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Abstract

Given an algebra A, presented by generators and relations, i.e. as a quotient
of a tensor algebra by an ideal, we construct a free algebra resolution of A,
i.e. a differential graded algebra which is quasi-isomorphic to A and which
is itself a tensor algebra. The construction rests combinatorially on the set
of bracketings that arise naturally in the description of a free contractible
differential graded algebra with given generators..
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1. Introduction

Let S be any ring. We write ⊗ for ⊗S, and, for any S, S-bimodule V , we
write V n for V ⊗n. Further, we write

T+
S (V ) =

⊕
n≥1

V n, V (m) =
⊕
n≥m

V n, (1.1)

for the non-unital tensor algebra of ‘free words’ in V over S and for the ideal
of words of length at least m, respectively.

Our objective in this paper is to construct a free algebra resolution of
an arbitrary (non-unital) S-algebra A presented in terms of generators and
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relations, that is,
A = T+

S (V ) /I,

for some S, S-bimodule V and ideal I. As a first step, in Section 2, we work
towards describing the case where I ⊆ V (2), i.e. the generators are ‘minimal’,
and I is homogeneous (Theorem 2.2). This case is controlled by the by-
now-familiar A∞ combinatorics of rooted trees or the corresponding set of
bracketings (see, for example, Figure 1). By extending this set of bracketings
in various ways, we find, in Sections 3 and 4, that the essential nature of the
proof becomes more transparent in the general case (Theorem 4.1).

As a typical motivating example, consider a quiver Q and field k. Set
S = kQ0 , the semi-simple algebra spanned by the vertex idempotents, and
V = kQ1 , the S, S-bimodule spanned by the arrows. Then the augmented
unital algebra S ⊕ T+

S (V ) is the path algebra kQ and S ⊕ A is a ‘quiver
algebra’, i.e. is presented by a quiver with relations. Such augmentation
allows one to move easily between unital and non-unital S-algebras; we find
it notationally simpler to work in the slightly less familiar non-unital context
in this paper.

Giving a free resolution of A as an S-algebra is, almost tautologically, the
same as giving a ‘locally finite’ A∞-coalgebra over S

K• =
⊕
n≥1

Kn,

where each Kn is an S, S-bimodule and such that A is quasi-isomorphic to
the differential graded (dg) algebra

CobarK• =
(
T+
S (K•[1]) , d

)
. (1.2)

Here K•[1] denotes the shifted complex, defined by K[1]n = Kn+1. In general,
the quasi-isomorphism should be induced by some S, S-morphism

θ : K1 → A

such that θ(K1) generates A. In our case, since the generators V of A are
explicitly specified, we will suppose that K1 = V and that θ : V → A is the
specifying map. Then the degree zero term in CobarK• is T+

S (V ) and the
quotient map T+

S (V )→ A will be the quasi-isomorphism.
The cobar construction here is ‘almost tautological’ in that the differential

d on T+
S (K•[1]) may be considered simply as an efficient way of encoding the
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A∞-coalgebra structure on K•. More precisely, the A∞-coalgebra structure
consists of S, S-morphisms

∆k : Kn → Km1 ⊗ · · · ⊗Kmk
,

for each k ≥ 1 and
∑k

i=1mi = n− 2 + k, satisfying the conditions∑
r+s+t=n

(−1)r+st
(
1⊗r ⊗∆s ⊗ 1⊗t

)
◦∆r+1+t = 0

for all n ≥ 1 (cf. [5, Definition 1.2.1.8]). These may be packaged into the
single condition that the endomorphism d of T+

S (K•[1]), determined by

d = −[1]⊗n ◦∆n ◦ [−1] : K•[1]→ K•[1]⊗n (1.3)

and the (graded) Leibniz rule (see (3.2)), satisfies d2 = 0 (cf. [5, §1.2]).
Note also that, in evaluating [1]⊗n, we use the standard Koszul sign rule; for
example

[1]⊗ [1] := (−1)m : Km ⊗Kn → Km ⊗Kn.

Remark 1.1. The condition that K• is ‘locally finite’ is simply the require-
ment that (1.3) does define a differential on T+

S (K•[1]), which is defined as
an infinite direct sum, and not just on its completion, i.e. the corresponding
direct product. In other words, for any element x ∈ K•, the coproducts
∆n(x) are non-zero for only finitely many n. It will be clear that all coalge-
bras we will encounter have this property and we will not explicitly mention
it again.

2. First examples

We begin by discussing the sort of construction we are looking for in the
case that I = V (2) and so A = T+

S (V ) /I is just V with trivial multiplication.
As a warm-up, we first observe that the classical candidate for K•, in this

case, is the free coassociative coalgebra generated by V ,

B•(V ) =
⊕
n≥1

V n, (2.1)

which is what the usual (unaugmented) bar construction yields. The comul-
tiplication ∆: Bm+n → Bm⊗Bn is tautological, i.e. is the natural identifica-
tion τ : V m+n → V m ⊗ V n. This gives the A∞-coproduct ∆2, with all other
coproducts vanishing.
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As one should expect, the dg algebra A• = CobarB•(V ) is a free resolu-
tion of A. Indeed, we may explicitly write

A• =
⊕
π∈Π

V π, (2.2)

where Π is the set of all finite sequences π = (π1, . . . , πr) of positive integers,
while

V π = V n, for n =
∑
k

πk,

which is in homological degree d, i.e. is a summand of Ad, for

d = |π| =
∑
k

(πk − 1).

Multiplication in A• corresponds to concatenation of sequences, i.e. is given
by the tautological maps τ : V π ⊗ V η → V πη, while the non-trivial compo-
nents of the differential d : V π → V π′ are ±τ whenever π′ is obtained from π
by splitting some term in the sequence into two. The sign is (−1)|(π′1,...,π′p)|
when the p-th term of π is split.

To see explicitly that A• is quasi-isomorphic to the algebra A, we notice
first that, for each n ≥ 0, there is precisely one sequence of degree 0 summing
to n, namely π = (1, . . . , 1), and this yields A0 = T+

S (V ). On the other hand,
for each n ≥ 2, the part of A• consisting of summands equal to V n is given
by V n ⊗Z C

aug
• (σn−2)[1] the (shifted and augmented) chain complex of the

(n− 2)-simplex, which is exact, as required.
From the point-of-view of this paper, a more natural, but rather bigger,

candidate for K• is the free A∞-coalgebra generated by V ,

B∞• (V ) =
⊕
β∈B[2]

V β. (2.3)

Here B[2] is the set of all closed non-degenerate bracketings (or equivalently
those that correspond to ‘rooted trees’) and the bracketed tensor product
V β = V n if β has n inputs and is in homological degree d if β has d− 1 pairs
of brackets. Note that “closed” means that the whole expression is enclosed
in an outer bracket, while “non-degenerate” means that each inner pair of
brackets encloses at least two inputs. For example, one summand of B∞4 (V )
would be

V β = [[V ⊗ V ]⊗ [V ⊗ V ⊗ V ]] = V 5
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for β = [[ • •][ • • • ]] or [[2][3]], a 3-fold bracketing of 5 inputs.
The differential ∆1 has non-zero components

(−1)m−1τ : V β → V β( bm),

where β(m̂) is obtained from β by removing the mth internal left bracket
[ (counted from the left) together with its matching right bracket ]. Pre-
cisely one higher coproduct ∆k, for some k ≥ 2, is defined on each V β and
corresponds to removing the outer bracket and writing what is inside as a
concatenation of k closed bracketings, up to a sign. For example, there is a
component

∆4 : V [[2]2[3]] → V [2] ⊗ V ⊗ V ⊗ V [3].

For the general component

∆k : V [β1...βk] → V β1 ⊗ . . .⊗ V βk

the sign we choose (see Remark 3.1 for an explanation) is

−(−1)
Pk

i=1(k−i)di , (2.4)

where di is the homological degree of V βi in B∞• (V ).
By convention, the only 0-fold closed bracketing is 1 and so B∞1 (V ) = V .

On the other hand, the 1-fold closed bracketings are [k], for each k ≥ 2,
and hence B∞2 (V ) = V (2). As a further example, the possible bracketings of
4 inputs are 3, 2 or 1-fold, as listed in Figure 1 together with their corre-
sponding rooted trees. These are well-known to correspond to the 0,1 and 2
dimensional cells of a pentagon. Furthermore, the restriction of the differen-
tial on B∞• corresponds to the coboundary map on the cochain complex of
the pentagon (with some care needed over signs).

More generally, writing B∞n,k(V ) for the sum over all (n− 1)-fold bracket-
ings of k inputs, we have for k ≥ 2,

B∞n,k(V ) ∼= V k ⊗Z C
k−n(Sk−2), (2.5)

where C•(Sm) is the cochain complex of the mth associahedron (or Stasheff
polytope, introduced in [7]). In addition, the differential on C•(Sk−2) induces
the differential on B∞•,k(V ). Since the associahedra are all contractible, this

means that the homology of B∞•,k(V ) is just V k in degree k. In other words,
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[[[2]1]1] [1[[2]1]] [[1[2]]1] [1[1[2]]] [[2][2]]

[[3]1] [[2]2] [1[2]1] [2[2]] [1[3]]

[4]

Figure 1: Bracketings with four inputs.

the kernel of d restricted to B∞k,k(V ) is isomorphic to Bk(V ) and the induced
map

η : B•(V )→ B∞• (V ), (2.6)

is a quasi-isomorphism of A∞ coalgebras (essentially because the A∞ operad
resolves the associative operad).

Using Corollary 6.3 from the Appendix, this is actually sufficient to prove
the following result, but we will also prove it directly as a special case of our
main result Theorem 4.1 in Section 4.

Theorem 2.1. CobarB∞• (V ) ' V .

More generally, suppose A is a graded algebra, generated by V in degree
1, so that A = T+

S (V ) /I, where

I =
⊕
n≥2

Rn

is a homogeneous ideal in V (2). Then, generalising (2.3), we define

B∞• (V, I) =
⊕
β∈B[2]

(V, I)β, (2.7)

where (V, I)β is obtained from V β by replacing every occurrence of an inner
bracketed [V n] by [Rn]. TheA∞ coalgebra structure onB∞• (V, I) is defined,
as for B∞• (V ), by tautological maps (with the appropriate sign), except for
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the component of the differential corresponding to the removal of an inner
bracket. Such a component is induced by one of the two maps

V a ⊗ [Rn]⊗ V b → Rn+a+b,

V a ⊗ [Rn]⊗ V b → V n+a+b,

depending on whether the domain is enclosed by matching brackets [..] or
non-matching ones, e.g. ]..]. The first map exists because I is an ideal, while
the second is the composite of the first with the inclusion Rn+a+b ⊆ V n+a+b.
This inclusion also gives the degree 2 component ∆k : [Rk]→ V k.

Another special case of Theorem 4.1 is then the following.

Theorem 2.2. CobarB∞• (V, I) ' A.

Example 2.3. We look more closely at the case when S is a separable k-
algebra, so that ⊗ is exact and hence B∞• (V, I) ⊆ B∞• (V ). Now Theorem 2.2
implies (by Remark 4.3 and Proposition 5.1, or directly from Proposition 6.4)
that the degree k part of TorAn (S, S) is isomorphic to the homology of d
at B∞n,k(V, I), so this degree k part vanishes for k < n, since there are no

bracketings in this case. Since ExtnA(S, S) ∼= HomS(TorAn (S, S), S), this also
starts in degree n (cf. [1, Lemma 2.1.2]).

Observe further that all inner brackets in the bracketings that contribute
to B∞n,n(V ) are [2] (as for example in the top row of Figure 1). Hence, under
the embedding η : B•(V ) → B∞• (V ) of (2.6), the kernel of d restricted to
B∞n,n(V, I) is identified with the familiar Koszul term Bn(V,R2) ⊆ Bn(V ) (cf.
[1, §2.6]), defined by

Bn(V,R2) =
⋂

p+q=n−2

V p ⊗R2 ⊗ V q.

Thus, as is also well-known from Koszul theory (cf. [1, Thm 2.6.1]), the de-
gree n part of Torn(S, S) is isomorphic to Bn(V,R2). Note also that B•(V,R2)
is a subcoalgebra of B•(V ).

But now, if ExtnA(S, S), and hence TorAn (S, S), is concentrated in degree
n, which is one characterisation of A being Koszul (cf. [1, Prop 2.1.3]), then
necessarily I = (R2) and we also deduce that B•(V,R2) ' B∞• (V, I) and
hence, by Corollary 6.3, that CobarB•(V,R2) ' A, which is the algebra
incarnation of the Koszul resolution for A.
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3. A free contractible dg algebra

We now develop the machinery that will enable us to generalise the con-
structions behind Theorems 2.1 and 2.2. In the process, we are naturally led
to consider bracketings of a slightly more general form than in Section 2.

For any ring S and any S, S-bimodule V , we can construct a free con-
tractible dg S-algebra

F• = F•(V ) =
⊕
n≥0

Fn(V )

that is ‘freely’ generated by V in degree 0 and a contracting homotopy
h : F• → F• of degree 1, satisfying dh+ hd = id and h2 = 0. The differential
d, of degree −1, is then determined recursively by the two conditions

d(hv) = v − h(dv), (3.1)

d(v · w) = dv · w + (−1)deg vv · dw, (3.2)

starting from dv = 0 for v ∈ V . Notice that (with these signs) we deduce
inductively that d2 = 0, by observing that

d2hv = dv − dhdv = dv − (dv − hd2v) = hd2v

and

d2(v · w) = d
(
dv · w + (−1)deg vv · dw

)
= d2v · w + (−1)deg dvdv · dw + (−1)deg vdv · dw + v · d2w

= d2v · w + v · d2w,

since deg(dv) = (deg v)− 1.
We may describe F• more explicitly using an extended notion of bracketed

tensor products, similar to Section 2,

F•(V ) =
⊕
β∈B(1)

V β, (3.3)

where, if β is a d-fold bracketing of n inputs, then V β is V n and is in homo-
logical degree d, i.e. is a summand of Fd. Note that this degree is different
from (2.3), because we are not describing an A∞-coalgebra here, but its cobar
construction directly.
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We define the set B(1) of bracketings recursively as follows, noting that
each such bracketing is, in the first instance, a word in the symbols “•”
(representing an input), “[” and “]”, with the later two balanced in the
usual way of brackets:

(i) B(1) contains •,
(ii) if β ∈ B(1) and β 6= [α], for some α ∈ B(1), then [β] ∈ B(1),

(iii) if α, β ∈ B(1), then their concatenation αβ ∈ B(1)

Note that, in contrast to B[2] in (2.3), bracketings in B(1) may be open, i.e.
without an outer bracket, and degenerate, i.e. with only one input in an
inner bracket.

As before, we abbreviate a sequence of n uninterrupted •’s by “n”. Thus,
for example, [ • •][ • •[ • ]] becomes [2][2[1]]. In particular, there are
just two bracketings 1 and [1] with one input and eight with two inputs

2, [2], [1]1, 1[1], [[1]1], [1[1]], [1][1], [[1][1]].

Now the product in F• has non-zero components consisting of the tauto-
logical maps

τ : V α ⊗ V β → V αβ,

while the contracting homotopy h : F• → F• has non-zero components given
by the tautological maps

τ : V β → V [β], for each β 6= [α], (3.4)

that is, τ is the identity map V k → V k, where k is the number of inputs in
β (and in [β]).

On the other hand, the differential d : Fn → Fn−1 has n non-zero compo-
nents

(−1)m−1τ : V β → V β( bm), for m = 1, . . . , n, (3.5)

where β(m̂) is obtained from β by removing the mth “[” from the left,
together with its matching “]”. It is straightforward to check that this
does give a differential satisfying (3.1) and (3.2), noting that we count “[”s
from the left, because (3.2) is a ‘left’ Leibniz rule. Thus h is a contracting
homotopy and so F• is a contractible dg algebra.

9



Remark 3.1. Forgetting the differential d and the contracting homotopy h,
F• is the free graded S-algebra generated by

K•(V )[1] = V ⊕ h(F•) =
⊕
β∈B[1]

V β, (3.6)

where B[1] ⊆ B(1) is the set of closed bracketings. Note that the convention
that “1” is a closed bracketing is precisely to get the initial summand V here.

In other words, F• = CobarK•(V ). The differential and coproducts on
the A∞-coalgebra K•(V ) are determined by applying (1.3) in reverse and one
can check that they are given explicitly by the same rules as those of B∞• (V )
in the paragraphs following (2.3). In particular, this explains the choice of
sign in (2.4).

4. Main theorem

Note that F0(V ) = T+
S (V ) and, furthermore, that we have many other

copies of T+
S (V ) ‘embedded’ in F• for every pair of inner brackets. To make

this explicit, we may introduce a new symbol [ ∗ ] with the meaning

V [∗] =
⊕
m≥1

V [m] = [T+
S (V ) ]

and more generally

V α[∗]β =
⊕
m≥1

V α[m]β = V α ⊗ [T+
S (V ) ]⊗ V β,

for matching partial bracketings α, β. Thus we can define contracted sets B[∗]

of closed bracketings and B(∗) of open bracketings, in which the innermost
brackets are all [ ∗ ], and so that we can write

F•(V ) =
⊕
β∈B(∗)

V β, K•(V ) =
⊕
β∈B[∗]

V β, (4.1)

where the degrees of terms in the 2nd equation are shifted compared to (3.6).
Now, for any ideal I ⊆ T+

S (V ) we can define a new dg algebra

F•(V, I) =
⊕
β∈B(∗)

(V, I)β, (4.2)
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where (V, I)β is obtained from V β by replacing [T+
S (V ) ] by [I], for each

occurrence of [ ∗ ] in β. Because I is an ideal, there is a well-defined differ-
ential d : F•(V, I)→ F•(V, I) given by the same rule (3.5) as the differential
d : F•(V )→ F•(V ). We can not quite define a contracting homotopy in the
same way, but simply because we have not replaced F0(V ) = T+

S (V ) by I.
Indeed, the image of d : F1(V, I) → F0(V, I) is I ⊆ T+

S (V ) and hence
there is a dg morphism

ρ : F•(V, I)→ T+
S (V ) /I, (4.3)

where the codomain here is just an algebra concentrated in degree 0.

Theorem 4.1. The map ρ in (4.3) is a quasi-isomorphism, that is, the dg
algebra F•(V, I) in (4.2) is a free resolution of the algebra A = T+

S (V ) /I.

Proof. Because ρ is surjective, we just want to show that ker ρ is contractible.
For this, we observe that ker ρ is the dg ideal

F ′•(V, I) ⊆ F•(V, I) (4.4)

obtained by also replacing F0(V ) by I. Then, the contracting homotopy h
can be defined on F ′•(V, I) by the rule (3.4) as it was on F•(V ) and so we
can use it to deduce that F ′•(V, I) is contractible, as required.

Remark 4.2. In some cases, e.g. when S is a separable k-algebra (so that
⊗ is exact), we note that F•(V, I) is a sub-dg-algebra of F•(V ), and so the
equations d2 = 0, for F•(V, I), and dh + hd = id, for F ′•(V, I), follow by
restriction from F•(V ). However, in general, they follow rather because the
combinatorial structure of F•(V, I) is identical to that of F•(V ).

Remark 4.3. Just as F•(V ) = CobarK•(V ), as in Remark 3.1, we have
F•(V, I) = CobarK•(V, I), where

K•(V, I) =
⊕
β∈B[∗]

(V, I)β, (4.5)

with (V, I)β now in homological degree d when β has d− 1 pairs of brackets.
In particular, when I = V (2), we have K•(V, I) = B∞• (V ) from (2.3),

so that Theorem 4.1 yields Theorem 2.1. Further, for a homogeneous ideal
I ⊆ V (2), we have K•(V, I) = B∞• (V, I) from (2.7), so that Theorem 4.1
yields Theorem 2.2.
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5. Homological application

Here we restict to the case when S is a separable k-algebra over a field k
and V is an S, S-bimodule over k, i.e. the S, S-action on V factors through
S ⊗k Sop.

Note that S is a left and right A-module, with A acting trivially, and
we would expect (in good cases) that we could use an A∞-coalgebra K•
with CobarK• ' A to compute the (positive) Tor-groups of S and hence, by
duality, its Ext groups. We observe that the case in hand, with K• = K•(V, I)
as in (4.5), is a good one.

Proposition 5.1. If A = T+
S (V ) /I, then we have an isomorphism

H(K•(V, I)) ∼= TorA• (S, S)

of graded coalgebras.

Proof. The A∞-coalgebra K•(V ) is cocomplete; e.g. the filtration given by

K•(V )(i) =
⊕

β∈B[1],|β|≤i

V β

is admissible (see Appendix for definition). Since S is a separable k-algebra,
K•(V, I) is a A∞-sub-coalgebra of K•(V, I) and is therefore also cocomplete.
Since Theorem 4.1 tells us that F•(V, I) = CobarK•(V, I) is a dg resolution
of A, we deduce from Proposition 6.4 that H(K•(V, I)) ∼= TorA(S, S) as
graded coalgebras.

It follows that HomS(K•(V, I), S) is an A∞-algebra whose cohomology is
Ext•A(S, S), in positive degrees.

6. Appendix

Again we restrict to the case where S is a separable k-algebra over a field
k. We extend part of the bar-cobar formalism for dg algebras and cocomplete
dg coalgebras over S to cocomplete A∞-coalgebras, following [5], [3] and [4].
As a change of notation, we write Ω∞C for the cobar construction of an
A∞-coalgebra C. This coincides with the more classical cobar construction
ΩC, in the special case that C is a dg coalgebra. The bar construction of a
dg algebra A is denoted BA.
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A filtration on an A∞-coalgebra C is a sequence C(0) ⊆ C(1) ⊆ . . . ⊆ C
of graded sub-bimodules such that for all n ≥ 1, the coproduct ∆n : C → Cn

is compatible with the (induced) filtrations on C and Cn. A filtration is
admissible if C(0) = 0 and C = ∪C(i). We say C is cocomplete if it supports
an admissible filtration; this is equivalent to the usual definition if C is a
dg coalgebra. See [6, §9.3, Remark] for the related notion of conilpotent
(curved) A∞-coalgebra.

A morphism f = (fi) : C ′ → C between A∞-coalgebras is a quasi-
isomorphism if f1 is a quasi-isomorphism of the underlying complexes of C ′

and C, and a weak equivalence if the morphism Ω∞f : Ω∞C
′ → Ω∞C of cobar

constructions is a quasi-isomorphism of dg algebras. A morphism f : C ′ → C
between cocomplete A∞-coalgebras is a filtered quasi-isomorphism if admis-
sible filtrations can be chosen on C ′ and on C so that the maps fi : C ′ → Ci

are compatible with the (induced) filtrations on C ′ and Ci, and the morphism
Gr(f1) : Gr(C)→ Gr(C ′) induced by f1 is a quasi-isomorphism. Note that a
filtered quasi-isomorphism is a quasi-isomorphism.

For any dg algebra A, the classical bar-cobar resolution gives a canon-
ical morphism εA : Ω∞BA → A of dg algebras. Taking A = Ω∞C for
an A∞-coalgebra C, we obtain a corresponding map εC : BΩ∞C → C of
A∞-coalgebras. In fact, εC is a weak equivalence, because εA is a quasi-
isomorphism (see, e.g. [5, Lemme 1.3.2.3(b)]), but we can say more if C is
cocomplete.

Lemma 6.1. 1. If A → A′ is a quasi-isomorphism of dg algebras, then
the induced morphism BA→ BA′ is a filtered quasi-isomorphism.

2. If C is a cocomplete A∞-coalgebra, then εC : BΩ∞C → C is a filtered
quasi-isomorphism.

Proof. The induced morphism BA → BA′ is a filtered quasi-isomorphism
with respect to the primitive filtrations of BA and BA′. For the second
statement, equip BΩ∞C with the admissible filtration induced by a given
admissible filtration on C. Then εC : BΩ∞C → C is filtered, and it suffices
to show that Gri((εC)1) : Gri(BΩ∞C) → Gri(C) is a quasi-isomorphism for
all i ≥ 1. Put W = C[1], so that

BΩ∞C = T+
(
T+(W )[−1]

)
Since the filtration on C is admissible, Gri(C

j) = 0 if j > i. Equip

Gri (BΩ∞C) = Gri

( ⊕
i1+...+ik≤i

W i1 [−1]⊗ . . .⊗W ik [−1]

)
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with the filtration

Fl = Gri

( ⊕
i+1−l≤i1+...+ik≤i

W i1 [−1]⊗ . . .⊗W ik [−1]

)
, l ≥ 0.

Then Gri((εC)1) is a surjective map of complexes with kernel Fi−1, and, for
each 1 ≤ l ≤ i− 1, the subquotient complex

Fl/Fl−1 =
⊕

i1+...+ik=i+1−l

W i1 [−1]⊗ . . .⊗W ik [−1]

is acyclic, with a contracting homotopy vanishing on components with i1 = 1
and given by isomorphisms

W i1 [−1]⊗ . . .⊗W ik [−1]→ W [−1]⊗W i1−1[−1]⊗W i2 [−1]⊗ . . .⊗W ik [−1]

otherwise.

Lemma 6.2. Let f : C ′ → C be a morphism of cocomplete A∞-coalgebras.

1. If f is a filtered quasi-isomorphism, then it is a weak equivalence.

2. If f is a weak equivalence, then it is a quasi-isomorphism.

Proof. For the first part, the proof given by Lefevre [5, Lemma 1.3.2.2] for fil-
tered quasi-isomorphisms of cocomplete dg coalgebras goes through without
change. For the second, consider the commutative diagram

C ′
f // C

BΩ∞C
′

εC′

OO

BΩ∞f // BΩ∞C

εC

OO

By Lemma 6.1, εC , εC′ and BΩ∞f are quasi-isomorphisms. Hence f is a
quasi-isomorphism.

Corollary 6.3 (Keller [4]). Let f : C ′ → C be a morphism of A∞-coalgebras
which is also compatible with strictly positive gradings on C ′ and C. If f is
a quasi-isomorphism, then it is a weak equivalence.

Proof. The additional positive gradings give rise to admissible filtrations on
C ′ and C in an obvious way. If f is a quasi-isomorphism, then it is automat-
ically a filtered quasi-isomorphism, and then Lemma 6.2 applies.
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Proposition 6.4. Suppose that C is a cocomplete A∞-algebra and we have
a quasi-isomorphism Ω∞C → A of dg algebras. Then C is weakly equivalent
to BA. In particular we have an isomorphism of graded coalgebras

H(C) ∼= TorA(S, S).

Proof. By Lemma 6.1, we have filtered quasi-isomorphisms BΩ∞C → BA
and BΩ∞C → C. In particular C and BA are weakly equivalent, and thus
quasi-isomorphic, by Lemma 6.2. Finally, recall that H(BA) ∼= TorA(S, S).
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