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Abstrat| We present a new method of surfae reon-
strution that generates smooth and seamless models from
sparse, noisy, non-uniform, and low resolution range data.
Data aquisition tehniques from omputer vision, suh as
stereo range images and spae arving, produe 3D point
sets that are impreise and non-uniform when ompared to
laser or optial range sanners. Traditional reonstrution
algorithms designed for dense and preise data do not pro-
due smooth reonstrutions when applied to vision-based
data sets. Our method onstruts a 3D impliit surfae,
formulated as a sum of weighted radial basis funtions. We
ahieve three primary advantages over existing algorithms:
(1) the impliit funtions we onstrut estimate the sur-
fae well in regions where there is little data; (2) the reon-
struted surfae is insensitive to noise in data aquisition
beause we an allow the surfae to approximate, rather
than exatly interpolate, the data; and (3) the reonstruted
surfae is loally detailed, yet globally smooth, beause we
use radial basis funtions that ahieve multiple orders of
smoothness.

Index terms: regularization, surfae �tting, impliit fun-
tions, noisy range data

I. Introdution

The omputer vision ommunity has developed numer-
ous methods of aquiring three dimensional data from im-

ages. Some of these tehniques inlude shape from shading,

depth approximation from a pair of stereo images, and vol-

umetri reonstrution from images at multiple viewpoints.

The advantage of these tehniques is that they use am-
eras, whih are inexpensive resoures when ompared to

laser and optial sanners. Beause of the a�ordability of

ameras, these vision-based tehniques have the potential

to enable the reation of digital models by home omputer

users who may not have professional CAD training. On
the other hand, models in popular use in the entertain-

ment industry (animation and gaming appliations), video

and image editing, and omputer graphis researh ome

from dense laser sans or medial sans, not from vision-
based tehniques. There are signi�ant di�erenes in terms

of quality and auray between data sets obtained from

ative sanning tehnology (e.g. optial, laser, and time-

of-ight range sanners) and passive sanning tehnology

(e.g. shape from shading, voxel oloring) that use only im-
ages and amera alibration to obtain 3D point sets. Many

of the well-known and often used reonstrution algorithms

were designed to generate surfaes from dense and preise

data suh as those obtained from ative sanners. These

methods are not robust to the hallenges posed by data ob-
tained from passive sanning tehnology. The aim of our

method is to be able to reonstrut smooth and ontinuous

surfaes from the more hallenging vision-based data sets.

The new approah presented in this paper onstruts a

3D impliit funtion from vision-based range data. We use

an analytial impliit representation that an smoothly in-

terpolate the surfae where there is little or no data, that

is ompat when ompared to disrete volumetri distane
funtions, and that an either approximate or interpolate

the data. The resulting surfaes are inherently manifold,

smooth, and seamless. Impliit surfaes are well-suited for

operations suh as ollision detetion, morphing, blend-

ing, and modeling with onstrutive solid geometry beause
they are formulated as a single analytial funtion, as op-

posed to a pieewise representation suh as a polygonal

model or a dense volumetri data set. Impliit surfaes

an also aurately model soft and organi objets and an

easily be onverted to a polygonal model by iso-surfae ex-
tration.

We onstrut an impliit surfae using volumetri regu-
larization. This approah is based on the variational im-

pliit surfaes of Turk and O'Brien [48℄. Our impliit fun-

tion onsists of a sum of weighted radial basis funtions

that are plaed at surfae and exterior onstraint points

de�ned by the data set. The weights of the basis funtions
are determined by solving a linear system of equations. We

an approximate the data set by relaxing the linear system

through volumetri regularization. The ability to hoose

whether to approximate or interpolate the data is espe-
ially advantageous in the presene of noise. Surfae detail

and smoothness are obtained by using basis funtions that

ahieve multiple orders of smoothness.

Our main ontributions are: (1) introduing the use of

variational impliit surfaes for surfae reonstrution from

vision-based range data, (2) the appliation of a new radial

basis funtion that ahieves multiple orders of smoothness,
(3) enhanement of �ne detail and sharp features that are

often smoothed-over by the variational impliit surfaes,

and (4) onstrution of approximating, rather than inter-

polating surfaes to overome noisy data.

The remainder of the paper is organized as follows: in

Setion II, we review related work in surfae representation

and reonstrution. We give an overview of our approah in
III. In Setion IV, we introdue volumetri regularization

and desribe our approah to onstruting approximating

surfaes using the variational impliit surfae representa-

tion. In Setion V, we introdue a radial basis funtion that

ahieves multiple orders of smoothness. In Setion VI, we
disuss sampling issues and the preservation of topology in
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our framework. Results from syntheti range images and
from real spae arved data sets are shown in Setion VII.

II. Related Work

Our approah to surfae reonstrution an be ompared

to previous works in the areas of shape representation, re-
onstrution, smoothing, and surfae regularization. The

large number of published methods in these areas makes

it nearly impossible to perform a omprehensive survey.

Instead, we desribe some of the more well-known ap-

proahes, with a bias towards those more losely related
to our own approah. Table I summarizes the omparison

between related reonstrution algorithms and our own.

A. Surfae Representation

Three general lasses of surfae representations inlude
disrete, parametri, and impliit approahes. Disrete

forms, suh as a olletion of polygons and point samples,

are the most widely used representations. The primary dis-

advantages assoiated with them are that they are verbose,

that they an only approximate smooth surfaes, and that
they have �xed resolution. In ontrast, parametri sur-

faes, suh as B-splines and Bezier pathes, may be sam-

pled at arbitrary resolution and an be used to represent

smooth surfaes. The main drawbak of paramteri sur-

faes is that several parametri pathes need to be om-
bined to form a losed surfae, resulting in seams between

the pathes. Impliit representations, on the other hand,

do not require seams to represent a losed surfae. Impliit

representations ome in both analytial and disrete sam-
pled forms. Analytial representations, suh as our own,

are more ompat than sampled representations. Exam-

ples of sampled impliit funtions inlude gridded volumes

and otree representations suh as those used by Szeliski

et al. [39℄, Frisken et al. [18℄, and Curless and Levoy [12℄.

B. Surfae Reonstrution

In this setion, we disuss the more popular reonstru-

tion algorithms. The shape reonstrution methods we de-

sribe inlude range data merging and mesh reonstrution,
region growing, algorithms based on omputational geom-

etry, and algebrai �tting.

Although our work does not fous on reonstruting

surfaes from dense and preise range data, methods
that merge multiple range images and reonstrut smooth

meshes address issues similar to our own. Issues that arise

in suh work inlude merging multiple range images, los-

ing of gaps in the reonstrution, and handling of outliers.

Curless and Levoy [12℄ and Hilton et al. [20℄ onstrut
signed distane funtions from the range images and ob-

tain a manifold surfae by iso-surfae extration. Souy

and Laurendeau [37℄ and Turk and Levoy [47℄ merge tri-

angulations of the range points. Note that all of these

methods require range data using strutured light that is
muh more aurate than an be measured passively using

photographs alone.

Another approah is region growing, and examples in-
lude Hoppe's work on surfae reonstrution [21℄ and Lee,

Tang and Medioni's work on tensor voting [26,40℄. Hoppe
uses a plane is �tted to a neighborhood around eah data

point, providing an estimate of the surfae normal for the

point. The surfae normals are propagated using a mini-

mal spanning tree, and then a signed distane funtion is
ontruted in small neighborhoods around the data points.

Lee and Medioni's tensor voting method is similar in that

neighboring points are used to estimate the orientations of

data points. The tensor is the ovariane matrix of the

normal vetors of a neighborhood of points. Eah data
point votes for the orientation of other points in its neigh-

borhood using its tensor �eld. In [40℄, the surfae is re-

onstruted by growing planar, edge, and point features

until they enounter neighboring features. Both methods

desribed above are sensitive to noise in the data beause
they rely on good estimates for the normal vetor at eah

data point.

Several algorithms based on omputational geometry

onstrut a olletion of simplexes that form the shape or
surfae from a set of unorganized points. These methods

exatly interpolate the data | the verties of the simplexes

onsist of the given data points. A onsequene of this is

that noise and aliasing in the data beome embedded in the

reonstruted surfae. Of suh methods, three of the most
suessful are Alpha Shapes [15℄, the Crust algorithm [1℄,

and the Ball- Pivoting algorithm [4℄. In Alpha shapes, the

shape is arved out by removing simplexes of the Delaunay

triangulation of the point set. A simplex is removed if its

irumsribing sphere is larger than the alpha ball. In the
Crust algorithm, Delaunay triangulation is performed on

the original set of points along with Voronoi verties that

approximate the medial axis of the shape. The resulting

triangulation distinguishes triangles that are part of the

objet surfae from those that are on the interior beause
interior triangles have a Voronoi vertex as one of their ver-

ties. Both the Alpha Shapes and Crust algorithms need

no other information than the loations of the data points

and perform well on dense and preise data sets. The objet

model that these approahes generate, however, onsists of
simplexes that our lose to the surfae. The olletion of

simplexes is not a manifold surfae, and extration of suh

a surfae is a non-trivial post-proessing task. The Ball-

Pivoting algorithm is a related method that avoids non-

manifold onstrutions by growing a mesh from an initial
seed triangle that is orretly oriented. Starting with the

seed triangle, a ball of spei�ed radius is pivoted aross

edges of eah triangle bounding the growing mesh. If the

pivoted ball hits verties that are not yet part of the mesh,

a new triangle is instantiated and added to the growing
mesh. In Figure 1 (right panel), the Crust algorithm is

applied to real range data obtained from the generalized

voxel oloring method of [11℄. Although the general shape

of the toy dinosaur is reognizable, the surfae is rough due
to the noisy nature of the real range data.

Many algebrai methods avoid reating noisy surfaes

by �tting a smooth funtion to the data points, and by not

requiring that the funtion pass through all data points.
The reonstruted surfae may onsist of a single global
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TABLE I

Comparison of Related Works

Methods Shape Arbitrary Complex Robust Fills Gaps
Representation Topology Models to Noise

Distane Fields disrete yes yes no no

Region Growing pieewise ontinuous yes yes no no

Computational pieewise ontinuous yes yes no no
Geometry

Algebrai Methods analytial yes no yes yes

Deformable analytial no no yes yes
Superquadris

Volumetri analytial yes yes yes yes
Regularization

funtion or many funtions that are pieed together. Ex-

amples of reonstrution by global algebrai �tting are the
works of Taubin [41, 42℄, Gotsman and Keren [22, 23℄, and

Blane et al. [5℄. Taubin �ts a polynomial impliit fun-

tion to a point set by minimizing the distane between the

point set and the impliit surfae. In [41℄, Taubin develops

a �rst order approximation of the Eulidean distane and
improves the approximation in [42℄. Gotsman and Keren

reate parameterized families of polynomials that satisfy

desirable properties, suh as �tness to the data or onti-

nuity preservation. Suh a family must be large so that it

an inlude as many funtions as possible. This tehnique
leads to an over- representation of the subset, in that the

resulting polynomial will often have more oeÆients for

whih to solve than the simpler polynomials inluded in

the subset, thus requiring additional omputation. Blane
et al. performs polynomial �tting of points on a zero level

set and (for stability) �ts points on two additional level sets

lose to the zero level set | one internal and one external

level set. The primary limitation of global algebrai meth-

ods is their inability to reonstrut omplex models. The
highest degree polynomials that have been demonstrated

are around degree 12, and this is far too small to represent

omplex shapes.

In [3℄, Bajaj overomes the omplexity limitation by on-
struting pieewise polynomial pathes (alled A-pathes)

that ombine to form one surfae. Bajaj uses Delaunay tri-

angulation to divide the point set into groups delineated by

tetrahedrons. An A-path is formed by �tting a Bernstein

polynomial to the data points within eah tetrahedron. By
onstruting a pieewise surfae, Bajaj's approah loses the

ompat harateristi of a global representation, and oper-

ations suh as ollision detetion, morphing, blending, and

modeling with onstrutive solid geometry beome more

diÆult to perform sine the representation is no longer a
single analytial funtion.

Examples of algebrai methods developed earlier in the

vision ommunity that provide both smooth global �tting
and aurate loal re�nement inlude the works of Ter-

zopoulos and Metaxas on deformable superquadris [46℄

and Pentland and Slaro� on generalized impliit fun-

tions [32,34℄. Both methods use superquadri ellipsoids

as the global shape and add loal deformations to �t the
data points. Terzopoulos and Metaxas separate the re-

onstruted model into global parameters de�ned by the

superquadri oeÆients, and loal displaements de�ned
as a linear ombination of basis funtions. The global and

loal deformation parameters are solved using dynamis.

Pentland and Slaro� de�ne a generalized impliit model

that onsists of a superquadri ellipsoid and a modal de-

formation matrix. The modal deformation parameters are
found by iteratively �nding the minimum RMS error to the

data points. The residual error after the deformation pa-

rameters have been found are inorporated into a displae-

ment map to better �t the data. As with most algebrai

methods, the drawbak of these tehniques is their inability
to handle arbitrary topology.

Our approah is similar to global algebrai �tting in that

we onstrut one global impliit funtion, although our ba-

sis funtions are not polynomials. Previous work that is

most losely related to our own are methods based on reg-

ularization whih we desribe next.

C. Surfae Regularization

Surfae reonstrution is an ill-posed inverse problem be-

ause there are in�nitely many surfaes whih may pass
through a given set of points. Surfae regularization re-

strits the lass of permissible surfaes to those whih

minimize a given energy funtional. Terzopoulos pio-

neered �nite-di�erening tehniques to ompute approx-

imate derivatives used in minimizing the thin-plate en-
ergy funtional of a height-�eld. He developed omputa-

tional moleules from the disrete formulations of the par-

tial derivatives and uses a multi-resolution method to solve

for the surfae. Boult and Kender ompare lasses of per-

missible funtions and disuss the use of basis funtions to
minimize the energy funtional assoiated with eah lass.

Using syntheti data, they show examples of overshoot-

ing surfaes that are often enountered in surfae regular-

ization. As exempli�ed by these two methods, many ap-

proahes based on surfae regularization are restrited to
height �elds.

In [16℄, Fang and Gossard reonstrut pieewise ontinu-

ous parametri urves. The advantage of parametri urves

and surfaes over height-�elds is the ability to represent

losed urves and surfaes. Eah urve in their pieewise re-

onstrution minimizes a ombination of �rst, seond, and
third order energies. Unlike previous examples, the deriva-
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tive of the urve in this method is evaluated with respet
to the parametri variable. Eah urve is formulated as a

sum of weighted basis funtions. Fang and Gossard show

examples using Hermite basis. The approah we present in

this paper has similar elements. We also use basis funtions
to reonstrut a losed surfae whih minimizes a ombi-

nation of �rst, seond, and third order energies. We di�er

from the previous work in that we reonstrut omplex

3D objets using a single impliit funtion; we perform

volumetri rather than surfae regularization; and we use
energy-minimizing basis funtions as primitives.

Beause our method of reonstrution applies regular-

ization, omparisons an also be made to other lasses of

stabilizers (or priors) and other energy-minimizing basis
funtions. We postpone the disussion of other prior as-

sumptions and resulting basis funtions to Setion V where

we introdue the multi-order basis funtion that we use to

reonstrut impliit surfaes. The use of radial basis fun-

tions for graphial modelling was introdued by Blinn[6℄.
Sine then, methods have been published that use this

surfae representation for surfae reonstrution, inlud-

ing Muraki[29℄ and Savhenko[33℄. Our work di�ers from

these methods in that we use a basis funtion that min-

imizes multiple energies in 3D, inluding thin-plate and
membrane. Comparison with reonstrutions using Gaus-

sian and thin-plate basis funtions will be addressed in Se-

tion V-A.

D. Surfae Smoothing

A losely related topi is that of mesh smoothing, where

a low-pass �lter is applied to a mesh to redue noise. Exam-

ples of this method inlude the works of Taubin et al. [43℄

and Desbrun et al. [13℄. The primary drawbak of mesh

smoothing methods is that they require an initial mesh.
Our approah reates and smoothes a surfae in one step.

Regularization and smoothing are losely tied. The re-

lationship between regularization and smoothing has been
studied by many, inluding Girosi et al. [19℄, Terzopou-

los [44℄, and Nielson et al [30℄. In Setion V-A, we use a

volumetri data set to demonstrate the similarity between

regularization and spatial smoothing. Our reonstrution

of the data set (whih uses no information about the grid-
ded struture of the volume) omes very lose to a model

obtained by spatially smoothing the 3D data set prior to

iso-surfae extration. The advantage of our reonstrution

algorithm is that it may be applied to data sets that are

unstrutured and non-uniform. Spatial smoothing annot
easily be applied to suh data.

E. Ative versus Passive Sanning Tehnology

Many of the methods desribed above reonstrut sur-

faes from dense and preise data obtained from ative
sanning. In this paper, we address the problem of re-

onstruting smooth and seamless surfaes using data ob-

tained from passive sanning. In passive sanning, only

images and amera alibration information are used to ob-

tain 3D point sets. Ative sanning tehnology (e.g. light
stripe and time-of-ight range sanners) di�er from passive

Fig. 1. Left: Stanford Bunny data set from yberware sanner.
Right: The toy dinosaur data set from voxel oloring. Both re-
onstrutions were generated using the Crust algorithm. The
dinosaur data set obtained from passive sanning is noisier and
lower in resolution.

sanning tehnology (e.g. shape from shading, voxel ol-

oring) in terms of quality, auray, and ost. The typial

sanning resolution of yberware sanners is 0.5 mm, while

that of the voxel oloring data sets we use as examples in
this paper are approximately 1.25 mm. Data from passive

sanning is omparatively more noisy, more non-uniform,

and more sparse than data from ative sanners. In par-

tiular, surfae reonstrution methods suh as [12, 20, 47,

37℄ are not suited for reating models from data aptured
using passive sanning tehniques.

Figure 1 is a omparison between data sets obtained from

laser sanners and that obtained from voxel oloring. Both

data sets were reonstruted using the Crust algorithm of

Amenta et al. whih exatly interpolates all data points.
The toy dinosaur data set obtained from voxel oloring

is signi�antly lower in resolution and auray than the

Stanford Bunny obtained using a yberware sanner. The

primary advantage of passive sanning methods is the low

ost of digital ameras (less than $1000) that are used to
apture the images. Camera alibration is obtained using a

alibration grid that is aptured in the images. In ontrast,

the urrent ost of ative range sanners is from $10,000 to

over $100,000.

III. Overview of the Approah

Our approah to surfae reonstrution is based on re-

ating a single impliit funtion f(x) by summing together

a olletion of weighted radial basis funtions. We adopt

the onvention that the impliit funtion is positive inside
the surfae, zero on the surfae, and negative outside the

surfae. The nature of the radial basis funtions that are

used is important to the quality of the reonstrutions, and

we disuss the basis funtion seletion in detail in Setion

V. As input to impliit funtion reation, our method re-
quires a olletion of onstraint points i that speify where

the funtion should take on partiular values. Most of the

onstraint points ome diretly from the input data, and

these are points where the impliit funtion should take

on the value zero. We all these 3D loations surfae on-

straints. In addition, our method requires that some 3D
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points be expliitly identi�ed as being outside the surfae,
and we all these exterior onstraints. Sattered data ap-

proximation of the surfae and exterior onstraints is then

used to onstrut the impliit funtion. In Setion IV-B

we desribe the details of the impliit formulation, and in
Setion VI we disuss the sampling of surfae and exterior

onstraints from the measured data of an objet.

IV. Volumetri Regularization

The surfae reonstrution tehnique that we present in

this paper is an extension of the variational impliit sur-
faes of [48℄. This approah is based on the alulus of

variation and is similar to surfae regularization in that it

minimizes an energy funtional to obtain the desired sur-

fae. Unlike surfae regularization, however, the energy

funtional is de�ned in R3 rather than R2. Hene, the fun-
tional does not at on the spae of surfaes, but rather, on

the spae of 3D funtions. We all this volumetri regu-

larization. We use volumetri regularization to obtain a

smooth 3D impliit funtion whose zero level set is our re-

onstruted surfae. By Sard's theorem [8, 17℄, the set of
nonregular values of suh a smooth impliit funtion is a

null set. Hene, the surfae desribed by the zero level

set of our impliit funtion does not ontain pathologial,

or non-di�erentiable, points. In this setion, we desribe

how we onstrut an approximating surfae and obtain the
impliit funtion representing the surfae using volumetri

regularization.

A. Approximation vs. Interpolation

Sattered data interpolation is the proess of estimat-

ing previously unknown data values using neighboring data
values that are known. In the ase of surfae reonstru-

tion, the surfae passes exatly through the known data

points and is interpolated between the data points. Data

interpolation is appropriate when the data values are pre-

ise. In vision-based data, however, there is some uner-
tainty in the validity of the data points. Using data in-

terpolation to onstrut the surfae is no longer ideal be-

ause the surfae may not atually pass exatly through the

given data points. This is preisely the problem with algo-

rithms from omputational geometry that generate polyg-
onal meshes using data points as the verties of the mesh.

If the unertainty of the data points is known, a surfae

that better represents the data would pass lose to the

data points rather than through them. Construting suh

a surfae is known as data approximation. Many vision-
based tehniques for apturing 3D surfae points have an

assoiated error distribution for the data points. In this

setion, we disuss how data approximation is ahieved in

our framework using volumetri regularization.

In regularization, the unknown funtion is found by min-

imizing a ost funtional, H , of the following form:

H [f ℄ = �[f ℄ +
1

�

nX
i=1

(yi � f(xi))
2 (1)

In the above equation, f is the unknown impliit surfae

λ=2.0λ=0.0 λ=0.001 λ=0.03

Fig. 2. Reonstrution of a syntheti range image of a ube orner
using various values of �.

funtion; �[f ℄ is the smoothness funtional, suh as thin-

plate; n is the number of onstraints, or observed data

points; yi are the observed values of the data points at
loations xi; and � is a parameter (often alled the regu-

larization parameter) to weigh between �tness to the data

points and smoothness of the surfae. We an allow the

surfae to pass lose to, but not neessarily through, the

known data points by setting � > 0. When � = 0, the
funtion interpolates the data points. The � values may be

assigned aording to the noise distribution of the data a-

quisition tehnique. Figure 2 shows the results of applying

di�erent � values on the same data set. As � approahes

zero, the surfae beomes rougher beause it is onstrained
to pass loser to the data points. At � = 0, the surfae in-

terpolates the data, and overshoots are muh more evident.

At larger values of �, the reonstruted model is smoother

and approahes an amorphous bubble.

B. A Solution to the Regularizing Cost Funtional

Derivations presented in [19, 49℄ show that the ost

funtional given in Equation 1 is minimized by a sum of

weighted radial basis funtions as shown below:

f(x) = P (x) +

nX
i=1

wi�(jx � ij) (2)

In the above equation, f(x) is an impliit funtion that

evaluates to zero on the surfae, negatively outside, and

positively inside; � is the radially symmetri basis funtion;

n is the number of basis; i are the loations of the enters
of the basis; and wi are the weights for the basis. In [48℄,

Turk and O'Brien enter a basis funtion at eah onstraint

point. We do the same in this work. The onstraints may

be points on the surfae of the objet to be reonstruted or
points external to the objet. The polynomial term, P (x),

spans the null spae of the basis funtion. For thin-plate

energy, the polynomial term onsists of linear and onstant

terms beause thin-plate energy onsists of seond order

derivatives. In 3D where x = (x; y; z), the polynomial term
for thin-plate is P (x) = p0 + p1x+ p2y + p3z. The unique

impliit funtion is found by solving for the weights, wi, of

the radial basis funtions and for the oeÆients, p0, p1, p2,

and p3, of P (x). The unknowns are solved by onstruting

the following linear system, formed by applying Equation
2 to eah onstraint, i.
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In the above equation, p0 and p = (p1; p2; p3) are o-

eÆients of P (x). The funtion value, f(i), at eah

onstraint point is known sine we have de�ned the on-
straint points to be on the surfae or external to the objet.

f(i) = 0 for all i on the surfae. All exterior onstraints

are plaed at the same distane away from the surfae on-

straints and are assigned a funtion value of -1.0 (more

details will be given in Setion VI-A on seletion of exte-
rior onstraints). Notie that in the above system matrix,

� appears on the diagonal. By inreasing the value of �,

the system matrix beomes better onditioned beause it

beomes more diagonally dominant. The addition of � does
not invalidate Equation 2 beause �

Pn

i=1
wi = 0 (as seen

in row n+1 of the matrix). The use of � for trading o� in-

terpolation and approximation is found in numerous other

publiations, inluding those of Girosi et al. [19℄, Yuille et

al. [51℄, and Wahba [49℄ where a detailed derivation an be
found.

It is possible to assign distint � values to individual on-
straints. In this ase,

Pn

i=1
�iwi 6= 0, but instead, beomes

part of the onstant in the null spae term, P (x). This

exibility is espeially important when we use exterior on-

straints beause they are added only to provide orientation

to the surfae but do not represent real data. In pratie,
we have found that � works well as a semi-global regular-

izing parameter, where one � value is used for all surfae

onstraints, and another for all exterior onstraints. Using

one � value for all surfae onstraints is appropriate when
the spatial distribution of noise is isotropi. This is a rea-

sonable model for many vision-based data sets inluding

the voxel-oloring data set that we later use as examples.

With other noise models, it may be more appropriate to

use � as a loal �tting parameter by assigning a � value for
eah surfae onstraint based on the on�dene measure-

ment of the point. A large � value suh as 2.0 is often used

for exterior onstraints, while small values suh as 0.001

is often used for surfae onstraints. This hoie of � for

surfae onstraints was found through measures of �tness
and urvature applied to the voxel oloring data set of a

toy dinosaur. We found that a pratial upper bound for

� for surfae onstraints from these types of data sets is

0.003. A detailed desription of the �tness measures and

results for various values of � an be found in our tehnial
report [14℄.

The impliit formulation desribed by Equation 2 has

been used in a number of previous work, inluding those

[6, 9, 28, 29, 31, 33, 48, 50, 51℄. In [6, 29, 51℄, the basis

funtion, �, was a Gaussian, while in [9, 31, 33, 48, 50℄, �

inherently minimized thin-plate energy. In [6, 29℄, the ba-
sis funtions were not entered at surfae data points and

regularization was not applied to obtain the weights for the
impliit funtion. Instead, Muraki iteratively added Gaus-

sian basis funtions until a suÆiently lose �t is obtained.

In [28, 48, 50℄, reonstrutions were performed on aurate,

dense yberware sanned data. Hene, regularization was
not neessary and simply using basis funtions whih min-

imize a desired energy was suÆient. In the next setion,

we ompare the various hoies of � and disuss our sele-

tion of a basis funtion that minimizes multiple orders of

energy.

Figure 3 is a omparison of reonstrutions of a toy di-

nosaur. The Crust algorithm was used to reonstrut the

surfae shown in (a) whih exatly interpolates all 20,120
data points; thin-plate basis funtions were used to on-

strut the interpolating impliit surfae shown in (b); and

in (), thin-plate basis funtions were used to onstrut the

approximating impliit surfae with � set to 0.001. Only

3000 surfae and 264 exterior onstraints were used to re-
onstrut the impliit models. The approximating thin-

plate surfae is muh smoother than either of the other

two surfaes. The overshoots are less apparent, and there

are fewer protruding bumps and fewer small pokets em-

bedded in the surfae. Unfortunately, the toy dinosaur's
features are blobby and amorphous, espeially at the feet

and hands. Distint limbs, suh as the feet and tail, are

fused together. It is apparent from this result that the

thin-plate basis funtion used by Turk and O'Brien gener-

ates models whih are too blobby.

V. A Radial Basis Funtion for Multiple Orders

of Smoothness

The results in Figures 3(a), (b), and () show that a bal-

ane is needed between a tightly �tting, or shrink- wrapped,

surfae, and a smooth surfae. A tightly �tting surfae

separates the features of the model but is prone to jagged

artifats. For example, the Crust reonstrution, shown in
Figure 3(a), is an exat �t to the data with no smooth-

ness onstraint. On the other hand, a smooth surfae may

beome too blobby as seen in Figures 3(b) and (), whih

show that minimizing the thin-plate energy alone is not

suÆient to produe a surfae that separates features well
and is loally detailed.

In [10℄, Chen and Suter derive radial basis funtions for

the family of Laplaian splines. The basis funtions are
omprised of jrjk , jrjklogjrj, exponential, and Bessel fun-

tion terms, where r is the distane from the enter of the

radially symmetri basis. The value of k depends on the

dimension and order of smoothness. Turk and O'Brien

use �(r) = jrj2logjrj for 2D thin-plate interpolation, and
�(r) = jrj3 for 3D thin-plate interpolation. Figure 4(a)

shows that these funtions exhibit global inuene beause

the value of the funtion tends toward in�nity as the dis-

tane from its enter inreases. The system matrix, whih

onsists of the evaluation of the basis funtion at distanes
between pairs of onstraints, is dense beause onstraint

points are uniformly spread aross the region of interest.

First, seond, and third order energy-minimizing splines
are also members of the family of Laplaian splines. Thin-
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(b) (c) (d) (e)(a)

Fig. 3. Reonstrutions of the toy dinosaur. (a) Crust reonstrution. (b) Exat interpolation using thin-plate basis funtion. () Surfae
approximation using thin-plate basis funtion. (d) Surfae approximation using Gaussian basis funtion. (e) Surfae approximation using
multi-order basis funtion.
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Fig. 4. (a) Cross setions of radially symmetri basis funtions for jrj
2logjrj and jrj

3. (b) and () Cross setions of basis funtions for a
ombination of �rst, seond, and third order smoothness for various values of Æ and � . (d) Comparison of running times to solve for
weights for the thin-plate and and for the multi-order basis funtions.

plate energy is equivalent to seond order energy, and mem-

brane to �rst order energy. Surprisingly, a radial basis

funtion that minimizes a ombination of �rst, seond, and

third order energies quikly falls toward zero, yielding a

better onditioned system matrix than one that minimizes
thin-plate energy alone. In [38℄, Suter and Chen used ba-

sis funtions that minimize multiple orders of smoothness

(beyond the �rst and seond order) to reonstrut human

ardia motion. They found that a model minimizing third

and fourth order energy resulted in the smallest RMS er-
ror. They onluded that basis funtions that minimize

more than just the �rst and/or seond order energy gen-

erate more aurate reonstrutions. In addition, as the

spae dimension inreases, the order of ontinuity of the
thin-plate spline at data points derease. Suter and Chen

show that in 3D, the thin-plate spline basis has disontin-

uous �rst order derivatives at the data points. We hose

to use a basis that ahieves �rst, seond, and third order

smoothness beause, unlike motion, objet surfaes may
ontain sharp features that are C1 disontinuous. The re-

sulting impliit funtion has ontinuous derivatives due to

the additional third order smoothness (although, the iso-

surfae may not have ontinuous derivatives). The geomet-

ri analogy to minimizing third order energy is urvature

ontinuity. It has been shown in previous work by Fang and

Gossard [16℄ that inluding urvature ontinuity results in
improved urve and surfae �tting. Terzopoulos also spe-

ulates on the use of urvature ontinuous stabilizers in [44℄.

In [10℄, Chen and Suter derive suh a basis, using a

smoothness funtional omprised of the �rst, seond, and

third order Laplaian operator. The assoiated partial dif-
ferential equation is similar to Laplae's equation ��f =

0, but also has higher order terms:

�Æ�f +�2f � ��3f = 0 (4)

In the above equation the Laplaian operator � in 3D is:

�f =
�2f

�x2
+

�2f

�y2
+

�2f

�z2
(5)

In Equation 4, Æ ontrols the amount of �rst order

smoothness, and � ontrols the amount of third order
smoothness. The balane between Æ and � ontrols the
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amount of seond order smoothness. The radial basis fun-
tion that inherently minimizes the above energy funtional

in 3D as derived in [10℄ is:

�(r) = 1

4�Æ2r
(1 + we

�
p
vr

v�w
� ve

�
p
wr

v�w
)

v = 1+
p
1�4�2Æ2

2�2
w = 1�

p
1�4�2Æ2

2�2

(6)

In the above equations, r is the distane from the enter

of the radial basis funtion. The polynomial term spanning

the null spae of the multi-order basis funtion is simply a

onstant, P (x) = p0. Figures 4(b) and () show plots of

the above funtion for various values of Æ and � . Unlike
the plot for �(r) = jrj3, these plots show that the value of

the basis funtion quikly falls toward zero as the distane

from its enter inreases.

A. Comparison with Gaussian, Thin-Plate Radial Basis

Funtions, and Spatial Smoothing

The multi-order basis funtion desribed by Equation 6

has several advantages over the thin-plate and Gaussian

basis funtions used by Blinn, Muraki, Yuille, and others

[6, 51, 29℄. The system matrix formed by the thin-plate

basis funtion is dense, and non-zero values grow larger
away from the diagonal. Computation time inreases sig-

ni�antly as more onstraints are spei�ed. In ontrast,

the system matrix formed by the multi-order basis fun-

tion is diagonally dominant and is espeially amenable to

the bionjugate gradient method of solving linear equa-
tions. Even though the matrix formed by the multi-order

basis is dense, non-zero values diminish away from the di-

agonal. Timing results show that the unknown weights of

Equation 2 were solved in 1.5 minutes using the multi-order

basis funtion with Æ = 10 and � = 0:01, while the system
matrix generated for the same set of 3264 onstraints using

the thin-plate basis funtion required 7.9 minutes to solve

on an SGI Origin with 195 MHz MIPS R10000 proessor.

Figure 4(d) is a omparison of running times versus num-

ber of onstraints for the thin-plate and multi-order basis
funtions. The inrease in running time as the number

of onstraints inrease is fairly linear for the multi-order

basis funtion as opposed to the thin-plate basis. The sys-

tem matrix formed using Gaussian basis funtions (with

� = 0:01) is sparse, requiring only 2.6 minutes to solve.
The system matrix is solved even more quikly with smaller

values of �, but at the ost of worse reonstrutions.

In terms of reonstrution quality, the multi-order basis

funtion is able to reonstrut more loally detailed mod-
els while still retaining global smoothness. Both the thin-

plate and the Gaussian basis funtions result in models

with overshooting surfaes. The Gaussian basis atually

forms holes embedded in the surfae. The thin-plate basis

reates poorer reonstrutions than the multi-order basis
beause the thin-plate basis fores the surfae to be too

smooth, resulting in blobby models. The Gaussian basis is

an in�nite mixture of Tikhonov stabilizers, also resulting

in surfaes that are too smooth. Figure 3 is a omparison

of reonstrutions of the toy dinosaur using the thin-plate
(), the Gaussian (d), and the multi-order (e) basis fun-

tions. Note that the round protrusion beneath the arm is
the wind-up key for the toy and that the bumps on the

bak are the sales and spines of the atual toy dinosaur

(see Figure 9 for two of the original images).

Another di�erene between reonstrution using the

multi-order and the thin-plate basis is in use of non-zero
interior and exterior onstraints. Reonstrution using the

thin-plate basis is muh more dependent on the dense

plaement of exterior onstraints to prevent the surfae

from overshooting into regions where the model should not

exist and on the plaement of interior onstraints to de�ne
the orientation of the surfae. In [48℄, Turk and O'Brien

pair eah surfae onstraint with a normal onstraint that

is interior to the surfae and has a funtion value of 1.0.

The multi-order basis does not overshoot as muh as the

thin-plate basis. Hene, a sparse, uniform spread of exte-
rior onstraints are enough to orient the impliit surfae.

We have found in pratie, that approximately one exterior

onstraint for every ten surfae onstraints is suÆient and

that interior onstraints are unneessary. More details are

provided in Setion VI-A on how exterior onstraints are
obtained.

The real voxel oloring data sets we use, desribed in

Setion VII, are embedded in a global grid struture. In

suh ases, it is possible to spatially smooth the data in

3D and obtain a smooth reonstrution through iso-surfae

extration. Note that this is not true in the general ase
where the input data set may be unstrutured. As it turns

out, the multi-order prior we use an give reonstrutions

that are very similar to spatial smoothing when Æ and �

are appropriately set to be smooth. Figure 5 ompares the

reonstrution of the toy dinosaur using spatial smooth-
ing and using the multi-order basis. The similarity of

these reonstrutions show that the multi-order basis is

indeed losely related to spatial smoothing. As noted in

[43℄, spatial smoothing tends to shrink features (suh as
the paws of the dinosaur), while volumentri regularization

does not. An added advantage of using energy-minimizing

basis funtions is that it an reate smooth reonstru-

tions of unstrutured and non-uniform data, to whih spa-

tially smoothing annot easily be applied. Uniform spatial
smoothing of unstrutured data would require a resampling

step to integrate all data points into a strutured grid, as

was done in [12℄. In addition, the parameters, Æ and � ,

assoiated with the multi-order basis allows �ner ontrol

over how muh smoothing is applied. For example, in Fig-
ure 3(e), Æ and � were set to preserve the sales and spines

on the bak of the toy dinosaur whih is lost by too muh

smoothing in Figure 5.

VI. Constraint Speifiation

As desribed in Setion IV-B, the impliit funtion we
reonstrut evaluates to zero on the surfae, positively in-

side the surfae, and negatively outside. The data sets

we use to perform the reonstrution is from passive range

sanning. Suh data sets are noisy, low in resolution, and

more sparse than data sets from ative range sanning. We
desribe the data sets in more detail in Setion VII. In this
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(a) (b)

Fig. 5. (a) Iso-surfae extration of volumetri data after spatial smoothing using a Gaussian �lter with a radius of four voxels. (b)
Reonstrution using the multi-order basis funtion with 3000 surfae onstraints and Æ = 10:0 and � = 0:025.

setion, we desribe the method by whih we obtain surfae

and exterior (negative) onstraints used in the reonstru-

tion. We also address the sampling required to guarantee

that the topology of the objet is orretly reonstruted
and how this sampling density is mapped to the seleted

values for the parameters, Æ and � , ontrolling the amount

of �rst and third order smoothness respetively.

A. Exterior Constraints

The omputer vision ommunity has developed many
methods to aquire 3D positional information from pho-

tographi images taken by ameras. The goal of all these

methods is to determine a olletion of 3D points that lie on

a given objet's surfae. When suh a olletion of points is

aquired using ameras, the amera position and diretion
provide additional information that an be used for surfae

reonstrution. If a surfae point is seen from a partiular

amera, there are no other surfaes between the amera

and the point. We all the region between the amera and

the surfae free spae. Other approahes to surfae reon-
strution make use of this information as well [12℄. We an

use this a priori knowledge about the objet surfae loa-

tions and the free spae to de�ne onstraints that lie on or

outside of the objet, as seen in Figure 6.

Reall that the exterior onstraints are those loations

where we want our impliit funtion to be negative, and the

surfae onstraints are where the impliit funtion should

evaluate to zero. In pratie, we plae exterior onstraints
at the same distane away from the surfae onstraints to-

wards the amera viewpoints and assign them a funtion

value of -1.0. As mentioned in Setion IV-B, exterior on-

straints do not represent atual data, but rather, are hints

to the surfae orientation. Hene, a sparse sampling of
exterior onstraints is suÆient to properly orient the sur-

fae, and a large value of �, suh as 2.0, indiates that

the negative data point should be highly approximated.

We have found that one exterior onstraint per ten surfae

onstraints works well in pratie. An additional sparse
set (about 16 points) of exterior onstraints on a bounding

*

-

free space*
**
**

-
-- --
-
---
---

Fig. 6. Free spae is arved out by rays projeting from the amera
to the objet surfae. Surfae (*) and exterior (-) onstraints are
de�ned by the free spae.

sphere around the objet helps to onstrain the surfae,

and alone, is often suÆient to de�ne the surfae orienta-

tion. Next, we disuss how we subsample both the exterior

and surfae onstraints.

B. Subsampling Surfae Constraints

Beause our method of reonstrution requires the solu-

tion of a linear system, it is omputationally limited in the

number of onstraints that an be used to onstrut the

surfae. Examples shown in this paper have used around
3000 surfae points, sampled from a set of around 20,000

surfae points. Using the entire data set would not only be

intratable, but would also result in an impliit funtion

that is equal in size to the original disrete data set. In

this ase, the representation would no longer be ompat.

The sampling density of a redued data set must be suh

that the features in the data are well sampled. Sine this

information is not known a priori, our approah is to uni-

formly sample the data and then map this sampling density

to appropriate Æ and � parameters. Surfae points from the
full data set are randomly seleted. Eah time a sample

is seleted, the neighboring samples within a small radius

are eliminated from possible seletion in the next round.

The elimination proess prevents lusters of losely plaed

onstraint points, and resembles a 3D version of Poisson
dis sampling. We have applied this method to uniformly
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Fig. 7. Reonstrutions of the head of the toy dinosaur. Left: reon-
strution using full data set (3173 surfae points). Right: reon-
strution using a subset of available data (477 surfae points).

subsample the voxel oloring data and exterior onstraints
previously desribed.

Experiments show that the redued data set is suÆient

to apture the details present in the noisy data. Figure 7 is
a omparison between reonstrutions from the entire data

set and from a sampled subset. The full data set onsists

of 3173 surfae points, while the redued set onsists of 477

points. The total distane, or error, between the original

3173 surfae points and the surfae reonstruted from the
full data set was 0.008, while the total error between the

3173 surfae points and the surfae reonstruted from the

redued set was 0.009. The model itself was onstrained to

be within a 2 � 2 � 2 box.

Adaptively inreasing the sampling in highly detailed re-

gions is not appropriate in many vision-based data sets.

Detailed regions are often synonymous with areas of high

urvature and small area. In a vision-based system, these
small areas map to few pixels in the aquired images, result-

ing in low on�dene for suh regions. Inreasing the sam-

pling density in these small, detailed regions would taint

the redued data set with many low on�dene points.

It is possible to partition the data set, onstrut a sepa-

rate impliit surfae for eah partition, and then ombine

the surfaes. However, the resulting representation would

not be ompat. We opted not to take this approah sine
the di�erene in the �tness errors between the full and the

redued data sets was minimal. Yngve and Turk [50℄ and

Carr et al. [9℄ have also shown that it is unneessary to

have a basis funtion for eah surfae point. Their approah

was to iteratively add basis funtions until the �tness error
was suÆiently low. We avoid an iterative solution by uni-

formly sampling the data set. One drawbak of the uniform

sampling approah is that noise at the sale of features an-

not be removed. Some examples of this e�et are shown in

the toy dinosaur's hest area.

C. Mapping Surfae Sampling Density to Æ and � Values

Reall from Setion V that Æ ontrols the amount of �rst
order smoothness, while � ontrols the amount of third or-

der smoothness. The values of Æ and � that orrespond

to the best reonstrution of a surfae is dependent on the

sampling density of the surfae and the desired smoothing.

In our work, we maintain onsistent average sampling den-
sity aross all models by onstraining the size of the model

and by using nearly the same number of surfae onstraints
to over the data set. We sale all the models to lie within a

2 � 2 � 2 box. By applying this normalization, the feature

size, average sampling density, and hoie of Æ and � are

onsistent aross all models. This normalization is appro-
priate beause all our input data sets have approximately

the same resolution. One measure of this normalization is

the average minimal distane between sample points. We

ompute this distane by averaging the distanes between

eah sample point and its losest neighboring sample point.
We show later in Setion VII where we disuss the data sets

in more detail that this average minimal distane is similar

aross all data sets after normalization and sampling.

We hose appropriate values for Æ and � by omparing
models that have been reonstruted at various values of Æ

and � . We have two methods of validation and omparison

between the reonstruted models. These methods are a

measure of �tness error and a measure of average urvature.

We de�ne �tness error to be the aggregate distane between
the original data points and the reonstruted surfae. To

measure the average urvature of a surfae, we �rst extrat

a polygonal model from the impliit funtion. We measure

urvature at eah vertex of the polygonal model using an

approximation that was developed for the smoothing oper-
ator in [13℄. The average urvature is obtained by dividing

the aggregate urvature by the number of verties in the

polygonal model. High urvature is assoiated with sharp

features in the surfae, while low urvature is assoiated

with overshoots and blobby surfaes.

We applied the measures of �tness and urvature to the

toy dinosaur data set to guide seletion of appropriate val-

ues for �, Æ, and � . For details on the seletion of these
values, see our tehnial report [14℄. We have found in

pratie that values of � between 0.001 to 0.003, Æ between

5.0 to 40.0 and � between 0.005 to 0.025 an be used to pro-

due loally detailed, yet globally smooth, reonstrutions

with minimal error on a variety of data sets.

D. Handling Outliers

Outliers are handled by a preproessing step that �nds

the largest onneted omponent in the data set. For the

voxel oloring data set, we traverse the volume of surfae
points and group together voxels that are within the 26-

neighborhood of eah other. The single, largest onneted

omponent is kept, and all other surfae points are elimi-

nated. If n omponents exist (where n > 1), then we an

sort the omponents in the data set aording to their size,
and keep only the �rst n largest omponents.

E. Topology Adaptation

One of the main advantages of the variational impliit

surfae tehnique is its ability to reonstrut models of ar-
bitrary topology without expliit knowledge of the topology

of the model beforehand. The resulting topology is, how-

ever, dependent on the data samples used to reonstrut

the model. It is neessary to suÆiently speify surfae

and exterior onstraints to de�ne the topology. For ex-
ample, if a torus is to be reonstruted, then at least one
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exterior onstraint is needed near the torus hole to fore the
existene of the hole in the middle of the torus. As long as

the surfae and exterior spae are uniformly sampled, the

topology is orretly reonstruted. However, sine we are

using data from vision-based methods, view olusion or a
lak of referene views may prevent orret sampling of the

spae. For example, if no views of the torus showing the

hole in the enter are available, then the hole may not be

orretly reonstruted. We argue, that in suh a ase, the

topology of the reonstruted model is onsistent with the
ambiguity of the topology in the data set.

VII. Results

We now show that volumetri regularization generates

globally smooth, yet detailed, surfaes and disuss the ad-

dition of olor to the models. We reonstruted surfaes

using the multi-order basis on two types of data { syntheti

range data and real voxel oloring data. Our method of re-
onstrution an generate smooth surfaes from data sets

that are globally unstrutured and noisy. Although neither

types of data sets we use have both these features, eah is

an example of one feature. The syntheti range data is not

embedded in a global grid, while the voxel oloring data is
quite noisy in omparison to ative range sanning data.

A. Syntheti Range Data

We use a modi�ed ray-traer [24℄ to generate syntheti

range images as one test of our approah. We used the

Stanford Bunny as our test model, and reated three syn-

theti range images from positions separated by 120 de-
grees on a irle surrounding the model. For eah range

image, surfae onstraints are reated by uniformly down-

sampling the range image to redue the size of the data

set. For every ten surfae onstraints, one exterior nega-

tive onstraint is reated within the free spae desribed in
Setion VI. Additional exterior onstraints are de�ned on

a sphere surrounding the bounding box of the objet at a

distane farther away from the objet. Figure 8(a) shows

the original Stanford Bunny model onsisting of 69,451 tri-

angles, while (b), (), and (d) show the impliit surfae re-
onstruted from 2168 surfae and 193 exterior onstraints

using the multi-order basis funtion. Figures 8() and (d)

also show the distribution of the onstraints overlayed on

top of the reonstrution. The average minimum distane

between surfae samples used in the reonstrution is 0.051.
Values of � = 0:001, Æ = 10, and � = 0:01 were used to re-

onstrut the surfae. The impliit surfae is quite similar

to the ground truth. Our method of reonstrution pro-

dues plausible surfaes even in loations where the data is

sparse. The model is losed on the top and bottom of the
Bunny even though few onstraint points were plaed there.

The model is losed at these plaes due to the inherently

manifold nature of impliit surfaes, and it is smooth at

these loations by virtue of minimizing the ost funtional.

B. Real Volume-Carved Data

Syntheti data does not have the noisy harateristi of
real data. We now desribe the real spae arved data

that we use and how we de�ne the surfae and exterior
onstraints. We use three data sets of real objets ob-

tained through voxel oloring [35, 11℄ { a toy dinosaur

(from Steve Seitz [35℄), a brooli stalk, and a stak of toy

tori (from Brue Culbertson and Tom Malzbender [36℄ and
referred to as the towers data set). Both data sets were ob-

tained by taking about 20 images approximately on a irle

around eah objet. Thin-shelled, voxelized surfaes were

then onstruted using the generalized voxel oloring algo-

rithm [11℄. The spae is arved by splatting eah visible
voxel towards eah alibrated amera and determining the

onsisteny of the olor aross the images. If the variane

in olor intensity is below a spei�ed threshold, the voxel

is kept as part of the objet surfae. Otherwise, it is ast

out and assigned a zero opaity value. The data onsists of
red, green, and blue hannels. Non-empty voxels represent

the presene of a surfae, as dedued by the voxel oloring

algorithm. Figure 10 shows the real voxel oloring data

sets.

We apply the tehnique desribed in Setion VI to ob-

tain surfae and exterior onstraints for the voxel oloring

data set. Non-empty voxels are surfae loations. Exterior

onstraints are found by projeting eah surfae voxel in

the volume to the image plane of eah amera. If the ray
from the surfae voxel to a amera intersets other surfae

voxels, then the view of the voxel is bloked. Otherwise,

the amera has an unobsured view, and an exterior on-

straint an be plaed at a small distane away from the

surfae voxel along the ray towards the amera, as de-
pited in Figure 6. Note that for eah surfae voxel, an

exterior onstraint is reated for eah amera that has an

unobsured view of the surfae voxel. Again, only a subset

of the surfae and exterior onstraints are seleted by the

Poisson dis sampling tehnique in Setion VI-B. One a
spei�ed number of onstraints have been olleted, they

are given to the reonstrution algorithm. In this paper,

we have used from 2000 to 3000 surfae onstraints. We

have found that 100 to 300 exterior onstraints suÆe to

de�ne the orientation of the surfae. Figure 10 shows ex-
amples of our reonstrutions from spae arved data. The

average minimum distane between surfae samples used in

the reonstrution for the toy dinosaur, brooli, and tow-

ers data sets are 0.035, 0.041, and 0.042, respetively. Note

that the bumps on the bak of the dinosaur are the sales
and spines of the atual toy. The small protrusion near the

base of the brooli stalk is an atual leaf that has been a-

urately deteted by the voxel oloring algorithm and has

been orretly sampled and reonstruted by the method

we desribe in this paper. The running time for Marhing
Cubes [27℄ to extrat an iso-surfae is dependent on the de-

sired resolution of the model and the number of terms (or

onstraints) in the impliit funtion. Surfae extration of

the toy dinosaur at the resolution shown in Figure 10 took

14.5 minutes.

C. Model Coloring

In order to reate a olor version of the surfae, we be-
gin with a polygonal model that was obtained through iso-
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(a) (b) (c) (d)

Fig. 8. Part (a) is the original Stanford Bunny onsisting of 69,451 triangles. Parts (b), (), and (d) show the reonstruted surfae using
the multi-order basis reonstrution method of this paper. Parts () and (d) show the surfae onstraints (blue squares) and the exterior
onstraints (green squares) used in the reonstrution overlayed on top of the reonstruted surfae. Note that the reonstruted surfae
is losed on the top and bottom even though few onstraints are present.

Fig. 9. Eah pair of images is a omparison of the original input image used to generate the voxel oloring data set (left) and the reonstruted
impliit model rendered from the same amera viewpoint (right). A novel viewpoint of the impliit model is shown in Figure 10

surfae extration using Marhing Cubes [27℄. We assign a

olor to eah triangle of the polygonal model by reprojet-

ing the triangles bak to the original input images. Eah
triangle in the polygonal model is subdivided until its pro-

jeted footprint in the images is subpixel in size, so that

it an simply take on the olor of the pixel to whih it

projets. In most ases, a triangle is visible in several of

the original images. We ombine the olors from the di�er-
ent images using a weighted average. The weight of eah

olor ontribution is alulated by taking the dot produt

between the triangle normal and the view diretion of the

amera that aptured the partiular image. Cameras with

viewing diretions that are nearly perpendiular to the tri-
angle normal ontribute less than those with viewing dire-

tions that are nearly parallel to the triangle normal. We

use z-bu�ering to ensure that only ameras with an unob-

sured view of the triangle an ontribute to the triangle

olor. Figure 10 shows the �nal models of the toy dinosaur,
brooli, and towers from novel viewpoints after olor has

been applied. Figure 9 is a omparison of two of the origi-

nal input images of the toy dinosaur with rendered images

of the reonstruted impliit surfae from the same amera

viewpoints.

D. Limitations of Volumetri Regularization

Surfae reonstrution using volumetri regularization

does not generate surfaes with boundaries. Instead, our
method loses over gaps in the data set to onstrut a man-

ifold surfae. Open surfaes an be generated by plaing

limits on the iso-surfae extration.

As noted in Setion VI, the features and topology of the

reonstruted model is dependent on the density of the in-
put data set. Features that are not inherent in the data will

not be reonstruted. Conversely, noise that is the size of

features will beome embedded in the reonstrution. This

limitation is ommon to most methods of reonstrution
and smoothing.

Our method of reonstrution requires the solution of

a matrix system. This requirement onstrains the size of

the data sets that we an reonstrut due to speed and

memory limitations. Reently published work by Carr et
al. [9℄ on reonstruting surfaes from dense, preise data
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88679 voxels δ = 5, τ = 0.025

29882 voxels δ = 5, τ = 0.025

20120 voxels δ = 25, τ = 0.01

Fig. 10. From left to right: original voxel data sets from voxel oloring, our new impliit surfae reonstrutions using the multi-order radial
basis funtion, and textured versions of our reonstrutions. From top to bottom: toy dinosaur, brooli, and towers data sets. 3000
surfae onstraints were used to onstrut the impliit surfaes.
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sets using the thin-plate spline o�ers an eÆient solution
to the variational impliit method. We believe that their

work using the Fast Multipole Method an also be applied

here with the multi-order basis.

VIII. Conlusion and Future Work

The reonstrution algorithm we have presented in this

paper generates models that are smooth, seamless, and

manifold. Our method is able to address hallenges found

in real data sets, inluding noise, non-uniformity, low res-

olution, and gaps in the data set. We have ompared our
tehnique to an exat interpolation algorithm (Crust), to

thin-plate and Gaussian variational impliits, and to the

original volumetri reonstrution using the toy dinosaur

as a running example. Obvious advantages to the mod-

els generated by volumetri regularization are that there
are no disretization artifats as found in volumetri mod-

els, and the surfae is not jagged as in the Crust reon-

strution. Volumetri regularization an generate approx-

imating, rather than interpolating, surfaes, and is most

losely related to the thin-plate variational impliit sur-
faes. It ompares favorably to the thin-plate variational

impliit surfaes in omputation time as well as in the sur-

faes that are generated. Using the multi-order radial ba-

sis funtion, volumetri regularization generates loally de-
tailed, yet globally smooth surfaes that properly separate

the features of the model.

We have adapted the variational impliit surfaes ap-

proah to real range data by developing methods to de�ne
surfae and exterior onstraints. Although surfae points

are diretly supplied by the range data, we have introdued

new methods for reating exterior onstraints using infor-

mation about the amera positions used in apturing the

data. We have applied this tehnique to spae arved vol-
umetri data and syntheti range images.

We plan to look at several potential improvements to

our approah, inluding use of on�dene measurements
and modifying the basis funtions loally. For eah 3D

surfae point obtained from the generalized voxel oloring

algorithm, the regularization parameter, �, an be assigned

based on the variane of the olors to whih the surfae

voxel projets in the input images. Another alternative is
to assign di�erent Æ and � values for the multi-order basis

aording to the urvature measure at onstraint points.

These future diretions hold promise of further re�ning the

sharp features of reonstruted surfaes of real world ob-

jets.
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