∑

n=0

ωinN
i
n +

1

2α′κ

[

(α′p10)
2 + (w1)2 + (α′p80)

2 + (w8)2
]

. (2.19)

Since

P− =

∫ 2π

0
dσp− =

1

πα′

∫ 2π

0
dσ∂τx

+ =
2κ

α′ , (2.20)

we find E+J = 2
√
λκ, with

√
λ = R2

α′ . To leading order in a large J expansion, E+J ≈ 2J .

So writing the right-hand side of (2.19) in terms of J instead of κ, to leading order we have

κ = J√
λ
and so

E − J =

8
∑

i=1

∞
∑

n=0

√

m2
i +

λn2

J2
N i
n +

√
λ

2α′J

[

(α′p10)
2 + (w1)2 + (α′p80)

2 + (w8)2
]

. (2.21)

9The winding w in the massless mode is only present if the direction associated to the massless mode in

the metric is compact.
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3 Coset model, quasimomenta and finite-gap equations

In this section we will review classical integrability of strings on symmetric space cosets

and finite-fap equations [51–53].10 In section 3.1 we write down a Lax connection [55]

and from this introduce the complex functions called the quasimomenta which encode

the dynamics of the system in their analyticity properties. The quasimomenta satisfy so-

called finite-gap equations along their branch cuts. In addition, the quasimomenta always

have two simple poles. In section 3.2 we examine the residues at these poles using the

auxiliary linear problem, and show that the Virasoro constraints appear in the context of

the quasimomenta as a condition on these residues. We emphasise that the condition on

the residues which is strictly equivalent to the Virasoro constraints is a more general one

than the condition which has been assumed to hold in the literature. We will show in

the following sections that these new residue conditions are needed to encode the massless

modes into the finite-gap equations of string theory on AdS3 × S3 × S3.

3.1 Integrability on symmetric space cosets

Consider a coset G/H0, where G is a supergroup and H0 a bosonic sub-group, corre-

sponding to a so-called semi-symmetric space [56]. By definition, such spaces have a Z4

automorphism acting on them, with the automorphism acting as identity on H0. String

theory on such cosets is known to be integrable [55]. In the case of AdS3 backgrounds we

have G = H × H corresponding to left- and right-moving sectors of the dual CFT2. For

simplicity let us restrict our attention for now to the bosonic sector of the action, where the

Z4 automorphism reduces to a Z2 automorphism. For bosonic strings in AdS3 × S3 × S3

we have H0 = SU(1, 1) × SU(2) × SU(2). In the general overview in this subsection we

mainly follow [57], and refer the reader to references therein.

We consider an element g ∈ G, and the associated Maurer-Cartan one-form in the Lie

algebra of G,

j = g−1dg ∈ g . (3.1)

Since G/H is a symmetric space, there exists a Z2 automorphism Ω acting on g, under

which we can decompose j as j = j(0)+ j(2) where j(0) and j(2) belong to, respectively, the

+1 and −1 eigenspaces of Ω. Explicitly we have

j(0) =
1

2
(j +Ω(j)) , j(2) =

1

2
(j − Ω(j)) . (3.2)

The action is

S =
1

4πα′

∫

d2σηαβtr
(

j(2)α j
(2)
β

)

, (3.3)

where we have already fixed conformal gauge gαβ = ηαβ in the worldsheet metric. The

equation of motion for j(2) is

ηαβ
(

∂αj
(2)
β + [j(0)α , j

(2)
β ]
)

= 0 , (3.4)

10For a more complete discussion and further references see the review [54].
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the Maurer-Cartan relation (Bianchi identity) is

∂αjβ − ∂βjα + [jα, jβ ] = 0 , (3.5)

and the Virasoro constraints are

tr
[

(j(2)τ )2 + (j(2)σ )2
]

= tr
[

j(2)τ j(2)σ

]

= 0 . (3.6)

We introduce a Lax connection:

Lα = j(0)α +
z2 + 1

z2 − 1
j(2)α − 2z

z2 − 1
ηαβǫ

βγj(2)γ , (3.7)

where ǫαβ is the two-dimensional antisymmetric tensor with ǫ01 = 1, and the spectral

parameter z is an auxiliary complex parameter giving us a family of connections. The

equation of motion (3.4) and the Maurer-Cartan relation (3.5) are equivalent to the flatness

of the Lax connection:

∂[αLβ] + L[αLβ] = 0 . (3.8)

We define the monodromy matrix as the path ordered exponential of the Lax connection,

M(z) = Pexp

∫ 2π

0
dσLσ(z) . (3.9)

The flatness condition on the Lax connection means that we could equivalently defineM(z)

to be the integral around any closed curve, but it will be simplest in practice to use a curve

of constant τ .

Since L(z) ∈ g, M(z) ∈ G. If Hl is the Cartan basis of g, then we can diagonalize

M(z) by introducing functions pl(z) such that

M(z) = exp

(

R
∑

l=1

pl(z)Hl

)

(3.10)

in a diagonal basis, where R is the rank of the algebra g. The functions pl(z) are called

the quasimomenta. The dynamics of the sigma model (3.3) are encoded in the analyticity

properties of the quasimomenta.

The Lax connection has simple poles at z = ±1 but is otherwise analytic. The quasi-

momenta inherit these poles from the Lax connection, but may also contain branch cuts.

For each quasimomentum pl we introduce a new index i to count the cuts and denote the

collection of branch cuts for pl by Cl,i. On these cuts we consider the monodromies of the

quasimomenta, coming from the way in which the Riemann surfaces of the quasimomenta

are collectively joined and the fact that the quasimomenta are only defined up to multiples

of 2πin. The monodromy relations are11

Alm/pm(z) = 2πinl,i, z ∈ Cl,i, nl,i ∈ Z , (3.11)

11For ordinary square root branch cuts the right-hand side of (3.11) would be zero. Without the Cartan

matrix, the non-zero right-hand side of (3.11) could be understood by the ambiguity of an overall phase

in pl. The presence of the Cartan matrix arises from the fact that the monodromy matrix itself is gauge-

dependent, and as a consequence of this the quasimomenta are also only defined up to transformations from

the Weyl group. See [15] for more details.
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where Alm is the Cartan matrix of the group and

/pl(z) = lim
ǫ→0

(pl(z + ǫ) + pl(z − ǫ)), z ∈ Cl,i , (3.12)

with ǫ a complex number normal to the branch cut.

We can choose to parametrize the residues at the poles by their sum and difference,

defining constants κl and ml so that as z → ±1 :

pl =
1

2

κlz + 2πml

z ∓ 1
+ . . . (3.13)

The quasimomenta possess an inversion symmetry inherited from the action of the

automorphism Ω on the Lax connection. Since j(0) and j(2) are defined by the action of Ω,

we get from the definition of the Lax (3.7) that

Ω(Lα(z)) = Lα

(

1

z

)

. (3.14)

This uplifts to an inversion on the monodromy matrix

Ω(M(z)) =M

(

1

z

)

. (3.15)

From this we get an inversion symmetry on the quasimomenta determined by the action

of the automorphism on the Cartan basis. If we introduce a matrix Slm such that

Ω(Hl) =
R
∑

m=1

SlmHm (3.16)

then

pl

(

1

z

)

=
R
∑

m=1

Slmpm(z) . (3.17)

The Noether charges can be found from the quasimomenta by considering either the

limit z → 0 or z → ∞ (these limits are related by the inversion symmetry). For z → 0 for

example, the Lax connection can be exanded as

Lσ = j(0)σ − j(2)σ − 2zj(2)τ +O(z2) , (3.18)

and j
(2)
τ , upon integration over σ, contains the Noether charges. Recall that the equations

of motion (3.4) imply the conserved current equation

∂α(gη
αβj

(2)
β g−1) = 0 . (3.19)

As mentioned above, the quasimomenta will generally contain branch cuts. We can

obtain a so-called spectral representation of the quasimomenta in terms of integrals along

these branch cuts. We introduce a density function

ρl(z) = lim
ǫ→0

(pl(z + ǫ)− pl(z − ǫ)) , z ∈ Cl,i . (3.20)
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Then we have the spectral representation of pl:
12

pl(z) =
κlz + 2πml

z2 − 1
+ pl(∞) +

∫

Cl,i

dw
ρl(w)

z − w
. (3.21)

The spectral representation is derived assuming nothing about pl except the nature of its

poles and branch cuts. However, we also know that the quasimomenta must satisfy the

inversion symmetry (3.17). This places restrictions on κl, ml and pl(∞):

Slmκm = −κl, Slmmm = −ml, Slmpm(∞) = pl(∞)− 2πml . (3.22)

For our purposes we will be able to choose the automorphism Ω such that Slm = −δlm.13
In this case the first two relations above are immediately satisfied, and the third determines

the constant pl(∞) to be

pl(∞) = πml . (3.23)

For a function defined in terms of a density integral as in (3.21), we can apply the

Sochocki-Plemelj formula [58, 59] to evaluate the integral when we take z to be on the con-

tour of integration. With the monodromy of the quasimomentum given by equation (3.11),

we get from the Sochocki-Plemelj formula

Alm−
∫

Cl,i

dw
ρm(w)

z − w
= −Alm

κmz + 2πmm

z2 − 1
− πAlmmm + 2πnl,i, z ∈ Cl,i . (3.24)

These are the finite-gap equations of the system. In the next subsection we see how

the Virasoro constraints place restrictions on κl and ml.

3.2 WKB analysis and the Virasoro constraint

There is an equivalent setting [60] in which to define the monodromy matrix and quasimo-

menta from a flat Lax connection. In this section we introduce this setting and show one use

for it: considering how the Virasoro constraints appear at the level of the quasimomenta.

In the so-called auxiliary linear problem, the Lax connection, viewed as a matrix-valued

function of the spectral parameter, is taken to act on a vector space of functions Ψi(σ, τ, z)

through the first order differential equation

N
∑

j=1

(δij∂σ − (Lσ)ij)Ψj(σ) = 0 . (3.25)

12This result comes from applying the Cauchy integral formula on an infinite domain to the function

obtained by subtracting the poles from pl, which is analytic outside this contour surrounding all the cuts.

(3.21) then follows by shrinking the contour down onto the cuts. In the case that pl is meromorphic,

this argument is clearly no longer valid. But in that case (3.21) still holds with ρl = 0, since in this

case subtracting the poles from the quasimomentum gives an entire function, and the only entire function

satisfying the inversion symmetry is a constant.
13If we suppress the distinction between the left-moving and right-moving quasimomenta, as we will

indeed be doing later, then this is the form the inversion symmetry will take for us when considering bosonic

quasimomenta on SU(1, 1) × SU(2) × SU(2). If we explicitly distinguish the left-moving and right-moving

parts then the inversion symmetry also interchanges them.
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where Lσ is a N×N matrix. The monodromy matrix may be obtained through the relation

Ψi(σ + 2π, z) =

N
∑

j=1

Mij(z)Ψj(σ, z) (3.26)

and we use a basis where M(z) is diagonal with the quasimomenta pl on the diagonal,14

as in (3.10)

Ψi(σ + 2π, z) = eipl(z)Ψi(σ, z) , (3.27)

We know that the quasimomenta have poles at z = ±1. Let us determine the residues

of these poles by solving the auxiliary linear problem (3.25) in the limit z → ±1.We denote

h = z ∓ 1 in this limit, so that h is a small parameter we can expand in, and define

V = −ihLσ = −i
(

j(2)τ ± j(2)σ

)

+O(h), h = z ∓ 1 . (3.28)

Since L has simple poles at z = ±1, V is a regular function of h. We make the Wentzel-

Kramers-Brillouin (WKB) ansatz

Ψi(σ, z) = exp

(

i
Sl(σ, h)

h

)

ξi(h) , (3.29)

with ∂σξ = 0, so the defining equation (3.25) of the system becomes the eigenvalue equation

N
∑

j=1

VijΨj = (∂σSl)Ψi . (3.30)

In other words, ∂σSl are the eigenvalues of V . There are R such independent eigenvalues,

where R is the rank of the group, hence we use the index l running from 1 to R.

With the ansatz (3.29), equation (3.27) is solved by

pl(z) =
1

h
(Sl(σ + 2π, h)− Sl(σ, h)) =

1

h

∫ 2π

0
dσ∂σSl(σ, h) . (3.31)

We now have an expression for the quasimomenta in terms of Sl(σ, h). Since

tr(V 2) = −tr
(

j(2)τ ± j(2)σ

)2
+O(h), h = z ∓ 1 , (3.32)

the Virasoro constraints, (3.6), imply that tr(V 2) = 0 to leading order in h. Equation (3.30)

tells us that ∂σSl are the eigenvalues of V , so the Virasoro constraints imply15

R
∑

l=1

(∂σSl)
2 = 0 +O(h) . (3.33)

14We will see why the index l appears here shortly.
15We are assuming here that we are dealing with bosonic quasimomenta only, so that the Cartan ma-

trix can be chosen to be the identity matrix. In section 6 we give the generalised residue conditions for

quasimomenta belonging to a supercoset where we need to include the Cartan matrix.
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If we define

f±l (σ) = lim
h→0

∂σS(h, σ), h = z ∓ 1 , (3.34)

then taking the limit h → 0 of equation (3.31) gives the residues of the quasimomenta as

integrals of the functions f±l :

1

2
(κl ± 2πml) =

∫ 2π

0
dσf±l (σ) , (3.35)

while equation (3.33), which came from the Virasoro constraints, can be written in terms

of f±l as

R
∑

l=1

(f±l )2 = 0 . (3.36)

Thus, the condition that the Virasoro constraints place upon the residues of the quasimo-

menta can be stated as follows: the residues can be written as integrals in the form (3.35),

such that the integrands satisfy equation (3.36). To clarify this further: there are obviously

many different functions of σ which give the same result upon integration from 0 to 2π,

and so many choices of f±l such that (3.35) holds. The condition placed on the residues by

the Virasoro constraints is that for at least one of these choices, equation (3.36) holds.

If we knew the residues, and wanted to write down functions to represent them

via (3.35), the most obvious and simple choice would be to choose the constant functions

f±l (σ) =
1

4π
(κl ± 2πml) . (3.37)

Although we can always make this choice to satisfy equation (3.35), it is not in general

guaranteed that this choice for f±l will satisfy the condition (3.36). The Virasoro con-

straints imply only that one of the many possible choices for f±l in equation (3.35) satisfies

equation (3.36), not that all possible choices do, or that one particular simple choice does.

When the constant functions given by equation (3.37) do satisfy equation (3.36), then the

condition on the residues can be written as

R
∑

l=1

(κl ± 2πml)
2 = 0 . (3.38)

In much of the literature (see [57] for example), it is the condition of equation (3.38) that

has been taken to hold. In the next section we consider explicit sigma model solutions for

strings on AdS3 × S3 × S3 and their associated quasimomenta. For each solution we will

discuss whether the residues satisfy (3.38) or only the more general condition written in

equations (3.35) and (3.36). We will see that solutions containing massless modes do not

satisfy (3.38), but do satisfy the generalised conditions (3.35) and (3.36). This will show

explicitly that the generalised residue condition must be used in the finite-gap equations

in order to capture the dynamics of the massless modes.
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4 Strings on R × S1 × S1 ⊂ AdS3 × S3 × S3

In this section we consider solutions on the subspace R× S1 × S1 ⊂ AdS3 × S3 × S3, with

the metric

ds2 = R2

[

− dt2 +
1

cos2 φ
dψ2

1 +
1

sin2 φ
dψ2

2

]

. (4.1)

This subspace contains the coset massless mode of the spectrum in the BMN limit.16 If

we choose to consider solutions in lightcone gauge in this space with the Virasoro constraints

solved before quantization, then we are looking at precisely the same BMN massless mode

quantization that we considered as part of the full space in section 2. We will look first

at solutions in lightcone gauge, and then in static gauge (t = κτ), since this latter gauge

features prominently in the finite-gap analysis. As we will see, the choice of gauge will not

affect the dynamics of the general solution. Indeed we will check very explicitly that we

have the same form of expression for E − J for each.

We will see presently that the quasimomenta on this subspace have a very simple

analytic structure; they have no branch points or cuts, only simple poles at z = ±1. This

makes it straightforward to write down the most general quasimomenta for any solution

on this space and will serve as a guide for how to incorporate this massless mode into the

finite-gap equations.

4.1 Coset representatives and quasimomenta

In this subsection we will give an explicit coset representation for solutions on the R×S1×S1

subspace, chosen in such a way that the quasimomenta are particularly simple to compute.

We show that the quasimomenta have no branch points or cuts, and so can be written

completely in terms of the residues. In particular, we will write down the most general

quasimomenta for any solution on this subspace in terms of the numbers κl and ml, and

what κl andml are in terms of a particular coordinate solution t(σ, τ), ψ1(σ, τ) and ψ2(σ, τ).

We show how the generalised residue conditions (3.35) and (3.36) are clearly equivalent

to the Virasoro conditions expressed in terms of the coordinates. Lastly we write down

an expression for E − J in terms of κl and ml, which we will use later when we consider

particular solutions to show that the correct massless dispersion relation appears from the

quasimomenta of those solutions.

In the bosonic case the most natural choice of group representative g is a direct sum

g = g0 ⊕ g1 ⊕ g2 with g0 ∈ SU(1, 1) × SU(1, 1) and gi ∈ (SU(2)i)
2, where SU(2)1, respec-

tively SU(2)2, is the group manifold for the sphere of radius 1
cos2 φ

, respectively 1
sin2 φ

. In

particular, we choose the coset representatives as follows:

g1 =
1

cosφ
diag

(

ei
ψ1
2 , e−i

ψ1
2 , ei

ψ1
2 , e−i

ψ1
2

)

, g2 =
1

sinφ
diag

(

ei
ψ2
2 , e−i

ψ2
2 , ei

ψ2
2 , e−i

ψ2
2

)

,

(4.2)

16Not the one which appears simply as the dynamics of the isolated S1.
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and

g0 =











cosh t
2 sinh t

2 0 0

sinh t
2 cosh t

2 0 0

0 0 cosh t
2 − sinh t

2

0 0 − sinh t
2 cosh t

2











. (4.3)

Then the current j = g−1dg is

j =
dt

2











0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0











⊕ i

cosφ

dψ1

2











1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1











⊕ i

sinφ

dψ1

2











1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1











. (4.4)

The Z2 automorphism on the space is defined here as Ω(j) = KjtK, where

K =











0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0











. (4.5)

For all j’s given here, this acts as Ω(j) = −j, so j(0) = 1
2(j+Ω(j)) = 0, j(2) = 1

2(j−Ω(j)) =

j.

We can check explicitly that the coset action (3.3) gives us the sigma model action on

the metric (4.1),

tr((j(2))2) = −2

(

−dt2 + 1

cos2 φ
dψ2

1 +
1

sin2 φ
dψ2

2

)

. (4.6)

Since j(0) = 0, the Lax connection is (cf. equation (3.7))

Lσ =
1

z2 − 1

(

(z2 + 1)jσ + 2zjτ
)

. (4.7)

The Lax connection is given by a direct sum of three matrices, each of which takes

the form of a constant matrix multiplied by a function.17 In this case, the path-ordered

exponential taking us from the Lax connection to the monodromy matrix, given in equa-

tion (3.9), reduces to an ordinary matrix exponential of the integrals of the scalar functions.

It is then straightforward to read-off the quasimomenta

p1(z) = − 1

2 cosφ

1

z2 − 1

(

(z2 + 1)

∫ 2π

0
dσ∂σψ1(σ, τ = 0) + 2z

∫ 2π

0
dσ∂τψ1(σ, τ = 0)

)

,

(4.8)

p2(z) = − 1

2 sinφ

1

z2 − 1

(

(z2 + 1)

∫ 2π

0
dσ∂σψ2(σ, τ = 0) + 2z

∫ 2π

0
dσ∂τψ2(σ, τ = 0)

)

(4.9)

17Classical solutions studied in [61] have a similarly simple Lax connection.
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and

p0(z) =
i

2

1

z2 − 1

(

(z2 + 1)

∫ 2π

0
dσ∂σt(σ, τ = 0) + 2z

∫ 2π

0
dσ∂τ t(σ, τ = 0)

)

. (4.10)

The quasimomenta can be written in the form of the spectral representation (3.21),

but with no cuts

pl(z) =
κlz + 2πml

z2 − 1
+ πml (4.11)

where

κ0 = i

∫ 2π

0
dσ∂τ t , κ1 = − 1

cosφ

∫ 2π

0
dσ∂τψ1 , κ2 = − 1

sinφ

∫ 2π

0
dσ∂τψ2 ,

2πm0 = i

∫ 2π

0
dσ∂σt , 2πm1 = − 1

cosφ

∫ 2π

0
dσ∂σψ1 , 2πm2 = − 1

sinφ

∫ 2π

0
dσ∂σψ2 .

(4.12)

Since t must be periodic in σ, we have m0 = 0. We also get conditions for integer winding

modes on ψ1 and ψ2, namely m1 cosφ ∈ Z and m2 sinφ ∈ Z.

We noted earlier that the O(z) term in the quasimomenta as z → 0 should give us the

Noether charges of the solution (cf. equations (3.18) and (3.19)). For these solutions we

have, as z → 0,

pl(z) = −πml − κlz + . . . (4.13)

and we see that κl are related to the Noether charges defined from the sigma model action,

the energy E and angular momenta J1 and J2 given by:

E =
R2

2πα′

∫ 2π

0
dσ∂τ t , J1 =

R2

2πα′ cos2 φ

∫ 2π

0
dσ∂τψ1 , J2 =

R2

2πα′ sin2 φ

∫ 2π

0
dσ∂τψ2 ,

(4.14)

so that

κ0 = i
2πα′

R2
E , κ1 = −2π cosφα′

R2
J1 , κ2 = −2π sinφα′

R2
J2 . (4.15)

The coefficients of higher order terms in the Taylor expansion of the quasimomenta

around z = 0 give higher conserved charges. For these simple solutions in flat space we can

easily see what these terms are. At O(zn), the quasimomentum pl is either proportional

to κl or ml, depending on whether n is odd or even.

We can see for these simple solutions how the Virasoro constraints restrict the residues

of the quasimomenta, as discussed in section 2.2. Using equation (4.12), we can read off

the functions fl whose σ-integrals are related to the κl through (3.35)

f0 =
i

2
(∂τ ± ∂σ)t , f1 = − 1

2 cosφ
(∂τ ± ∂σ)ψ1 , f2 = − 1

2 sinφ
(∂τ ± ∂σ)ψ2 . (4.16)

A straightforward check then confirms how, for R × S1 × S1, the generalised residue con-

ditions (3.35) and (3.36) are equivalent to the Virasoro condition expressed on the coordi-

nates,

[(∂τ ± ∂σ)t]
2 =

1

cos2 φ
[(∂τ ± ∂σ)ψ1]

2 +
1

sin2 φ
[(∂τ ± ∂σ)ψ2]

2 . (4.17)
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We noted at the end of section 2.2 that the GRC reduces to the previously used condi-

tion (3.38) when the functions fl(σ) are constants. For these solutions on R× S1 × S1, we

can see this occurs only when t, ψ1 and ψ2 are all linear functions of τ and σ (i.e. when

the zero mode and winding mode are excited but all other excitations are absent).

It is useful at this point to write down a general expression for E − J in terms of the

κl. Recall that J was defined as the Noether charge associated with the angle η given

in (2.17), so in the R× S1 × S1 subspace it is given by

J =
R2

α′

∫ 2π

0
dσ∂τη = cos2 φJ1 + sin2 φJ2 (4.18)

and therefore

E − J =

√
λ

2π
(−iκ0 + cosφκ1 + sinφκ2) . (4.19)

4.2 Solutions in lightcone gauge

In this subsection we consider solutions in lightcone gauge x+ = κτ . In this gauge, it is

most natural to write down a solution in the coordinates (x+, x−, x1) and then switch to

the coordinates (t, ψ1, ψ2). Just as in section 2, a solution is given uniquely by specifying

x1, as x
− is determined by the Virasoro constraints (2.8). We will look first at a simple

example, and then consider the most general mode expansion for x1. When we do so, we

will see that imposing the condition (3.38) on the residues of the quasimomenta would

remove every excitation of this massless mode.18

4.2.1 Simple example

Consider

x1 =

√

2α′

n
(a cosn(σ + τ) + ã cos ñ(τ − σ)) , (4.20)

with a a real constant and n an integer. Then the Virasoro constraints determine x−:

x− =
α′

2κ

[

na(τ + σ) + ñã(τ − σ)− a

4
sin 2n(τ + σ)− ã

4
sin 2ñ(τ − σ)

]

. (4.21)

In terms of t, ψ1 and ψ2 the solution is

t = κτ +
α′

2κR2

[

na(τ + σ) + ñã(τ − σ)− a

4
sin 2n(τ + σ)− ã

4
sin 2ñ(τ − σ)

]

,

ψ1 = κτ cos2 φ− cos2 φ
α′

2κR2

[

na(τ + σ) + ñã(τ − σ)− a

4
sin 2n(τ + σ)− ã

4
sin 2ñ(τ − σ)

]

− sinφ cosφ

√

2α′

n
(a cosn(σ + τ) + ã cos ñ(τ − σ)) ,

ψ2 = κτ sin2 φ− sin2 φ
α′

2κR2

[

na(τ + σ) + ñã(τ − σ)− a

4
sin 2n(τ + σ)− ã

4
sin 2ñ(τ − σ)

]

+ sinφ cosφ

√

2α′

n
(a cosn(σ + τ) + ã cos ñ(τ − σ)) . (4.22)

18With the exception of the zero-mode and winding which we will discuss later.
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The quasimomenta for this solution are given in the standard form (4.11), with κl and ml

found by inserting the above expression for t, ψ1 and ψ2 into (4.12) to get

κ0 = 2πi

(

κ+
α′(na+ ñã)

2κR2

)

, 2πm0 =
πiα′(na− ñã)

κR2
,

κ1 = −2π cosφ

(

κ− α′(na+ ñã)

2κR2

)

, 2πm1 =
πα′ cosφ(na− ñã)

κR2
,

κ2 = −2π sinφ

(

κ− α′(na+ ñã)

2κR2

)

, 2πm1 =
πα′ sinφ(na− ñã)

κR2
. (4.23)

We can see explicitly that these do not satisfy the condition (3.38) that has been previously

taken to hold for the residues of the quasimomenta, indeed we have

2
∑

l=0

(κl + 2πml)
2 = −16π2α′na

R2
,

2
∑

l=0

(κl − 2πml)
2 = −16π2α′ñã

R2
. (4.24)

We note that in order to have m0 = 0 here (the condition that t is periodic in σ), we

must have na = ñã and hence also m1 = m2 = 0. From (4.19) we have for this solution:

E − J =

√
λα′(na+ ñã)

κR2
= (na+ ñã)

√
λ

J
. (4.25)

This matches up with the expression (2.21) for the full spectrum in the BMN limit if we

have just a single massless excitation, so this solution does indeed correspond to a massless

mode as we expected, and the dispersion relation as obtained from the quasimomenta is the

correct one for a massless mode. This is our first example of a massless mode solution which

satisfies the generalised residue conditions (3.35) and (3.36) but not the conditions (3.38).

4.2.2 General massless mode in lightcone gauge

Now we consider the most general mode expansion for the massless mode x1, as in (2.10).19

We take

x1 = x0 + α′p0τ + wσ

+

√

α′

2

∞
∑

n=1

1√
n

(

ane
−in(τ+σ) + a†ne

in(τ+σ) + ãne
−in(τ−σ) + ã†ne

in(τ−σ)
)

. (4.26)

From x1, x
− is determined via the Virasoro constraints, see equation (2.8). We can then

find t,ψ1 and ψ2 from x1 and x− via equation (2.2). The expressions are easily obtained

but as they are long and we do not need them we will not write them down explicitly. The

quasimomenta have the general form given by equation (4.11) so we only need to find κl
and ml, which (cf. equation (4.12)) requires only the τ and σ derivatives of t, ψ1 and ψ2.

These derivatives will have a double sum in the mode expansion20 coming from x− and a

single sum coming from x1. When we integrate over σ in (4.12) the double sum reduces to

19We would like to thank Kostya Zarembo for suggesting we consider the most general massless mode.
20This follows since the terms in (2.8) are squares of derivatives of x1.
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a single sum and we pick up only the zero mode contribution from x1. The conclusion is

that the quasimomenta for these solutions are given in the simple form (4.11), with κl and

ml given by

κ0 = 2πiκ+
iπα′

κR2

∞
∑

n=1

n(ana
†
n + ãnã

†
n) +

iπ(α′2p20 + w2)

2κR2

2πm0 =
iπα′

κR2

∞
∑

n=1

n(ana
†
n − ãnã

†
n) +

iπα′p0w
κR2

κ1 = −2πκ cosφ+
πα′ cosφ
κR2

∞
∑

n=1

n(ana
†
n + ãnã

†
n) +

π(α′2p20 + w2) cosφ

2κR2
+

2πα′p0 sinφ
R

2πm1 =
πα′ cosφ
κR2

∞
∑

n=1

n(ana
†
n − ãnã

†
n) +

πα′p0w cosφ

κR2
+

2πw sinφ

R

κ2 = −2πκ sinφ+
πα′ sinφ
κR2

∞
∑

n=1

n(ana
†
n + ãnã

†
n) +

π(α′2p20 + w2) sinφ

2κR2
− 2πα′p0 cosφ

R

2πm2 =
πα′ sinφ
κR2

∞
∑

n=1

n(ana
†
n − ãnã

†
n) +

πα′p0w sinφ

κR2
− 2πw cosφ

R
. (4.27)

We note that the σ-periodicity of t, m0 = 0, implies the level matching condition

∞
∑

n=1

n(ana
†
n − ãnã

†
n) + p0w = 0 (4.28)

and so

m1 =
w sinφ

R
, m2 = −w cosφ

R
. (4.29)

Hence, the winding modes in ψ1 and ψ2 come from a winding mode in x1, and the conditions

m1 cosφ ∈ Z and m2 sinφ ∈ Z are both satisfied if

w sinφ cosφ

R
∈ Z . (4.30)

From (4.19) we get for E − J for this general solution (approximating κ = J√
λ
again)

E − J =

√
λ

J

∞
∑

n=1

n(a†nan + ã†nãn) +

(

α′p20 +
w2

α′

)√
λ

2J
+O

(

1

J2

)

(4.31)

As expected this is precisely the same as the massless part of the BMN expression (2.21).

The above solutions give a clear indication for why we need to generalise the condition

on the residues of the quasimomenta from the conventional one given in (3.38) to the one

proposed in (3.35) and (3.36). To see this, we note that for these solutions, the generalised

residue condition is explicitly satisfied.21 On the other hand, when we compute the sums

21We saw from the general expressions (4.16) for f±

l for any solution on R × S1 × S1 in our coset

parametrisation how equations (3.35) and (3.36) are equivalent to the Virasoro constraints. Hence our

solutions satisfies the residue conditions (3.35) and (3.36) by construction. We have also checked explicitly

that the functions f±

l for this solution satisfy equation (3.36).
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of squares of residues as in equation (3.38) we find

2
∑

l=0

(κl + 2πml)
2 = −16π2α′

R2

∞
∑

n=1

na†nan (4.32)

and
2
∑

l=0

(κl − 2πml)
2 = −16π2α′

R2

∞
∑

n=1

nã†nãn . (4.33)

Imposing the conditions (3.38) would force us to set all of the massless excitations to zero,

with the exception of the zero-mode p0 and winding w.22 Ignoring this single exception for

now,23 the above equation demonstrates explicitly why in previous finite-gap analysis [15],

the massless mode was not present. On the other hand, the conditions (3.35) and (3.36)

are sufficiently general to incorporate all of the massless modes.

4.3 Solutions in static gauge

In static gauge, t = κτ , we cannot take the same approach to writing down a general

massless mode solution as in the last sub-section. It has been noted previously [62], that

quantization of string theory in static gauge is in a certain manner half-way between quan-

tization in lightcone gauge and covariant quantization: in D dimensions gauge fixing in

static gauge reduces the degrees of freedom to D − 1, but it is most natural to impose

Virasoro after quantization, so there still remains one spurious degree of freedom.

However, for particularly simple solutions in static gauge, it is possible to solve the

Virasoro constraints at the classical level fairly simply. If we work in the coordinates

(t, η, x1),
24 then we can write down a solution for x1, and write down the Virasoro con-

straints as

(∂τ ± ∂σ)η =

√

((∂τ ± ∂σ)t)2 −
1

R2
((∂τ ± ∂σ)x1)2 =

√

κ2 − 1

R2
((∂τ ± ∂σ)x1)2 . (4.34)

We can integrate this in principle to find η, but for a general x1 the resulting η will be

given as an integral not expressible in terms of standard functions.

We note that for all solutions in R× S1 × S1 in static gauge, we can immediately give

the component p0 of the quasimomentum from (4.10) as

p0 =
2iπκz

z2 − 1
, (4.35)

22We noted in section 3.2 that the generalised residue conditions (3.35) and (3.36) reduce to the condi-

tion (3.38) precisely when the functions f±

l are constant. In section 4.1 we saw that for our solutions on

R× S1 × S1, the functions f±

l are constant whenever the solution is linear in τ and σ, see equation (4.16).

We will also see this linear solution in static gauge in the next section, but there is one difference between

the two gauges. In lightcone gauge, suppose we set an = ãn = 0 for all n > 1, as is required if the con-

dition (3.38) holds. Then the condition that t is periodic in σ, equation (4.28), becomes p0w = 0. Hence

in lightcone gauge, we can have a solution for x1 with the condition (3.38) holding on the residues of the

quasimomenta if we have either only an excited zero-mode, x1 = α′p0τ , or a winding mode, x1 = wσ, but

not both. In static gauge, t is already periodic in σ by the gauge choice, so we don’t have this additional

restriction.
23We will return to the subject of why the linear massless modes were also missing in the previous analysis

in section 6.
24Recall η was defined in (2.17).
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which has the general form (4.11) with κ0 = 2πiκ and m0 = 0.

4.3.1 Linear solution

Consider first a simple solution linear in τ and σ,

x1 = α′p0τ + wσ . (4.36)

In this case one can solve the Virasoro constraints (4.34) explicitly to get

η =
1

2

√

κ2 − (α′p0 + w)2

R2
(τ + σ) +

1

2

√

κ2 − (α′p0 − w)2

R2
(τ − σ) . (4.37)

In terms of ψ1 and ψ2 we have

ψ1 = cosφ

[

ψ+
1 (τ + σ) + ψ−

1 (τ − σ)

]

, ψ2 = sinφ

[

ψ+
2 (τ + σ) + ψ−

2 (τ − σ)

]

, (4.38)

with ψ±
1 and ψ±

2 constants given by

ψ±
1 =

1

2
cosφ

(
√

κ2 − (α′p0 ± w)2

R2

)

− sinφ
(α′p0 ± w)

R

ψ2 =
1

2
sinφ

(
√

κ2 − (α′p0 ± w)2

R2

)

+ cosφ
(α′p0 ± w)

R
. (4.39)

The quasimomenta p1 and p2 are again in the form (4.11) with

κi = −2π(ψ+
i + ψ−

i ), mi = −(ψ+
i − ψ−

i ) (4.40)

for i = 1, 2. The condition for integer winding on ψ1 and ψ2 is that m1 cosφ and m2 sinφ

must be integers (cf. equation (4.12)).

Inserting this into (4.19) gives

E − J =
√
λ

(

κ− 1

2

√

κ2 − (α′p0 + w)2

R2
− 1

2

√

κ2 − (α′p0 − w)2

R2

)

. (4.41)

Making again the approximation J =
√
λκ to eliminate J and taking only the leading

term in a large J expansion gives

E − J =

(

α′p20 +
w2

α′

)√
λ

2J
+O

(

1

J2

)

, (4.42)

and we can compare this with (4.25) to see we have the same form for this expression as

we did in lightcone gauge.

For this solution,

2
∑

l=0

(κl ± 2πml)
2 = 4π2(−κ2 + 4(ψ±

1 )
2 + 4(ψ±

2 )
2) = 0 . (4.43)
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Recall that in lightcone gauge, the linear terms in the solution also cancelled in the analo-

gous expressions, see equations (4.32) and (4.33). This is in agreement with the observation

in section 4.1 that the generalised residue conditions (3.35) and (3.36) reduce to the previ-

ously used condition (3.38) for linear solutions. In section 6 we will say more about these

linear massless mode solutions, and why they were not present in the previous analysis of

the quasimomenta in the BMN limit. For now we simply remark that the linear solutions

are only a small subsector of the full massless spectrum. As we saw in section 4.2.2, all other

massless excitations in lightcone gauge are inconsistent with the residue condition (3.38).

In the next subsection we derive the same conclusion for any single periodic solution in

static gauge.

4.3.2 Periodic solution

Now we consider the same solution for x1 as we looked at in section 4.2, but this time in

static gauge,

t = κτ, x1 =

√

2α′

n
(a cosn(σ + τ) + ã cos ñ(τ − σ)) . (4.44)

η is fixed by the Virasoro constraints:

(∂τ + ∂σ)η =

√

κ2 − 8α′na2

R2
sin2 n(τ + σ) , (∂τ − ∂σ)η =

√

κ2 − 8α′ñã2

R2
sin2 ñ(τ − σ) .

(4.45)

To integrate this we use the following definition of the incomplete elliptic integral of the

second kind:25

E(φ, k) =

∫ φ

0
dθ
√

1− k2 sin2 θ , (4.46)

so that

∫

dσ+∂+η =
κ

2n
E

(

nσ+,
2
√
2α′na
κR

)

,

∫

dσ−∂−η =
κ

2ñ
E

(

ñσ−,
2
√
2α′ñã
κR

)

(4.47)

for σ± = τ ± σ, and hence

η =
κ

2n
E

(

n(τ + σ),
2
√
2α′na
κR

)

+
κ

2ñ
E

(

ñ(τ − σ),
2
√
2α′ñã
κR

)

. (4.48)

From η and x1 we have ψ1 and ψ2 (cf. equation (2.2)), and can take derivatives and

25We use the non-standard notation E rather than E to avoid confusion with the energy E.
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then integrate again in order to determine κi and mi (cf. (4.12)). We get

κ1 = −2κ cosφ

[

E

(

2
√
2α′na
κR

)

+ E

(

2
√
2α′ñã
κR

)]

,

κ2 = −2κ sinφ

[

E

(

2
√
2α′na
κR

)

+ E

(

2
√
2α′ñã
κR

)]

,

2πm1 = −2κ cosφ

[

E

(

2
√
2α′na
κR

)

− E

(

2
√
2α′ñã
κR

)]

,

2πm1 = −2κ sinφ

[

E

(

2
√
2α′na
κR

)

− E

(

2
√
2α′ñã
κR

)]

, (4.49)

written using the complete elliptic integral of the second kind

E(k) =

∫ π
2

0
dθ
√

1− k2 sin2 θ . (4.50)

From (4.19) we have

E − J =
√
λκ

[

1− 1

π
E

(

2
√
2α′na
κR

)

− 1

π
E

(

2
√
2α′ñã
κR

)]

. (4.51)

We make again the approximation J =
√
λκ and expand to leading order in J , using

the expansion for the elliptic integral

E(k) =
π

2
− π

8
k2 +O(k4) (4.52)

for k small. From this we get

E − J = (na2 + ñã2)

√
λ

J
+O

(

1

J2

)

. (4.53)

Comparing this to both the lightcone gauge result (4.25) and the previous static gauge

result for a linear solution (4.42) we see again the same form for the expression, confirming

that this solution corresponds to a massless mode in static gauge.

For this solution we have

2
∑

l=0

(κl + 2πml)
2 = −4π2κ2 + 16κ2

[

E

(

2
√
2α′na
κR

)]2

,

2
∑

l=0

(κl − 2πml)
2 = −4π2κ2 + 16κ2

[

E

(

2
√
2α′ñã
κR

)]2

, (4.54)

and these expressions are not zero unless na = ñã = 0.26 We conclude that these solu-

tions do not satisfy the residue condition (3.38) and so would not have been part of the

conventional finite-gap analysis. They do however satisfy the generalised conditions (3.35)

and (3.36) proposed here.27

26This follows from the fact that the only solutions to E(k) = π
2
for real k are k = ±1.

27As before, this is by construction, cf. equations (4.16) and the discussion in section 4.2.2.
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5 Massless mode from SU(1, 1)2 × SU(2)2 × SU(2)2 quasimomenta

In the previous section we evaluated the quasimomenta for a number of explicit solutions

containing massless mode excitations. We saw how the inclusion of the massless mode

required quasimomenta whose residues do not satisfy the condition (3.38), but instead

the more general conditions (3.35) and (3.36). In this section, we look at how using this

generalised residue condition, one can derive the presence of the massless mode directly

from the finite-gap equations. Later, in section 6.2, we will show how the complete massive

and massless spectrum in the BMN limit can be derived from the D(2, 1;α)2 finite-gap

equations. As such we will focus on the massless modes in this section. We will show

that using equation (4.19) for E − J in terms of the residues together with the GRC, is is

possible to derive the presence of the massless excitation.

In [15] the residues had been chosen to be28

κ0 = 2πiκ, κ1 = −2πκ cosφ, κ2 = −2πκ sinφ , (5.1)

so that

− iκ0 + cosφκ1 + sinφκ2 = 0 . (5.2)

Here, we do not make this assumption. Instead we require that the residues be given as

integrals of functions as in equation (3.35) with the integrands obeying equation (3.36).

The only singularities of the BMN vacuum quasimomenta are poles with residues as in

equation (5.1). Hence when we consider solutions in the BMN limit, the residues will be

given by equation (5.1) to leading order in κ.29 This leading term gives no contribution to

the expression for E − J , so we are interested in finding the highest order term that does

contribute. Our approach will thus be to consider a large κ expansion for the most general

residues which firstly satisfy the condition (3.35) and (3.36), and secondly are given by

equation (5.1) to leading order.

For simplicity we set the winding parameters ml to zero. Then the functions f±l
in (3.35) obey f+l = f−l and we denote them by fl, with

κl =

∫ 2π

0
dσfl(σ) . (5.3)

Since we are taking a large κ expansion, we will also henceforth put in explicit dependence

of κ whenever it appears, so fl = fl(σ, κ). We can solve the condition (3.36) on the

functions fl by introducing a new function ζ(σ, κ) such that

f1(σ, κ) = i cos ζ(σ, κ)f0(σ, κ), f2(σ, κ) = i sin ζ(σ, κ)f0(σ, κ) . (5.4)

28That is, (5.1) is equivalent to the choice of residues in [15] once one allows for the restriction of D(2, 1;α)

to its bosonic subgroup and the appropriate changes in grading and gauge choices.
29The BMN limit involves taking J large. κ is proportional to J to leading order and we will ultimately

be interested only in the leading term in the expressions we derive. Hence, we can consider a large κ

expansion.
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We fix the leading term of f0 in the large κ expansion to give the BMN vacuum value

for κ0 in equation (5.1) and leave lower order terms undetermined:

f0(σ, κ) = iκ+ if00 (σ) + i
1

κ
f10 (σ) +O

(

1

κ2

)

. (5.5)

Then, with f1 and f2 given in terms of ζ and f0 through equation (5.4), we get the correct

leading order terms for κ1 and κ2 provided ζ(σ, κ) is equal to φ to leading order in κ.

In particular, we expand ζ with the first term fixed and all subsequent terms arbitrary

function of σ:

ζ(σ, κ) = φ+
1

κ
ζ1(σ) +

1

κ2
ζ2(σ) +O

(

1

κ3

)

. (5.6)

Inserting the expansions for ζ and f0 into equation (5.4), we find

f1(σ, κ) = −κ cosφ+ sinφ ζ1(σ)− cosφ f00 (σ)

+
1

κ

[

sinφ ζ2(σ)+
1

2
cosφ ζ1(σ)2+ sinφ ζ1(σ)f00 (σ)− cosφ f10 (σ)

]

+O
(

1

κ2

)

,

(5.7)

f2(σ, κ) = −κ sinφ− cosφ ζ1(σ)− sinφ f00 (σ)

+
1

κ

[

− cosφ ζ2(σ)+
1

2
sinφ ζ1(σ)2− cosφ ζ1(σ)f00 (σ)− sinφ f10 (σ)

]

+O
(

1

κ2

)

.

(5.8)

When we insert the expansions of fl given in equations (5.5), (5.7) and (5.8) into equa-

tion (4.19) for E − J , we find that not only do the terms of O(κ) cancel, as we knew they

should (since we fixed the leading order terms to be the BMN vacuum), but also the terms

of O(1) cancel. This is precisely what is required for the extra mode coming from the

residues to be massless.30 In particular, we find

− if0(σ, κ) + cosφf1(σ, κ) + sinφf2(σ, κ) =
1

2κ
ζ1(σ)2 +O

(

1

κ2

)

. (5.9)

The final step in deriving the massless spectrum uses the observation that as the

functions fl are eigenvalues of the Lax connection Lσ, which is a periodic function of σ,31

fl are also periodic functions of σ and hence so is ζ1. Other than this, ζ1 is an arbitrary

function, so we can write it in a mode expansion (with the normalisations chosen for our

convenience):

ζ1(σ) =
√
α′λ−

1

4 p0 +
√
2λ−

1

4

∞
∑

n=1

√
n
(

ane
−inσ + a†ne

inσ
)

. (5.10)

Then the contribution to E − J from the residues is

E − J =

√
λ

4πκ

∫ 2π

0
dσζ1(σ)2 +O

(

1

κ2

)

=

√
λ

J

(

α′p20
2

+
∞
∑

n=1

na†nan

)

+O
(

1

J2

)

, (5.11)

30To see this, note that the right-hand side of equation (2.21) is O(1) for massive modes, but O
(

1

J

)

for

the massless mode.
31The coset representative g ∈ SU(1, 1)2 × SU(2)2 × SU(2)2 should be periodic in σ for closed strings.
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which is the full contribution to the spectrum in the BMN limit from the massless mode

x1 in (2.21).32

Finally, we can return to the question of the linear massless mode seen in section 4 in

both lightcone and static gauges, and ask why it was not seen in previous analysis even

though its residues do satisfy the previously used residue condition (3.38). The answer is

that the assumptions made in previous work have not been solely to impose the condi-

tion (3.38), but to take the residues to be precisely those of the BMN vacuum, namely as

in equation (5.1). In particular this implies ζ1(σ) = 0. This is a stronger condition still

than ∂σζ
1(σ) = 0, which is what follows from the residue condition (3.38). Generalising the

residues beyond the BMN vacuum values but keeping the residue condition (3.38) would

add the zero-mode33 to ζ1 and hence a single massless excitation.

6 Finite-gap equations and generalised residue conditions

So far in this paper we have focused our attention on quasimomenta for bosonic strings

only. It is straightforward to find the generalisation of the GRC for finite-gap equations

on a supercoset. The residues of the quasimomenta are still given by equation (3.35) but

now the functions f±l (σ) satisfy

∑

l,m

Almf
±
l f

±
m = 0 , (6.1)

where Alm is the Cartan matrix of the supergroup.

Although the generalised residue condition of equations (3.35) and (6.1) is the correct

residue condition to use for strings on any supercoset, there are supercosets for which this

condition is equivalent to the residue condition used widely in the literature

∑

l,m

Alm(κl ± 2πml)(κm ± 2πmm) = 0 . (6.2)

Specifically, we show in appendices B and C that the above residue condition is equivalent

to the GRC for strings on AdS5 × S5 and AdS4 × CP
3. This was to be expected since

for those backgrounds the conventional finite-gap equations are well known to capture the

complete string spectrum.

In the rest of this section we will look at the implications of the GRC for quasimomenta

on AdS3 backgrounds. First, in section 6.1 we write down the finite-gap equations with

generalised residues for superstrings on AdS3 × S3 × S3 × S1. In section 6.2 we show that

32Apart from the winding mode w, which we neglected by setting ml = 0 earlier in this section.

From (4.29) we can see directly that in lightcone gauge, ml = 0 implies w = 0. Though less obvious,

the same statement can be confirmed to be true for the linear solution in static gauge. Including the wind-

ing does not alter the analysis in any way, but requires the functions f+

l and f−

l to be kept distinct, so we

have ignored it here to keep the notation simpler. Note also that we only defined a mode expansion for ζ1

in terms of an and neglected a corresponding ãn, again this is to keep the notation simple, and because the

level-matching condition allows us to write E − J solely in terms of contributions from left-movers when

w = 0, see equation (4.28).
33It would also add the winding term if we included it.
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these finite-gap equations with the GRC reproduce the complete (massive and massless)

BMN spectrum for this background. In section 6.3 we investigate the AdS3 × S3 × T 4

finite-gap equations with GRC and show that we can similarly incorporate all massless

modes into the finite-gap equations for that system.34

6.1 D(2, 1;α)2 × U(1)2 finite-gap equations

We use a subscript ± to refer to the left and right sectors of the supergroup, D(2, 1;α)+ ×
D(2, 1;α)−. The Cartan matrix for this supergroup takes the form

A =







4 sin2 φ −2 sin2 φ 0

−2 sin2 φ 0 −2 cos2 φ

0 −2 cos2 φ 4 cos2 φ






⊗ 12 . (6.3)

The D(2, 1;α)+×D(2, 1;α)− quasimomenta are p±l where l = 1, 2, 3.35 The identity factor

in A is a 2×2 identity matrix acting on the ± indices. The action of the inversion symmetry

on the quasimomenta is given by equation (3.17) with

S = 13 ⊗ σ1 . (6.4)

When writing down the spectral representation (3.21) for the quasimomenta on this

space, it is convenient to use the inversion symmetry to write the integrals over cuts inside

the unit circle in terms of the integrals over cuts outside the unit circle. Once we take

account of the necessary effect of the symmetry on the density function ρl(z), the spectral

representation can then be written as

p±l (z) =
κ±l z + 2πm±

l

z2 − 1
+ πm±

l +

∫

dw
ρ±l (w)

z − w
+

∫

dw

w2

ρ∓l (w)

z − 1
w

, (6.5)

where all integrals are over cuts outside the unit circle, and we have given the same index

structure to the densities ρ±l and the residues κ±l and m±
l . In fact, κ+l is simply related to

κ−l by the inversion symmetry (and similarly m− to m+), see equation (3.22)

κ+l = −κ−l , m+
l = −m−

l . (6.6)

The finite-gap equations for D(2, 1;α)+ ×D(2, 1;α)− are then given as follows:

∓ 4 sin2 φ
κ1z + 2πm1

z2 − 1
± 2 sin2 φ

κ2z + 2πm2

z2 − 1
+ 2πn±

1,i

= 4 sin2 φ−
∫

dw
ρ±
1
(w)

z − w
− 2 sin2 φ−

∫

dw
ρ±
2
(w)

z − w
− 4 sin2 φ

∫

dw

w2

ρ∓
1
(w)

z − 1

w

+ 2 sin2 φ

∫

dw

w2

ρ∓
2
(w)

z − 1

w

(6.7)

± 2 sin2 φ
κ1z + 2πm1

z2 − 1
± 2 cos2 φ

κ3z + 2πm3

z2 − 1
+ 2πn±

2,i

= −2 sin2 φ−
∫

dw
ρ±
1
(w)

z − w
− 2 cos2 φ−

∫

dw
ρ±
3
(w)

z − w
+ 2 sin2 φ

∫

dw

w2

ρ∓
1
(w)

z − 1

w

+ 2 cos2 φ

∫

dw

w2

ρ∓
3
(w)

z − 1

w

(6.8)

34We are grateful to Kostya Zarembo for discussions on the way that the free bosons enter this analysis.
35It is no longer natural to use the notation l = 0, 1, 2 as we did in the bosonic subgroup as the quasimo-

menta are no longer associated naturally to block diagonal subalgebras with either Lorentzian or Euclidean

signature.
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± 2 cos2 φ
κ2z + 2πm2

z2 − 1
∓ 4 cos2 φ

κ3z + 2πm3

z2 − 1
+ 2πn±l,i

= 4 cos2 φ−
∫

dw
ρ±
3
(w)

z − w
− 2 cos2 φ−

∫

dw
ρ±
2
(w)

z − w
− 4 cos2 φ

∫

dw

w2

ρ∓
3
(w)

z − 1

w

+ 2 cos2 φ

∫

dw

w2

ρ∓
2
(w)

z − 1

w

.

(6.9)

For the U(1)2 part of the theory, the situation is much simpler. We have just the

additional quasimomenta p±4 . The Cartan matrix can be taken to be the identity while the

inversion matrix is S = σ1, i.e. it interchanges p+4 and p−4 . Both the Cartan matrix and

inversion matrix for the full theory are direct sums of the D(2, 1;α)2 terms given above

with the simple U(1)2 terms. Clearly, p±4 trivially satisfy their own finite-gap equations

with no cuts.

The residues κl± 2πml are written in terms of functions f±l (σ) (cf. equation (3.35)),36

and these functions f±l satisfy equation (6.1). With the inversion symmetry satisfied (so

that we can write the residues of the right-movers in terms of the left-movers say), the

GRC is
3
∑

l,m=1

Almf
±
l f

±
m + (f±4 )2 = 0 , (6.10)

where Alm here denotes just the 3× 3 Cartan matrix in equation (6.3). Explicitly this is

4 sin2 φ

(

f±1 − 1

2
f±2

)2

+ 4 cos2 φ

(

f±3 − 1

2
f±2

)2

+ (f±4 )2 = (f±2 )2 . (6.11)

Whereas in section 5 we solved the condition by introducing functions ζ±(σ), now we also

introduce a second new pair of functions χ±(σ) and write the solution to this condition as

2 sinφ

(

f±1 − 1

2
f±2

)

= − sin ζ± cosχ± f±2

2 cosφ

(

f±3 − 1

2
f±2

)

= − cos ζ± cosχ± f±2 ,

f±4 = sinχ±f±2 . (6.12)

Therefore, the complete proposal for the finite-gap equations with the generalised

residue condition is given by equations (6.7), (6.8) and (6.9), with κl and ml given in

terms of f±l via equation (3.35), and f±1 ,f±3 and f±4 written in terms of f±2 and additional

functions ζ± and χ± via equation (6.12).

6.2 Matching the full BMN spectrum of D(2, 1;α)2 × U(1)2

In this subsection we show how the above finite-gap equations and GRC can be used to
derive the BMN limit of the spectrum of superstrings on AdS3×S3×S3×S1. For simplicity
we will neglect the windingm±

l , so that f+l = f−l , and we denote fl = f+l = f−l . Expanding
in z we obtain the following expression for E − J

E − J =

√
λ

2π

[

2 sin2 φκ1 + 2 cos2 φκ3 +
∑

s=±

s

(

sin2 φ

∫

C1,i

dw
ρs
1
(w)

w2
+ cos2 φ

∫

C3,i

dw
ρs
3
(w)

w3

)]

.

(6.13)

36Note that the ± index on f±

l refers to κ± 2πml and is not the same as the ± index on p±l .
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Notice that p2 and p4 do not contribute to E − J . For the BMN vacuum the fl are
37

f1 = f3 = f4 = 0, f2 = κ . (6.14)

Next we make an expansion around the BMN vacuum by expanding in large κ, with the

leading order terms in fl given by equation (6.14). There is no O(κ) term for f1 and f3,

as in equation (6.14), provided that the leading order term in ζ is φ, just as we had in

equation (5.6). As pointed out below equation (5.8) this is to be expected of massless

modes. There is no O(κ) term for f4 provided that χ → 0 for large κ We therefore make

exactly the same expansion for ζ as in equation (5.6), and the following expansion for f2
and χ:

f2(σ, κ) = κ+ f02 (σ) +
1

κ
f12 (σ) +O

(

1

κ2

)

, χ(σ, κ) =
1

κ
χ1(σ) +O

(

1

κ2

)

. (6.15)

Then f1 and f3 have the following expansions:

f1(σ, κ) = −1

2
cotφ ζ1(σ)

+
1

2κ

(

− cotφ ζ2(σ) +
1

2
ζ1(σ)2 − cotφ ζ1(σ)f02 (σ) +

1

2
χ1(σ)2

)

+O
(

1

κ2

)

,

(6.16)

f3(σ, κ) =
1

2
tanφ ζ1(σ)

+
1

2κ

(

tanφ ζ2(σ) +
1

2
ζ1(σ)2 + tanφ ζ1(σ)f02 (σ) +

1

2
χ1(σ)2

)

+O
(

1

κ2

)

(6.17)

and from this we get

sin2 φ f1(σ, κ) + cos2 φ f3(σ, κ) =
1

4κ

(

ζ1(σ)2 + χ1(σ)2
)

+O
(

1

κ2

)

. (6.18)

The expansion for f4 meanwhile is

f4(σ, κ) = χ1(σ) +
1

κ
χ1(σ)f02 (σ) +O

(

1

κ2

)

. (6.19)

As in section 5, we can construct a massless boson from ζ1 in the following way. Since

ζ1 is a periodic function, we make a mode expansion for it as in equation (5.10), and

inserting this into equation (6.13) gives us the spectrum of a single massless boson. We

can do exactly the same for χ1 with a second bosonic mode expansion which gives us a

second boson. These two bosons can be distinguished by the fact that χ1 appears in the

expansion for f4 while ζ1 does not, therefore only one of the bosons is charged under the

U(1) associated to translations along S1.

We have seen how the massless bosonic modes now appear in the analysis of the full

D(2, 1;α)2 × U(1)2 finite-gap equations. The bosonic modes of mass cos2 φ and sin2 φ are

37These are the values which are taken in [15] for all states, not just the BMN vacuum.
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found by the same procedure as in [15]. We simply have to add one additional step at the

start of the procedure: to identify a single massive mode only, we take only the leading,

BMN vacuum, term in the expansion for the residues, see equation (6.14). Then we also

neglect the integral terms of the right-hand side of the finite-gap equations (6.7), (6.8)

and (6.9) in order to take the BMN limit. Taking equation (6.7) in this way gives the mode

of mass cos2 φ, equation (6.9) gives the mode of mass sin2 φ, and equation (6.8) does not

contribute to the massive modes. The mode of mass 1 appears as a stack of the other two

massive modes [15, 63, 64].

Next we obtain the massless fermions. The situation is closely analogous to that for

the massive modes. The bosonic mode of mass sin2 φ say, appears in the BMN limit of a

solution whose only non-trivial quasimomentum is p1, corresponding to a bosonic link in

the Dynkin diagram. The fermion of the same mass then appears as a stack going from

p1 to p2, the quasimomentum corresponding to a fermionic link. We have seen how one

massless boson appears when we make a mode expansion for the parameter ζ1(σ) which

appears in the expansion around the BMN vacuum of a solution to the generalised residue

conditions (cf. (5.6)). If this is the only term in the expansions that we make non-zero,

except for the leading order, vacuum terms, then we have an excitation which appears

in the residues κ1 and κ3, but not κ2. We can produce a fermion by turning on terms

which also contribute to κ2. In particular we choose a solution with ζ1(σ) = f02 (σ) in close

analogy with the massive fermions. We then make a fermionic mode expansion similarly

to the bosonic mode expansion (5.10):

ζ1(σ) = f02 (σ) =
√
α′λ−

1

4ψ0 +
√
2λ−

1

4

∞
∑

n=1

√
n
(

ψne
−inσ + ψ†

ne
inσ
)

. (6.20)

Then E − J for this solution is given by

E − J =

√
λ

J

(

α′ψ2
0

2
+

∞
∑

n=1

nψ†
nψn

)

+O
(

1

J2

)

. (6.21)

In other words it contributes to E − J in exactly the same way as the massless boson, but

has a different mode expansion for some other linear combination of the quasimomenta.38

This solution is a massless fermion. The quasimomenta that contain both this massless

fermion and the massless boson will have residues with f02 given by equation (6.20) and ζ1

containing both mode expansions:

ζ1(σ) =
√
α′λ−

1

4 (p0 + ψ0) +
√
2λ−

1

4

∞
∑

n=1

√
n
(

(an + ψn)e
−inσ + (a†n + ψ†

n)e
inσ
)

. (6.22)

38Note that in equations (6.16) and (6.17) that there is a term ζ1f0
2 appearing in both f1 and f3. Although

these terms cancel when we take the combination sin2 φκ1 + cos2 φκ3, the presence of f0
2 will produce a

different mode expansion for κ1 and κ3 seperately. In particular, it is important to note that we again

have the product of two terms appearing in the expressions for fl. Although the functions fl(σ) are used

to write a solution to the generalised residue conditions, it is the actual residues κl that contain physical

information. Upon integrating over σ, any linear terms in fl, such as the contribution from ζ2, will have

no physical effect, as their contribution can be removed up to a redefinition of the zero modes of the other

terms.
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The remaining fermion is then generated from the S1 boson in a similar fashion, namely

by a (fermionic) mode expansion in χ1 and f02 simultaneously. The full set of massless

modes therefore comes from having ζ1 and χ1 each with a distinct bosonic and fermionic

mode expansion, with both fermionic mode expansions also appearing in f02 . Each set of

excitations contributes identically to E−J , but differently for other measurable charges.39

In particular, note that the bosonic massless mode generated from χ1 is charged under the

U(1) charge associated with S1 translations. On the other hand, the mode generated from

ζ1 is neutral under this U(1), so the massless fermion that we generate in the above process

from the S1 boson is charged under the U(1) while the fermion generated from the coset

boson is not. This difference is natural from the point of view of our finite-gap equations,

but is less natural from the point of view of the symmetry algebra of the S-matrix. As such,

the representation which the four massless modes form is not obvious from our construction

here. The two fermions we derive correspond to two different linear combinations of the

fermionic modes which sit naturally within a massless multiplet of the symmetry algebra.

In this sub-section we have used a so-called bosonic grading for the D(2, 1;α)2 Cartan

algebra used previously in [15]. In [32] an alternate mixed bosonic-fermionic grading was

used to construct the S-matrix of massive excitations. In appendix D we show that at the

level of finite gap equations and the GRC the two gradings are equivalent.40

6.3 The BMN limit for PSU(1, 1|2)2 × (U(1)4)2

In this subsection we briefly show how the GRC condition applied to PSU(1, 1|2)2×(U(1)4)2

finite gap equations can be used to reproduce the BMN limit of the complete (massive and

massless) superstring spectrum on AdS3×S3×T 4. Consider first AdS3×S3. The coset for

strings on AdS3 × S3 is PSU(1,1|2)×PSU(1,1|2)
SU(1,1)×SU(2) . We take as the Cartan matrix of PSU(1, 1|2):

A =







−1

−1 2 −1

−1






. (6.23)

The quasimomenta for this space are p±l , l = 1, 2, 3. The inversion matrix is given by

equation (6.4), and neglecting the windings m±
l for simplicity, we may set f+l = f−l ≡ fl .

The residue condition (6.1) on this coset then reduces to

0 =
3
∑

l,m=1

Almflfm = 2f2(f2 − f1 − f3) . (6.24)

The BMN vacuum has f2 = 0, and we find that solving the Virasoro condition on the

residues implies that f2 = 0 exactly.41 This in turn means there is no contribution from

the residues to E − J . Hence, as expected, the GRC does not lead to any additional BMN

excitations for strings on AdS3 × S3 alone.

39We would like to thank Olof Ohlsson Sax for a discussion of these issues.
40We would like to thank Alessandro Sfondrini for a discussion of this.
41The GRC for AdS5 and AdS4 lead to a similar restriction; see the discussion in appendices B and C.
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For strings on AdS3 × S3 × T 4 we can include the massless modes of T 4 much like

we included the massless S1 mode in section 6.2 above. Let us add 4 additional pairs of

quasimomenta p±i , i = 1 . . . 4. These have residues κi ± 2πmi given in terms of functions

fi(σ) just as for the functions fl(σ) giving the residues of the PSU(1, 1|2) quasimomenta.

With the Cartan matrix for each U(1)2 taken to be the identity and the inversion matrix

taken to be σ1, the condition (6.1) is now

0 =

3
∑

l,m=1

Almf
±
l f

±
m +

7
∑

i=4

(f±i )2 = 2f±2 (f±2 − f±1 − f±3 ) +

7
∑

i=4

(f±i )2 . (6.25)

In fact, we can make an additional simplification in this case. The Cartan matrix (6.23) has

the null eigenvector (1, 0,−1). Since it is Almκm that appears in the finite-gap equations,

we can add the appropriate contributions from any null eigenvector to the residues without

changing the finite-gap equations. Therefore we can set f1 = f3.

The finite-gap equations for the quasimomenta pl are then given by

± κ2z + 2πm2

z2 − 1
+ 2πn±1,i = −−

∫

dw
ρ±2 (w)
z − w

+−
∫

dw

w2

ρ∓2 (w)

z − 1
w

(6.26)

± (κ1 − κ2)z + 2π(m1 −m2)

z2 − 1
+ 2πn±2,i = −−

∫

dw
ρ±1 (w)
z − w

+ 2−
∫

dw
ρ±2 (w)
z − w

−−
∫

dw
ρ±3 (w)
z − w

+−
∫

dw

w2

ρ∓1 (w)

z − 1
w

− 2−
∫

dw

w2

ρ∓2 (w)

z − 1
w

+−
∫

dw

w2

ρ∓3 (w)

z − 1
w

(6.27)

± κ2z + 2πm2

z2 − 1
+ 2πn±3,i = −−

∫

dw
ρ±2 (w)
z − w

+−
∫

dw

w2

ρ∓2 (w)

z − 1
w

(6.28)

which should be taken together with the fact that the residues are given in terms of the

functions fl via equation (3.35) and these functions satisfy equation (6.25). The quasi-

momenta pi associated to the T 4 directions trivially satisfy their own finite-gap equations

with no cuts.

Now we will derive the massless components of the BMN spectrum using the generalised

residue conditions. p2 is the only quasimomentum associated to a momentum carrying node

in the Dynkin diagram, and so f2 is the only function that contributes to E − J . We can

solve equation (6.25) to give all other functions in terms of f1 and 4 new functions ζi,

i = 4 . . . 7. Taking f3 = f1 as above and neglecting winding so we rewrite equation (6.25)

as

2(f2 − f1)
2 +

7
∑

i=4

f2i = 2f21 (6.29)

The solution to this can be given by

f4 =
√
2f1 sin ζ4

f5 =
√
2f1 cos ζ4 sin ζ5

f6 =
√
2f1 cos ζ4 cos ζ5 sin ζ6

f7 =
√
2f1 cos ζ4 cos ζ5 cos ζ6 sin ζ7

f2 = f1(1− cos ζ4 cos ζ5 cos ζ6 cos ζ7) . (6.30)
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For the BMN vacuum we have f1 = f3 = κ and f2 = 0, and expanding the residues at large

κ we find ζi = 0 and hence fi = 0 for i = 4 . . . 7. Therefore, the large κ expansions are

f1(σ, κ) = κ+ f01 (σ) +
1

κ
f11 (σ) +O

(

1

κ2

)

, ζi(σ, κ) =
1

κ
ζ1i (σ) +O

(

1

κ2

)

, (6.31)

and we have

E − J ∼
∫ 2π

0
dσf2(σ) =

1

2κ

7
∑

i=4

∫ 2π

0
dσζ1i (σ)

2 +O
(

1

κ2

)

. (6.32)

We have four integrals of the squares of periodic functions over their periods, giving four

mode expansions contributing to E − J at O
(

1
κ

)

, just as we expect for the four massless

bosonic modes.

The massless fermions are generated from the massless bosons in a way similar to what

was done in section 6.2, namely by making fermionic mode expansions in ζ1i (σ) and f
1
1 (σ)

simultaneously. The full massless spectrum therefore comes from each ζ1i containing both

a bosonic and fermionic mode expansions, as in equation (6.22), while f11 contains all four

of these fermionic mode expansions. The massive spectrum analysis follows from [15].

7 Conclusion

In this paper we have re-examined the derivation of finite-gap equations for string theo-

ries on semi-symmetric cosets. These equations govern the analytic properties of quasi-

momenta pl(z). The quasi-momenta can have cuts and simple poles in the complex z plane.

In section 3.2 we found that the residue condition (3.38)42 used in the previous literature

is stronger than the one required by the Virasoro constraints. Instead, we showed that the

conditions implied by the Virasoro constraints are the more general ones (3.35) and (3.36)43

the second of which we have called the generalised residue condition. In section 4 we con-

sidered classical string solutions on R×S1×S1 in order to demonstrate explicitly how the

Virasoro constraints are equivalent to the generalised residue conditions but not the null

condition (3.38).44 When we studied explicit classical solutions containing massless excita-

tions, we saw that the residues of their quasimomenta did not satisfy the condition (3.38),

and so relaxing this condition to (3.35) and (3.36) was necessary to derive the massless

mode from the finite-gap equations. Then in sections 5 and 6 we saw that this was also

sufficient; taking the GRC it is possible to derive the complete spectrum in the BMN limit

of the finite-gap equations.

It might seem surprising that the method used to determine the massless modes should

be somewhat different from the method used to determine the two lightest massive modes,

leading us to wonder if there exists a more concise procedure that can be applied to all

the modes. However, from the explicit quasimomenta we constructed in section 4, we can

42Equation (6.2) for a non-trivial Cartan matrix.
43Equation (6.1) for a non-trivial Cartan matrix.
44In appendix A we show this same result for R×S3 ×S1, and it is clear from there to see why it is true

for the full geometry, or indeed other backgrounds.
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see why this distinct approach is in fact necessary. The quasimomenta of these explicit

solutions did not contain any branch cuts, in contrast to any quasimomenta containing a

massive excitation. The BMN limit manifests itself at the level of the quasimomenta as

a limit in which the cuts shrink to a set of isolated points, and the massive modes are

found by considering the finite-gap equations in that limit. For solutions with no cuts,

such as the quasimomenta in section 4, there are technically no finite-gap equations. We

suggest that the correct way to regard these apparently different methods consistently is

to add an additional notion to the interpretation of the BMN limit from the perspective

of the quasimomenta. As well as taking a limit where the cuts shrink, the BMN limit also

involves taking a limit of the residues towards their BMN vacuum values.

Finite-gap equations have been written down for string theory on other cosets, notably

those corresponding to the backgrounds AdS5×S5 and AdS4×CP 3. In these backgrounds,

the full BMN spectra can be derived from the finite-gap equations without the need to

generalise the residue condition (3.38) to (3.35) and (3.36). In appendices B and C we

give the results of applying the generalised residue analysis to these backgrounds, to show

that there are no additional BMN modes produced by the generalised residues in these

cases. On more general cosets however, the GRC may lead to non-trivial corrections to

the residue conditions used in the literature. For example we expect such effects to arise

in the AdS2 × S2 × S2 × T 4 theories [65–69].

It would be interesting to see how the GRC conditions appear from the thermodynamic

limit of the Bethe Ansatz and whether they can help to resolve some of the discrepancies

observed in [32].45 Another potentially interesting question is whether one could under-

stand how to incorporate the massless modes into the Landau-Lifshitz sigma models that

encode the large-charge limit of the string sigma model [70–75]. A more immediate exten-

tion of the results here would be to use the GRC to generalise the calculations of one-loop

corrections from algebraic curves considered in [36–38, 41] to include massless modes.
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A Residues of quasimomenta on R × S3 × S1

The metric is

ds2 = R2

[

−dt2 + 1

cos2 φ
(dθ2 + cos2 θdψ2

1 + sin2 θdϕ2) +
1

sin2 φ
dψ2

2

]

. (A.1)

45We would like to thank Riccardo Borsato and Alessandro Sfondrini for discussions about this.
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The group representative g is a direct sum g = g0⊕ g1⊕ g2 as before. g0 and g2 are chosen

exactly as in (4.3) and (4.2), but for g1 corresponding to the full S3 we take

g1 =

√

1

2 cosφ











cos θeiψ1 − sin θe−iϕ 0 0

sin θeiϕ cos θe−iψ1 0 0

0 0 i sin θe−iϕ −i cos θeiψ1

0 0 i cos θe−iψ1 −i sin θeiϕ











. (A.2)

The current j is (with the first and third terms in the direct sum unchanged from equa-

tion (4.4))

j =
dt

2











0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0











⊕ 1

2 cosφ











iu −v + iw 0 0

v + iw −iu 0 0

0 0 iu −v − iw

0 0 v − iw −iu











⊕ i

sinφ

dψ2

2











1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1











, (A.3)

where u, v and w are all real one-forms given by

u = cos2 θdψ1 + sin2 θdϕ

v + iw = ei(ψ1+ϕ) (dθ + i sin θ cos θ(dϕ− dψ1)) . (A.4)

As in section 4, we have again chosen a group representative satisfying Ω(j) = −j and so

j(2) = 1
2(j − Ω(j)) = j. We can confirm that

tr
[

(j(2))2
]

= tr(j2) = dt2 − 1

cos2 φ

(

u2 + v2 + w2
)

− 1

sin2 φ
dψ2

2

= dt2 − 1

cos2 φ

(

dθ2 + cos2 θdψ2
1 + sin2 θdϕ2

)

− 1

sin2 φ
dψ2

2 . (A.5)

The relevant (S3) part of the Lax operator Lσ obtained from the current in (A.3) is

given by

Lσ =











ia −b+ ic 0 0

b+ ic −ia 0 0

0 0 ia −b− ic

0 0 b− ic −ia











, (A.6)

with a, b and c given by

a =
1

2 cosφ

1

z2 − 1

[

(z2 + 1)uσ + 2zuτ
]

,

b =
1

2 cosφ

1

z2 − 1

[

(z2 + 1)vσ + 2zvτ
]

,

c =
1

2 cosφ

1

z2 − 1

[

(z2 + 1)wσ + 2zwτ
]

. (A.7)
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We can find the residues of the quasimomenta on this space using the WKB analysis

(see section 3.2). We need the eigenvalues of V = −ihLσ in the limit h = z∓ 1 → 0. With

Lσ as in equation (A.6), there is the following eigenvalue of multiplicity 2:

1

2 cosφ

√

(uτ ± uσ)2 + (vτ ± vσ)2 + (wτ ± wσ)2 (A.8)

and of course the negative of this. Note that ± in this expression refers to the limit z → ±1.

We therefore have expressions for the residues of the quasimomenta on this space as

follows. There are residues κ0 ± 2πm0 and κ3 ± 2πm2 given as in equation (4.12) for the

quasimomenta associated to R and S1. There are generically two distinct quasimomenta

p+1 and p−1 associated to S3, but they both have the same residues (with opposite signs as

required by the inversion symmetry); this equality of residues is seen in the fact that the

residues of V have multiplicity two. These residues are

κ1 ± 2πm1 =
1

cosφ

∫ 2π

0
dσ
√

(uτ ± uσ)2 + (vτ ± vσ)2 + (wτ ± wσ)2 . (A.9)

We can therefore see that the residues for all quasimomenta, including those on S3, are given

naturally in terms of integrals of functions f±l (σ). Furthermore, using equation (A.5), we

can see that the condition (3.36) on these functions is exactly the more familiar form of the

Virasoro constraints on classical bosonic strings on a curved background, here R×S3×S1,

namely

Gµν(Ẋ
µ ±X ′µ)(Ẋν ±X ′ν) = 0 (A.10)

where Xµ are the spacetime fields and Gµν is the spacetime metric.

Similarly for the quasimomenta for the full coset space of AdS3×S3×S3, the Virasoro

constraints in the form (A.10) can be seen to be equivalent to the generalised residue

conditions (3.35) and (3.36), not the null residue condition (3.38).

B Generalised residue conditions for AdS5 × S5

The coset for strings on AdS5 × S5 is PSU(2,2|4)
SO(4,1)×SO(5) . We follow the conventions of the

review [57]. The Cartan matrix for PSU(2, 2|4) is

A =

























1

1 −2 1

1 −1

−1 2 −1

−1 1

1 −2 1

1

























(B.1)
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and the matrix S giving the inversion symmetry through equation (3.17) is

S =

























1 −1

1 −1

1 −1

−1

−1 1

−1 1

−1 1

























. (B.2)

The quasimomenta are pl with the index l running from 1 to 7. The residues are given

in terms of functions fl(σ) as in equation (3.35). The action of the inversion symmetry on

the residues (see equation (3.22)) means fl must satisfy

7
∑

m=1

Slmfm = −fl . (B.3)

Solving this inversion symmetry, we find that we can choose f1, f4 and f7 to be independent,

while the remaining functions are given in terms of these three:

f2 = f6 =
1

2
f4, f3 = f4 − f1, f5 = f4 − f7 . (B.4)

With these substitutions made, the version of the condition (6.1) on this space is

0 =

7
∑

l,m=1

Almflfm = f4

(

f1 + f7 −
1

2
f4

)

. (B.5)

The values of fl for the BMN vacuum are

f1 + f7 = κ, f4 = 0 . (B.6)

For the residues of D(2, 1;α)2 we were able to solve the constraint on the functions fl in a

way that allowed an expansion around the BMN vacuum. Here however, we can see that

there is no way to solve the condition (B.5) in any other way than setting f4 = 0 when we

take a similar approach. Suppose we make an expansion in large κ as follows:

f4(σ, κ) = f04 (σ)+
1

κ
f14 (σ)+O

(

1

κ2

)

, f1+f7 = κ+f01+f
0
7+

1

κ
(f11+f

1
7 )+O

(

1

κ2

)

. (B.7)

Then we can insert these equation (B.5) and require that it holds order by order. At O(κ)

we require f04 = 0. Then, using this together with the requirement that equation (B.5)

holds at O(1) we require f14 = 0 and so on. If we assume that this perturbative expansion

around the BMN vacuum gives us every possible state, then we conclude that we must

have f4 = 0 identically. This reproduces the usual finite-gap equations for this space. In

addition p4 corresponds to the only mode in the Dynkin diagram which carries energy and

momentum, and E − J is given solely in terms of p4. The fact that f4 = 0, and hence

κ4 = 0, means that there is no contribution to E − J from the residues.
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C Generalised residue conditions for AdS4 × CP 3

The coset for strings on AdS4 × CP 3 is OSp(6|4)
U(3)×SO(3,1) . The Cartan matrix of OSp(6|4) is

A =















1

1 −2 1

1 −1 −1

−1 2

−1 2















(C.1)

and the inversion symmetry matrix S is

S =















1 −1 −1

1 −1 −1

1 −1 −1

−1

−1















. (C.2)

Now the quasimomenta are pl with l running from 1 to 5. The action of the inversion

symmetry on the residues means that there are 2 independent functions f1 and f4, with

the others given by

f2 = f5 = f4, f3 = 2f4 − f1 . (C.3)

Then in terms of f1 and f4, the condition the functions need to satisfy is

0 =
5
∑

l,m=1

Almflfm = 2f4(2f1 − f4) . (C.4)

We see that this is very similar in form to the condition (B.5), and the argument from this

point is identical to that in the last section. The BMN vacuum has f4 = 0 and f1 = κ,

and expanding around the BMN vacuum we find there is no way to add non-zero terms to

f4. The contributions to E − J in this space come only from p4 and p5, and we noted that

f5 = f4. Hence there is no contribution to E − J from the residues.

D D(2, 1;α)2/SU(1, 1) × SU(2)2 in mixed grading

In section 6, we used a grading for D(2, 1;α)2 which involves bosonic Cartan generators

only. In [32] an alternative grading was used, involving bosonic Cartan generators on one

factor of D(2, 1;α) and fermionic generators on the other. The Cartan matrix is given in

this mixed grading by

A =



















4 sin2 φ −2 sin2 φ

−2 sin2 φ −2 cos2 φ

−2 cos2 φ 4 cos2 φ

2 sin2 φ −2

2 sin2 φ 2 cos2 φ

−2 2 cos2 φ



















(D.1)
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and the matrix S defining the action of the inversion symmetry on the quasimomenta

through equation (3.17) is given by

S =







−1

−1 1 −1

−1






⊗ σ1 . (D.2)

Following the notation in [32], we take the index structure on the quasimomenta as follows:

we have quasimomenta pl and pl̄ with l, l̄ = 1, 2, 3. The upper left quadrant of A corresponds

to indies l, the lower right to indices l̄, and the factor of σ1 in S interchanges l and l̄.

The action of the inversion symmetry on the residues via equation (3.22) means we

can determine the functions fl̄ in terms of fl. We have:

f1̄ = f1, f3̄ = f3, f2̄ = f1 − f2 + f3 . (D.3)

We can insert this into the relevant equivalent of the condition (6.1) and we find that:46

3
∑

l,m

Almflfm =
3
∑

l̄,m̄=1

Al̄m̄fl̄fm̄ = 4 sin2 φf1(f1 − f2) + 4 cos2 φf3(f3 − f2) . (D.4)

In other words, in the mixed grading just as in the bosonic grading, the residue condition

is identical when considered either solely on left-movers or right-movers. The full condition

in this case is
3
∑

l,m

Almflfm +

3
∑

l̄,m̄=1

Al̄m̄fl̄fm̄ = 0 (D.5)

and so we have exactly the same condition with exactly the same analysis for quasimomenta

in the mixed grading as in bosonic grading.

E Decoupled S1 mode

In section 6.2 we showed how the GRC could be used to incorporate all massless modes;

in particular the massless boson associated to the decoupled S1 of the geometry as well as

the bosonic mode contained in the D(2, 1;α)2/SU(1, 1) × SU(2)2 coset. Here we consider

briefly what explicit classical solutions corresponding to this decoupled S1 mode look like

and see how this confirms the results of section 6.2.

We consider the most general solution for the decoupled mode in lightcone gauge, so

explicitly the solution is47

x+ = κτ

x8 = x0 + α′p0τ + wσ

+

√

α′

2

∞
∑

n=1

1√
n

(

ane
−in(τ+σ) + a†ne

in(τ+σ) + ãne
−in(τ−σ) + ã†ne

in(τ−σ)
)

. (E.1)

46Alm referring only to the upper-left components of A and Al̄m̄ to the lower-right components.
47x8 is defined in equation (2.2).
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The results are then very similar to those of the analogous solution for the “coset mode”

in section 4.2.2. The Virasoro constraints determine x−. Just as for the coset solution,

we do not write down the full expression for x1 as we only need integrals over σ of its

derivatives. We note however, that the expression for x− for this decoupled solution is very

similar to that for the coset solution; the only difference is to the zero mode contribution

which arose previously from x1, see equation (2.2). We must now also account for the

additional quasimomentum p4
48 coming from the decoupled S1. It is again purely analytic,

so is given by equation (4.11) where the residues κ4 ± 2πm4 are now given by

κ4 =
1

R

∫ 2π

0
dσ∂τx8 , 2πm4 =

1

R

∫ 2π

0
dσ∂σx8 . (E.2)

We then have the final solution for the quasimomenta of this decoupled mode solution

as follows: pl are given by equation (4.11) for l = 0, 1, 2, 4, with the residues given as

follows:

κ0 = 2πiκ+
iπα′

κR2

∞
∑

n=1

n(ana
†
n + ãnã

†
n) +

iπ(α′2p20 + w2)

2κR2

2πm0 =
iπα′

κR2

∞
∑

n=1

n(ana
†
n − ãnã

†
n) +

iπα′p0w
κR2

κ1 = −2πκ cosφ+
πα′ cosφ
κR2

∞
∑

n=1

n(ana
†
n + ãnã

†
n) +

π(α′2p20 + w2) cosφ

2κR2

2πm1 =
πα′ cosφ
κR2

∞
∑

n=1

n(ana
†
n − ãnã

†
n) +

πα′p0w cosφ

κR2

κ2 = −2πκ sinφ+
πα′ sinφ
κR2

∞
∑

n=1

n(ana
†
n + ãnã

†
n) +

π(α′2p20 + w2) sinφ

2κR2

2πm2 =
πα′ sinφ
κR2

∞
∑

n=1

n(ana
†
n − ãnã

†
n) +

πα′p0w sinφ

κR2

κ4 =
α′p0
R

2πm4 =
w

R
. (E.3)

This should be compared with the very similar expressions (4.27) for the coset mode solu-

tion. As in that case, we impose the level matching condition (4.28) from σ-periodicity of

t, and in this case this fixes

m1 = m2 = 0 (E.4)

so the only non-zero winding mode is m4.

48We denote this p4 rather than p3 to be consistent with the notation of section 6. Whereas the quasi-

momenta p0, p1, p2 for the bosonic subgroup of D(2, 1;α) are not simply related to the quasimomenta p1,

p2 and p3 for the full supergroup, the decoupled quasimomentum p4 is the same for the bosonic subgroup

as for the full supergroup.
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The lightcone Hamiltonian E − J is still given in terms of the quasimomenta by equa-

tion (4.19) (in particular it does not receive a contribution from p4 directly). Putting in the

values for the residues in equation (E.3), we again obtain precisely the expected dispersion

relation for a massless mode:

E − J =

√
λ

J

∞
∑

n=1

n(a†nan + ã†nãn) +
(α′p20 +

w2

α′ )
√
λ

2J
+O

(

1

J2

)

. (E.5)

These results match up with those of section 6.2, with the function χ1(σ) defined there

given by x8(σ, τ = 0) for x8 as in equation (E.1).

Open Access. This article is distributed under the terms of the Creative Commons
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