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Automatic segmentation of polyps in colonoscopic

narrow-band imaging data
Melanie Ganz, Xiaoyun Yang, and Greg Slabaugh

Abstract—Colorectal cancer is the third most common type
of cancer worldwide. However, this disease can be prevented by
detection and removal of precursor adenomatous polyps during
optical colonoscopy (OC). During OC, the endoscopist looks
for colon polyps. While hyperplastic polyps are benign lesions,
adenomatous polyps are likely to become cancerous. Hence it is
common practice to remove all identified polyps and send them
to subsequent histological analysis. But removal of hyperplastic
polyps poses unnecessary risk to patients and incurs unnecessary
costs for histological analysis. In this paper, we develop the first
part of a novel optical biopsy application based on narrow-
band imaging (NBI). A barrier to an automatic system is that
polyp classification algorithms require manual segmentations of
the polyps, so we automatically segment polyps in colonoscopic
NBI data. We propose an algorithm, Shape-UCM, which is an
extension of the gPb-OWT-UCM algorithm, a state of the art
algorithm for boundary detection and segmentation. Shape-UCM
solves the intrinsic scale selection problem of gPb-OWT-UCM
by including prior knowledge about the shape of the polyps.
Shape-UCM outperforms previous methods with a specificity of
92%, a sensitivity of 71% and an accuracy of 88% for automatic
segmentation of a test set of 87 images.

I. INTRODUCTION

Colorectal cancer is the third most common cancer in men

(663,000 cases, 10.0% of the total) and the second most

common cancer in women (571,000 cases, 9.4% of the total)

worldwide. Colon cancer accounts for 8% of all deaths by

cancer, making it the fourth most common cause of death

from cancer [1].

However, this disease can be prevented by detection and

removal of precursor adenomatous polyps during optical

colonoscopy (OC), an endoscopic examination of the colon

using a flexible video camera. During OC, the endoscopist

looks for anomalous growths, which typically fall into one

of two categories: hyperplastic or adenomatous polyps. Hy-

perplastic polyps are benign lesions that confer little clinical

risk of developing into cancer and do not require removal

from the colon. In contrast, adenomatous polyps are pre-

malignant tumours that, if left unchecked, are likely to become

cancerous and are surgically removed by the endoscopist

during a polypectomy.

This decision to remove or leave alone requires expertise

beyond that of many endoscopists. Consequently, it is common

to remove all identified polyps for subsequent histological

analysis [2]. But removal of hyperplastic polyps poses un-

necessary risk to patients (as polyp removal carries a risk

of colon perforation requiring emergency surgery) and incurs

unnecessary costs for histological analysis [3]. This workflow

could be significantly improved if there was a way to perform

an immediate in vivo biopsy of a polyp during OC [2].

In this project we are interested in developing the first part of a

novel optical biopsy application for optical colonoscopy. Sev-

eral groups have researched optical biopsy based on manual

annotations of colon polyps in narrow-band imaging (NBI)

[4]–[6]. These optical biopsy algorithms have shown much

promise, with preliminary results of 80-90% classification

accuracy of hyperplastic and adenomatous polyps from NBI

images. For reference, an expert endoscopist has an accuracy

of approximately 90% [2].

However, a barrier to a fully automatic optical biopsy system

is the limitation that current methods require manual segmen-

tations of the polyps. This task is tedious and unsuitable for

practical clinical deployment. In this paper we seek to auto-

matically segment the polyp in the image, thereby facilitating

the later automation of an entire optical biopsy system.

A. Related Work

The only papers the authors are aware of that have tackled

a similar task of automatically segmenting colon polyps from

NBI data are [7], [8] and [9]. All three methods employ quite

different strategies.

In [7], Gross et al. make the first attempt at performing polyp

segmentation in NBI colonoscopy data. They employ non-

linear diffusion filtering followed by a Canny edge detector

to detect the edges of polyps and then use template matching

to identify the polyp. The article gives some results on local-

ization, but no details are given regarding the segmentation

accuracy.

Breier et al. [8] followed two years later with two different

approaches based on active contours and active rays that also

incorporate multi-scale processing. They were able to achieve

a specificity of 98-100%, with a sensitivity of 3-32% and an

accuracy of 45-58% on a set of 184 polyp images, where the

polyp was present in the center of the image.

Finally, in [9] Breier et al. improve their segmentation perfor-

mance by performing a Chan-Vese-segmentation to decrease

their specificity to 86%, while increasing their sensitivity and

accuracy to 48% and 62%, respectively, on the same data set

that was used in [8].

B. Our Contributions

Our contributions in this paper are three-fold:

First, we propose a new method, called Shape-UCM, which

is an extension of the gPb-OWT-UCM algorithm, a state of

the art algorithm for boundary detection and segmentation.

We are the first, to our knowledge, to apply gPb-OWT-UCM

to medical imaging. Furthermore, gPb-OWT-UCM has an
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intrinsic scale selection problem. We have solved this problem

by using prior knowledge about the shape of the objects we

want to segment. This way we have developed a completely

parameter-free algorithm that automatically segments polyps

in NBI data. Finally, in our experiments we can show that

our algorithm, Shape-UCM, outperforms previous work in this

area by a large margin.

C. Outline of the Paper

In the following we will introduce the concept of narrow-

band imaging (Section II). Then we describe our proposed

algorithm (Section III) and perform experiments to evaluate

its performance (Section IV). Finally, we discuss our results

(Section V) and give a conclusion (Section VI).

II. NARROW-BAND IMAGING

Narrow-band Imaging (NBI) is a recently introduced multi-

spectral endoscopic imaging technique that uses several (two

or three) discrete bands of light to image tissue. This technique

improves visibility of blood vessels, both on the tissue surface

(superficial) and below (subepithelial), due to the fact that

the depth penetration into the tissue mucosa depends on the

wavelengths of light used [10]. NBI became commercially

available in 2005 from Olympus. Today endoscopic diagnosis

has been rapidly progressing and has now advanced to the area

of pathology. The feasibility of NBI has been examined [11]

and it is now used for diagnosis of malignant and premalignant

gastrointestinal lesions [12]. There has also been a large

population trial regarding optical diagnosis of small colorectal

polyps based on NBI [2], which showed that the clinical

workflow could be significantly improved if there was a way

to perform an immediate in vivo biopsy of a polyp during

optical colonoscopy. In our case the images are given as screen

captures as RGB images. The screen captures also include

black background with writing of various sizes. To facilitate

automatic segmentation, we will remove this background in

our pre-processing procedure. Furthermore, in our dataset the

polyps are not always in the center of the image, but can also

be situated at the image boundary. In this paper we assume

that the endoscopist places the polyp in the center of the image

(this is for example the case in the dataset used by [8] and

[9]). Hence in our dataset for the cases where the polyp is not

in the center, we center it by choosing the segmented region

that has the center of the manual annotation in it.

An example of two original images can be seen in Figure 1.

III. AUTOMATIC POLYP SEGMENTATION

In the following we give an overview of the pre-processing

and the Shape-UCM algorithm we have devised to perform

automatic polyp segmentation from NBI data. A schematic

view of the different steps is given in Figure 2.

A. Pre-processing

Pre-processing is necessary to remove the irregular back-

ground around the image that is due to the images being

screen captures and to remove specular reflections that would

produce artificial boundaries during the segmentation part of

the algorithm.

(a)

(b)

Fig. 1: Two NBI images show-

ing (a) an adenomatous and

(b) a hyperplastic polyp.

Fig. 2: Overview of our

Shape-UCM algorithm for au-

tomatic polyp segmentation.

1) Finding a region of interest: First, we have to find a

region of interest (ROI). This is done in a two step procedure:

based on a simple thresholding, we identify the upper left

and the lower right corner of the non-black part of the image

and retrieve a rough region of interest. Since the first step

sometimes still yields a thin black rim around the image, we

additionally extract line segments associated with particular

bins for horizontal and vertical lines in a Hough transform

[13]. These extracted lines can then be employed to refine the

ROI further and remove the leftover thin black rim. The final

region of interest is shown in Figure 3 (a) and (b).

2) Removing specular reflections: The second step of the

pre-processing is to find the specular reflections. This is done

by transforming the image from RGB to HSV (hue, saturation,

value) color space and then employing hysteresis thresholding,

a bi-threshold procedure typically used for two class object-

background pixel segmentation [14]. The hysteresis threshold-

ing consists of three steps. First we threshold once (in the same

fashion as described in [4]) using the function

f(x) =

{

true, if (Saturation < t1) ∩ (Value > t2)

false, otherwise
(1)

for each image pixel x in HSV color space. This yields only

the high confidence pixels. Next a dilation with a circular

structuring element of the size of 5 pixels is performed on the

high confidence pixels. Then the same thresholding is applied

again with updated parameters t1 and t2 yielding a second

image after weak thresholding. Finally, we combine the two

thresholded images by choosing from among the object pixels

selected by the second (weak) thresholding only those pixels

connected to pixels in the first (high confidence) thresholding.

The thresholds were experimentally determined and are t1 =
0.29 and t2 = 0.65 for the first and t1 = 0.22 and t2 = 0.8
for the second thresholding. The outcome of identifying the
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: Above the three pre-processing steps are shown: The

result of finding the region of interest of the example images

introduced in Figure 1 can be seen in (a) for an adenomatous

and (b) a hyperplastic polyp. After determining the region of

interest the specular reflections are identified. The results of

identifying the specular reflections are shown in (c) and (d).

The last step of the pre-processing consists of inpainting the

areas of specular reflections. (e) and (f) display the result of

the inpainting.

specular reflections can be seen in Figure 3 (c) and (d).

3) Inpainting: The last step of the pre-processing consist of

the application of an exemplar based inpainting method [15],

[16] to reconstruct the areas where the specular reflections

lead to a loss of image information. We need to reconstruct

the specular highlights, since their distinct and bright visual

appearance leads to artificial edges and texture that affect the

segmentation [17]. Results of the inpainting can be observed

in Figure 3 (e) and (f).

B. The Shape-UCM Algorithm

Our algorithm, Shape-UCM, consists of two steps. First

we compute a ultrametric contour map (UCM) by using the

gPb-OWT-UCM algorithm. Then we employ prior knowledge

about the shape of the polyps in order to automatically identify

the best segmentation level in the UCM for our problem to

segment the polyp surface from the NBI image.

1) Finding the UCM: The first part of the Shape-UCM

algorithm we used to segment polyps is described in [18] and

in the following we will refer to the method as gPb-OWT-

UCM algorithm.

The gPb-OWT-UCM algorithm transforms an image into LAB

(lightness and a and b color-opponent dimensions) color space

(see Figure 4 (a)-(c)) and a texture representation (see Figure

4 (d)). The texture repreentation is formed by converting the

original image to grayscale and convolving it with a set of

17 Gaussian derivative and center-surround filters (details for

the filters are given in [18]). The resulting (17-dimensional)

vectors are then clustered using K-means and each pixel in

the texture representation image is assigned the integer id

∈ [1, ..,K] of the closest cluster center.

Next the gPb-OWT-UCM algorithm finds contours in the

image by calculating the gradient magnitude G at each location

(x, y) of the image by employing the χ2 distance of histograms

between two regions surrounding the location (x, y). It then

combines the multi-scale cues from brightness, colour and

textures gradients and forms a multi-scale signal at different

orientations θ,

mPb(x, y, θ) =
∑

s

∑

i

αi,sGi,σ(i,s)(x, y, θ) (2)

where s indexes scales, i indexes feature channels and

Gi,σ(i,s)(x, y, θ) measures the histogram difference in channel

i between two halves of a disk of radius σ(i, s). Since

mPb(x, y, θ) is sampled over different orientations, its max-

imum response over all angles is determined to measure

boundary strength

mPb(x, y) = max
θ

{mPb(x, y, θ)}. (3)

An example can be seen in Figure 5. Next, gPb-OWT-UCM

incorporates global knowledge by employing spectral cluster-

ing. The local cues computed by applying oriented gradient

operators at every location in the image are combined and

yield a global eigenvalue problem. Specifically, the spectral

clustering is done by constructing a sparse symmetric affinity

matrix W ,

Wi,j = exp

(

−max
p∈ij

{mPb(p)}/ρ
)

(4)

where p is any pixel along the line segment ij connecting pix-

els i and j and ρ is a constant. Then the different eigenvectors

vk of W including their eigenvalues λk are used to construct

the spectral component of the boundary detector:

sPb(x, y, θ) =
n
∑

k=1

1√
λk

· ∇θvk(x, y) (5)

Ultimately the gPb-OWT-UCM algorithm forms a final global

probability of boundary (gPb) measure [19] as a weighted sum

of local and spectral (global) signals:

gPb(x, y, θ) =
∑

s

∑

i

βi,sGi,σ(i,s)(x, y, θ)+ γ · sPb(x, y, θ).

(6)

Here, the weights βi,s and γ can be learned. We use the same

weights as [18].

After the contours are identified, it employs an oriented

watershed transform (OWT) to form an over-segmentation
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(a) (b)

(c) (d)

Fig. 4: The LAB color space ((a),(b) and (c)) as well as the

texton representation (d) for the image shown in Figure 3 (e).

The texton representation (d) results from convolution with 17

derivative filters, followed by clustering. Please see [19] for

details.

Fig. 5: An example of mPb(x, y) for the image shown in

Figure 3 (e). Another example of an mPb(x, y) image can be

seen in figure 6 of [19] in the lower right corner.

whose regions determine the highest level of segmentation

details; the boundary strength can then be used as an estimate

of how likely the contour is [20]. Finally, the gPb-OWT-UCM

algorithm constructs a hierarchical region tree in the form of

an ultrametric contour map (UCM) [21]. An example of a

UCM is shown in Figure 6. There are parameters in the gPb-

OWT-UCM algorithm that must be chosen, such as the scales

used for the gradient construction in the different channels.

For the brightness and texture channels we used a sigma of 5

pixels, whereas a sigma of 10 pixels was used in the case of

the color channels.

2) Shape Matching Approach: From the hierarchy of re-

gions given by the UCM, our algorithm automatically deter-

mines the level of the region tree at which the partitioning is

Fig. 6: An ultrametric contour map (UCM) can be constructed

by performing boundary detection at different scales and then

combining these hierarchical contours into a single image

where the boundary strength reflects the level of hierarchy

at which the boundary appears.

(a) UCM level = 0.0784 (b) UCM level = 0.0674

(c) UCM level = 0.0537 (d) UCM level = 0.0520

Fig. 7: We can see the gPb-OWT-UCM segmentation output at

four different levels (all levels are distributed between [0,1]).

The boundaries surrounding the center of the image are shown

in blue and to these boundaries we fit an ellipse which is

displayed in red. Then the level is chosen at which the ellipse

has the highest area overlap with the underlying region.

not an under-, but also not an over-segmentation. We employ

a shape matching technique to choose this cutoff point for

each image individually and fully automatic. Starting from

the gPb-OWT-UCM segmentation output we extract only the

boundaries of the central region at each level of the UCM.

Then we fit an ellipse using [22] to the points of the boundary

to segment the polyp. This kind of ellipse fitting is done

for every level of the ultrametric region tree. Finally, we

choose the level of the region tree at which the ellipse fits

the underlying region best by measuring the area overlap (Eq.

7) at each level. This way we identify the hierarchical level

at which the polyp presented is most ellipse-like. An example

of ellipse fittings at four different levels of the UCM is given

in Figure 7.
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C. Comparison to a brute force approach

As already stated from the hierarchy of regions given by

the UCM, our algorithm automatically determines the level

of the region tree at which the partitioning is not an under-

, but also not an over-segmentation. Apart from the Shape-

UCM algorithm, we have tested several ways of automatically

determining the operating point of the UCM for each image

separately:

1) Starting from the top of the UCM, so from an under-

segmentation, we progress through the hierarchy of

segmentations until there are at least n regions present.

A parameter sweep over training data is then used to

determine the optimal n.

2) Alternatively, instead of determining the operating point

of the UCM by the presence of a certain number of

regions, we restrict the maximal size of the regions in

the segmentation. Starting from the top of the UCM,

we lower the threshold until no single segmented region

covers more than narea of the area of the image. Again

a parameter sweep over the training data is used to

determine the optimal narea.

3) Lastly, instead of requiring a fixed number n of regions

to establish the point of optimal segmentation, we find

our optimal threshold of the UCM by performing a

parameter search over the proportional region number.

The proportional region number nprop is given by the

optimal region number nopt for each image divided by

the maximal region number nmax. Here, the maximal

region number is the maximum number of regions at

the bottom of the UCM.

The results of the parameter sweep for region number n,

region size narea and proportional region number nprop can

be seen in Figure 8. There we can observe that using nprop for

thresholding yields in general higher area overlap, than using

n or narea. nprop = 0.3 fetches the best area overlap and we

will use it as the threshold for our brute force gPb-OWT-UCM

approach in the rest of the paper.

IV. EXPERIMENTS

A. Data

Our data consist of two datasets from two different en-

doscope systems (Lucera and Exera) that each consist of

adenomatous and hyperplastic polyps (see Figure 9). We

construct a training set for parameter fitting of the gPb-OWT-

UCM algorithm by randomly choosing 40% of each dataset

and polyp categories and use the rest for testing. Hence the

training set consists of 58 (14 adenomatous and 7 hyperplastic

polyps of dataset 1 and 18 adenomatous and 19 hyperplastic

polyps of datset 2) and the testing set of 87 images. Further

details about the two different datasets are given below.

1) Dataset 1: Dataset 1 consists of 52 images. 35 show

adenomatous and 17 hyperplastic polyps. The data was ac-

quired from St. Marks Hospital and Academic Institute as well

as Oxford Radcliffe Hospitals. It was provided by Dr. Ana

Ignjatovic with the support of Dr. Brian P. Saunders, James E.

East, and David Burling. The images were acquired with an

Olympus Evis Lucera Spectrum endoscope video system with

a CV-260 video processor. This type of endoscope is mostly

used in Japan and the UK [23].

2) Dataset 2: Dataset 2 is made up of 46 adenomas and 47

hyperplasts. The second dataset was provided by Douglas K.

Rex from Indiana University. These images were taken with

an Olympus Evis Exera II endoscope video system with a CV-

180 video processor, which is common in Europe and North

America [23].

The data was provided to Imperial College, which then coop-

erated with us.

B. Evaluation Methodology

We consider various region-based measures to evaluate the

quality of our segmentation algorithms with regard to manual

segmentations and to be able to compare them to previous

work.

The area overlap (or Jaccard index) between two regions A
and B is defined as

J =
|A ∩B|
|A ∪B| =

TP

FP + TP + FN
, (7)

where TP denotes true positives, FP false positives and FN
false negatives. It is commonly used to measure segmentation

quality in recognition.

To be able to compare our results to previous work on NBI

polyp segmentation we also measure the sensitivity given by

S1 =
TP

TP + FN
(8)

as well as the specificity

S2 =
TN

TN + FP
. (9)

(TN denote true negatives) and the accuracy

A =
TP + TN

TP + FP + FN + TN
. (10)

C. Inter Observer Variability

To assess the variability occurring between different indi-

viduals performing the polyp segmentation, we have acquired

three sets of manual annotations for dataset 1. The first was

made by an experienced endoscopist (Observer 1) and the

other two were made by imaging researchers (Observer 2 and

Observer 3), but afterwards checked and corrected by the expe-

rienced endoscopist. To check the inter-observer variability we

make pairwise comparisons of the manual annotations of the

three observers for the adenomatous as well as the hyperplastic

polyps. The results can be seen in Table I.

D. Shape-UCM vs. thresholded gPb-OWT-UCM

Finally, we compare our Shape-UCM algorithm directly

with the brute force method of Section III-C. In contrast to the

gPb-OWT-UCM algorithm, the Shape-UCM algorithm does

not need parameter tuning and can be run directly on the

training and the testing datasets. The results for both datasets

divided in training and testing are displayed in Tables II and

III. Examples of the resulting segmentations can be seen in

Figures 10 and 11.
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(a) n (b) narea (c) nprop

Fig. 8: Results for the gPb-OWT-UCM algorithm parameter sweeps to determine the optimal cutoffs of the UCM. (a) shows

the parameter sweep for optimal region number n, while (b) displays it for the maximal region size narea and (c) for the

proportional region number nprop. In each case the parameter is fixed at the value which yields the largest area overlap.

Fig. 9: Overview over our data: Our data consist of two

datasets from two different endoscope systems (Lucera and

Exera) that each consist of adenomatous and hyperplastic

polyps. We construct a training set for parameter fitting of

the gPb-OWT-UCM algorithm by randomly choosing 40% of

each dataset and category, the rest is used for testing.

TABLE I: Our quantitative inter observer results for (a) the

adenoma and (b) the hyperplasts of dataset 1.

Adenoma Area Overlap Specificity Sensitivity Accuracy

Obs.1 vs. Obs.2 0.83 0.99 0.86 0.97
Obs.1 vs. Obs.3 0.83 0.99 0.89 0.97
Obs.2 vs. Obs.3 0.88 0.98 0.96 0.98

(a)

Hyperplasts Area Overlap Specificity Sensitivity Accuracy

Obs.1 vs. Obs.2 0.82 0.99 0.85 0.95
Obs.1 vs. Obs.3 0.81 0.97 0.87 0.94
Obs.2 vs. Obs.3 0.89 0.95 0.96 0.97

(b)

V. DISCUSSION

A. Inter Observer Variability

Focusing first on the inter-observer variability, we can see

in Table I that the inter-observer variability is relatively small

considering the variability of the data. Especially, accuracy

is extremely high and lies between 94% and 98%. Next,

there is no apparent difference in the inter observer variability

TABLE II: Our quantitative results on the training dataset for

Shape-UCM (M1) and the gPb-OWT-UCM algorithm (M2).

Method Area Overlap Specificity Sensitivity Accuracy

M1 0.52 ± 0.28 0.90 ± 0.15 0.78 ± 0.26 0.88 ± 0.14

M2 0.53 ± 0.23 0.95 ± 0.09 0.72 ± 0.25 0.92 ± 0.09

TABLE III: Our quantitative results on the testing dataset for

Shape-UCM (M1) and the gPb-OWT-UCM algorithm (M2).

Method Area Overlap Specificity Sensitivity Accuracy

M1 0.49 ± 0.27 0.92 ± 0.17 0.71 ± 0.29 0.88 ± 0.17

M2 0.44 ± 0.22 0.95 ± 0.08 0.62 ± 0.29 0.90 ± 0.10

when annotating adenoma or hyperplasts. This shows that

for human observers the task of segmenting an adenoma is

equally challenging to segmenting an hyperplast. Furthermore,

the experienced observer (Observer 1) agrees less with the two

inexperienced observers (Observer 2 and 3) than they agree

with each other. This could be the case, because the inexperi-

enced observers make the same errors for challenging polyps

whereas the experienced observer annotates more precisely.

B. Polyp Segmentation

Next we turn to the automatic segmentation task. The results

of the fully automatic segmentation of polyps are shown in

Tables II and III for the Shape-UCM and the gPb-OWT-UCM

algorithm.

Table II displays the results of both algorithms for the training

dataset. There is no statistically significant difference between

the two algorithms for training set performance. The area

overlap lies at 52-53%, the specificity between and 90%-95%,

the sensitivity between 72%-78% and the accuracy between

and 88%-92%. While the specificity for the training dataset

is only 5-10% lower than that of the manual observers, the

sensitivity and area overlap are much lower. Conversely, the

accuracy is only about 10% lower.

Table III displays the results for the testing data. In general

the results are not very different from the ones for the

training data. For the testing data the area overlap is between

44%-49%, the specificity between 92%-95%, the sensitivity
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(a) (b)

(c) (d)

Fig. 10: Our segmentation results for the gPb-OWT-UCM

algorithm [18] for two adenomatous (a) - (b) and two hyper-

plastic polyps (c) - (d): In green the manual annotation and in

red the gPb-OWT-UCM segmentation is shown.

(a) (b)

(c) (d)

Fig. 11: Segmentation results for the Shape-UCM algorithm

(III-B2) for two adenomatous (a) - (b) and two hyperplastic

polyps (c) - (d): In green the manual annotation and in red the

Shape-UCM segmentation is shown.

between and 62%-72% and the accuracy between and 88%-

90%. But what is interesting for the testing data is that, as

expected, the gPb-OWT-UCM algorithm performs worse on

the testing then the training data. Especially area overlap and

sensitivity drop for the gPb-OWT-UCM algorithm, whereas

the Shape-UCM algorithm has a slightly lower sensitivity,

but otherwise performs just as well on the test data. Due

to the large variations there is again no statistical significant

difference between the two algorithms.

Although both algorithms perform equally well and there is

(a) Polyp coverage % of the image (b)

Fig. 12: In (a) we can see the distribution of polyps in all

of our data after size. The size varies between a coverage of

5% and 55%. (b) shows an example of a bad segmentation

(red) for a small polyp (green). If our dataset would be more

homogeneous in size, Shape-UCM could be refined and errors

like this could be avoided.

no statistically significant difference between them, the big

advantage of the Shape-UCM algorithm is its parameter-free

nature. Whereas the brute force approach needs a training set

to determine the optimal threshold of the UCM, Shape-UCM

finds this threshold automatically which is a big advantage.

Furthermore, currently there is a large variation in polyp size

in our dataset (see Figure 12(a)). This can lead to erroneous

segmentations such as shown in Figure 12(b). If we were able

to clinically restrict the size of polyps in the NBI images to

e.g. < 50% of the area of the image, the Shape-UCM approach

could be modified to prevent polyp segmentations like in

Figure 12(b) that currently achieve only low area overlap. In

general, the segmentation results are very good (see e.g. Figure

10 and 11), but have room for improvement due to the gap

between the human and automatic performance. Especially, the

area overlap and the sensitivity has room for improvement. The

reason why automatic segmentation performance is lower is

the fact that the task is really challenging due to the biological

variability of the data in shape as well as the similarity in color

and texture between adenomatous and hyperplastic polyps

and the different scale of the polyps in the images resulting

from various zoom. A comprehensive atlas showing the large

variation in NBI images of polyps can be found in [23].

C. Comparison To Previous Work

To provide a fair assessment of our results, we also compare

it to the results of previous work in [7]–[9]. In [7] only results

regarding the localization are given and the number of polyps

detected with a certain area, but no pixel based measurements

are given, which makes comparison challenging. Conversely,

in [8] and [9] pixel based measurements of the segmentation

quality are given. A direct comparison of our results on the

testing dataset to the results given in [8] and [9] can be seen

in Table IV.

The direct comparison shows the improvement in segmenta-

tion. While maintaining 92% specificity, we improve sensi-

tivity from 30% and 48% in [8] and [9] to 71% for the test

dataset. Consequently, also the accuracy increases by more

than 20% from 59% and 62% in [8] and [9] to 88%.
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TABLE IV: Comparison of our results on the test dataset with

the results in previous work in [8] and [9] given as mean ±
standard deviation.

Method Specificity Sensitivity Accuracy

[8] (184 polyps) 0.98 ± 0.04 0.30 ± 0.26 0.59 ± 0.23

[9] (184 polyps) 0.86 ± 0.02 0.48 ± 0.21 0.62 ± 0.16

Shape-UCM (87 polyps) 0.92 ± 0.17 0.71 ± 0.29 0.88 ± 0.17

VI. CONCLUSION

In this paper we have developed the first part of a novel

application for optical colonoscopy based on narrow-band

imaging (NBI) by automatically segmenting polyps in colono-

scopic NBI data. We developed a new algorithm, called Shape-

UCM, which is an extension of the gPb-OWT-UCM algorithm,

by including prior knowledge about the shape of the polyps.

Hence our Shape-UCM algorithm can automatically determine

the optimal segmentation from a selection of hierarchical

segmentations and needs no parameter tuning. Our results

outperformed previous work on automatic polyp segmentation

in NBI data and yielded a specificity of 92%, a sensitivity

of 71% and an accuracy of 88% for automatic segmentation

in a testing dataset of 87 polyp images from two different

endoscope systems.

In conclusion, our automatic segmentation results are promis-

ing and in future work we will combine them with a polyp

classification procedure to build a fully automatic optical

biopsy system. While our results have shown that it is possible

to automatically segment polyps in NBI data, there is still

a gap to the performance of a human observer. On the one

hand, we could try to improve our existing algorithm by using

different metrics inside the gPb-OWT-UCM algorithm, such

as for example a distance measure from the recently proposed

quadratic chi distance family [24]. On the other hand we could

try to refine our Shape-UCM approach if the dataset collection

and hence size distribution of polyps in the NBI images could

be clinically restricted. While the task is left to improve the

segmentation of bowel polyps, the segmentation task could

also be extended into other organs which are inspected by

endoscopy using NBI technology, such as for example the

stomach and esophagus.
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