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Abstract

Non-life insurance companies need to build reserves to meet their

claims liability cash flows. They often work with aggregated data.

Recently it has been suggested that better statistical properties can

be obtained when more aggregated data is available for the statistical

analysis than just the classical aggregated payments. When also the

aggregated number of claims is available one can define a full statistical

model of the nature of the number of claims, their delay until payment

and the nature of these payments. In this paper we provide a new

development in this direction by entering yet another set of aggregated

data, namely the number of payments and when they occurred. A new

element of our statistical analysis is that we are able to incorporate

inflationary trends of payments in a direct and explicit way. Our new

method is illustrated on a real life data set and the conclusion are

informative and useful.

Keywords: Outstanding loss liabilities, claims settlement pro-

cess, claims reserving, chain ladder method, individual claims data,

prediction uncertainty, bootstrap, early warning systems.

1 Introduction

Non-life insurance companies need to forecast future payments stemming
from claims where the companies already received the insurance premium.
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The discounted aggregate of these future payments is called the reserve (out-
standing liabilities) and is one of the most important components in the
accounts of a non-life company. The reserve is most often set by actuaries
and the reserving problem is omnipresent in the literature of actuarial sci-
ence. However, the history of the reserving problem is not a mathematical
statistical history even though it clearly is a mathematical statistical fore-
casting problem. The history is a practical one, where actuaries have had to
develop methodologies to set reserves at a time where mathematical statistics
was not well developed. The most popular reserving method used by almost
all insurance companies is called the chain ladder method by actuaries. Most
practical actuaries would talk about chain ladder as a method rather than
as a mathematical statistical model even though the actuarial literature has
shown a close connection between the chain ladder method and the multi-
plicative poisson model. It was only just recently that this multiplicative
poisson model was identified as belonging to the class of exponential families
implying well defined solutions to the maximum likelihood estimators and it
was also only recently that the explicit expressions of the entering parame-
ters were derived, see Kuang, Nielsen and Nielsen (2009). While practical
actuaries work with chain ladder forecasts identical to the forecasts provided
by a multiplicative poisson model, they do not work with the distributional
properties of the multiplicative poisson model. Other distributional proper-
ties are preferred, often based on ad hoc bootstrap type of procedures. In
this paper we build on theory recently derived in three interconnected papers.
The main underlying idea of these three papers is that more data (aggregated
reported number of claims) should be added to classical actuarial data to al-
low for a better and more precise formulation of the underlying mathematical
statistical model driving the claims development process defining the reserve.
The first of these papers Verrall, Nielsen and Jessen (2010) defines the sim-
plest possible version of such a model, the second Mart́ınez-Miranda, Nielsen,
Nielsen and Verrall (2011) develop a bootstrap methodology to assess the dis-
tribution of such a model, but the most important of these three papers is
perhaps the third one, Mart́ınez-Miranda, Nielsen and Verrall (2012). This
paper shows that a slight modification of the Verrall et al. (2010)’s model,
with one particular moment type estimation method, provides us with a well
defined mathematical statistical model exactly replicating the reserving esti-
mates one would obtain using the classical chain ladder method. This time
with trustable distributional properties that could be used in practise by ac-
tuaries. In this paper we take the ideas of the above three papers one step
further and add yet another piece of data (aggregated number of payments)
to our data set and we show that important insights of the claim develop-
ment process results when incorporating this extra piece of information in our
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mathematical statistical model. We follow in this paper Mart́ınez-Miranda
et al. (2012) and work with moment type of estimators. Our hope is that
this paper provides information to the mathematical statistician wishing to
use their excellent tools on this important real life problem and this paper
could perhaps be helpful bringing mathematical statisticians into this impor-
tant field. The notation and vocabulary of this paper is deliberately closely
related to classical actuarial terminology while describing a consistent well
defined mathematical statistical model. This is deliberate in our attempt
to bridge the gap between classical actuarial terminology often obscure to
mathematical statisticians and standard mathematical statical model formu-
lations that would seem unrelated to classical reserving for many actuaries
even if it is indeed very related.

The general post credit crunch atmosphere in the financial sector empha-
sizes a better understanding of outstanding loss liabilities of non-life insur-
ance companies with reserving models as one of the essential technical build-
ing blocks. However, the insurance industry is also gaining new territory in
new markets, where better early warning reserving systems are required than
what the old chain ladder methodology can provide. In this paper we intro-
duce a new reserving methodology with an automatic early warning system
to detect important irregularities in the claims development process. Our
methodology requires more detailed data than classical reserving methods.
The point of view taken is that the aggregated payments do not provide us
with sufficient mathematical statistical information, we argue that also the
number of payments and the number of reported claims are needed. This
enables us to embed a variety of new claims inflation type of information
in our overall model. We consider severity inflation, underwriting year in-
flation and claims delay inflation and show how to incorporate those in the
reserving process. The calendar inflation is not treated in detail in this pa-
per, but it could have been extracted up front using the Kuang, Nielsen and
Nielsen (2011) methodology of calendar inflation (see also Kuang, Nielsen
and Nielsen 2008a,b) .

In the next section we define the model on the micro-level. The basis
of our model is the compound Poisson processes studied in Norberg (1993,
1999) and Jessen, Mikosch and Samorodnitsky (2011). We show how we need
to structure these compound Poisson processes on the micro-level so that we
obtain a chain ladder claims reserving method on the aggregate level. Such
connection is proved from first moments calculations which are provided in
the appendix A. In Section 3 we provide estimates of the parameters in the
model. From the estimated model point forecasts for the reserve are given
in Section 4. Using bootstrap methods we provide in Section 6 (together
with appendix B) an approximation of the full predictive distribution of
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the outstanding loss liabilities. The methods proposed in this paper are
illustrated using a dataset from the insurance industry which is showed in
appendix C. The focus of this application is to provide an estimate of the
claims reserves and to detect irregularities in the data.

2 Model setup

2.1 Data and micro-level structure

In classical reserving methods the data upon which projections of future
claims are usually represented by so called run-off triangles. This format
tabulates the claim data (payments, numbers of reported or paid claims,
etc.) according to the period in which the claim arose (called underwriting
or accident period) and the period in which the payment (or other action)
was made. The difference between the payment period and the accident
period is referred to as the development period. The data are usually ag-
gregated in years or quarters of years, but other time periods can also be
used depending on the business line. Hereafter we write years as the periods
considered in the aggregation. We denote accident years by i = 1, . . . ,m,
and development years by j = 0, . . . ,m − 1, where m ∈ N denotes the
last observed accident year. Then the available data lie in the triangle
Im = {(i, j); i = 1, . . . ,m; j = 0, . . . ,m − 1; i + j ≤ m}. In the appendix C
we show an example of these type of data.

The methods proposed in this paper consider such run-off triangles as
input data. In fact we will need more triangles to provide a more precise
formulation of the mathematical statistical micromodel, which underlies the
claims development process defining the reserve. It is a parametric model
that is deliberately formulated in such a way that the entering parameters
are identifiable and estimable from three aggregated data sets: number of
reported claims, number of payments and aggregated paid amounts. These
stochastic variables are described in the following:

• Number of reported claims of accident year i with a reporting delay of
j years, denoted by Ni,j.

• Number of payments. Each of these Ni,j reported claims generates a
claims payment cash flow. We denote by Ri,j,l the number of payments
generated by these Ni,j reported claims that have a payment delay of
l ≥ 0 years. That is, Ri,j,l is the number of payments in accounting
year i + j + l for claims that have occurred in accounting year i and
were reported in accounting year i+ j.
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• Individual claims payments. Each of these Ri,j,l claims payments has

size Y
(k)
i,j,l, for k = 1, . . . , Ri,j,l.

Often, claims payment data is not available on the micro-level structure
described by {Ni,j; (i, j) ∈ Im} ∪ {Ri,j,l, Y

(k)
i,j,l; (i, j) ∈ Im, i + j + l ≤

m, k ≥ 1}. Therefore, we define the following aggregate claims payment
information. The total number of payments in accounting year i + j from
claims with accident year i is given by

Ri,j =

j∑

l=0

Ri,j−l,l. (1)

These Ri,j are the number of payments in accounting year i+ j generated by
all claims with accident year i which where reported prior to (and including)
accounting year i+j, i.e. these are payments from the Ni,j−l reported claims,
with l = 0, . . . , j. The payments (total quantity paid) in accounting year i+j
from claims with accident year i are then given by

Xi,j =

j∑

l=0

Ri,j−l,l∑

k=1

Y
(k)
i,j−l,l. (2)

From these definitions we assume that the available information at timem
consists of the following three σ-fields (upper claims development triangles):

Nm = σ {Ni,j; (i, j) ∈ Im} ,
Rm = σ {Ri,j; (i, j) ∈ Im} ,
Xm = σ {Xi,j; (i, j) ∈ Im} ,

and the aim is to predict the total payments in the future:

X c
m = {Xi,j; (i, j) ∈ Jm} ,

where Jm = {(i, j); i = 2, . . . ,m, j = 0, . . . ,m − 1, i + j > m} is the lower
(inexperienced) triangle.

Such predictions is that classical reserving methods as chain ladder method
provides. However a better description the reserving problem would be pro-
vided if we are able to separate these future payments in the lower triangle
into payments for claims that have been already reported (prior to and includ-
ing accounting year m) and claims that will be reported after accounting year
m. The first class of claims are contained in the number of reported claims
Nm, and constitute that it is called the reported but not settled (RBNS)
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claims reserves. The latter class contains the so-called incurred but not
reported (IBNR) claims and constitutes the IBNR claims reserves. Such
a distinction is often important, for example, in the calculation of unallo-
cated loss adjustment expenses (ULAE), see Wüthrich, Bülhman and Furrer
(2010), Section 5.6. If we apply the classical chain ladder method then we
predict X c

m based solely on the information Xm, thus, we predict the out-
standing loss liabilities on a rather aggregate level and does not allow to
distinguish between RBNS and IBNR claims reserves.

2.2 Model assumptions

With the above definitions we assume the following hypotheses about the
micro-level structure.

(A1) All random variables in different accident years i ∈ {1, . . . ,m} are
independent.

(A2) The numbers of reported claims Ni,0, . . . , Ni,m−1 are independent and
Poisson distributed with cross-classified means E[Ni,j] = ϑiβj, for given
parameters ϑi > 0, βj > 0 with normalization ϑ1 = 1.

(A3) The claims payments

Xi,j,l =

Ri,j,l∑

k=1

Y
(k)
i,j,l

are, conditionally given Ni,0, . . . , Ni,m−1, independent (in l ≥ 0) and
compound Poisson distributed with

• Ri,j,l|{Ni,0,...,Ni,m−1} ∼ Poi(Ni,jπl) with given parameter πl > 0;

• Y
(k)
i,j,l|{Ni,0,...,Ni,m−1}

(d)
= Y

(k)
i,j,l are i.i.d. for k ≥ 1 with the first two

moments given by

E

[
Y

(1)
i,j,l

]
= νi µj,l and E

[(
Y

(1)
i,j,l

)2
]
= ν2

i s2j,l,

for parameters νi, µj,l, sj,l ∈ R+ with normalization ν1 = 1.

One crucial point in assumption (A3) is that the claim size (or severity) dis-

tribution of Y
(k)
i,j,l can be split into an accident year dependent part νi which

models claims inflation in the accident year direction, and a development
year dependent part µj,l which takes care of reporting delay j ≥ 0 and pay-
ment delay l ≥ 0. Note that assumption (A3) implies that the payments
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Y
(k)
i,j,l are independent from the number of reported claims Ni,j as well as

from the number of payments Ri,j,l (conditional compound Poisson model
assumption).

The choices ϑ1 = ν1 = 1 will make the parameters identifiable in the esti-
mation procedure. One can also use other normalizations, such as e.g.

∑
j βj =

1 (normalized claims reporting pattern). However, our choice is rather simple
in the implementation and other normalizations are obtained by re-scaling.

3 Parameter estimation

The estimation of the model parameters, {ϑi, βj, πl, νi, µj,l; i = 1, . . . ,m, j, l =
0, . . . ,m − 1}, can be solved just using the simple chain ladder method on
the three input triangles. The only requirement is to demonstrate that the
random variables Ni,j, Ri,j and Xi,j all have the same cross-classified mean
structure, which is the chain ladder mean structure. As was discussed in
Mart́ınez-Miranda et al. (2012) is can be done from model specifications
about just the first moment of the underlying stochastic components. Further
purposes about deriving the distribution of the future payments requires
conditions on higher order moments and also a more detailed specification
including distributional assumptions (see Mart́ınez-Miranda et al. 2012 for
a further explanation). Under the distributional model here proposed we
suggest in Section 6 an estimator for the second moment parameters sj,l
(j, l = 0, . . . ,m− 1) to derive then the predictive distribution.

Therefore we next provide estimates of the parameters based in the first
moment of the random variables, Ni,j, Ri,j and Xi,j. We have deferred such
calculations to the appendix A in order to facilitate the reading of the paper.
Specifically in Propositions 2 and 3 we have obtained that the first moments
of the three sets of random variables Ni,j, Ri,j and Xi,j all have the same
cross-classified mean structure. Also we have established connections among
the parameters in the model through the following equations:

αi = ϑi νi, (3)

λj =

j∑

l=0

βj−l πl, (4)

γj =

j∑

l=0

βj−l πl µj−l,l, (5)

From these starters our aim is to estimate the corresponding parameters
based on the information in Nm, Rm and Xm, and by applying the simple
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chain ladder method to each triangle. Exemplary, we demonstrate the esti-
mation for the observed number of reported claims Nm and the parameters
ϑi and βj. The remaining parameters are estimated completely similarly but
based on Rm and Xm, respectively. In a distribution-free approach we rely
on moment estimators. If we aggregate rows and columns, respectively, over
the set of information Im we obtain the first moment equalities

m−i∑

k=0

E [Ni,k] = ϑi

m−i∑

k=0

βk for i = 1, . . . ,m, (6)

m−j∑

k=1

E [Nk,j] = βj

m−j∑

k=1

ϑk for j = 0, . . . ,m− 1. (7)

Unbiased estimators for the right-hand side of these equalities are obtained by
replacing the moments E [Ni,j], (i, j) ∈ Im, by their observations Ni,j ∈ Nm.
Then the resulting system of linear equations is solved for ϑi and βj which
provides the corresponding estimators for these parameters. This is in the
spirit of the “total marginals” method of Bailey (1963) and Jung (1968).
Kremer (1985) and Mack (1991) have shown that in the case of triangular
data Nm this leads to the chain ladder estimators that can be calculated in
closed form. Thus,

Nm provides the chain ladder estimators ϑ̂
(1)
i and β̂j for ϑi and βj,

Rm provides the chain ladder estimators ϑ̂
(2)
i and λ̂j for ϑi and λj,

Xm provides the chain ladder estimators α̂i and γ̂j for αi and γj,

with ϑ̂
(1)
1 = ϑ̂

(2)
1 = α̂1 = 1 (initialization in cross-classified means).

Note that we obtain two different estimators ϑ̂
(1)
i and ϑ̂

(2)
i for the same

theoretical ϑi. However, their values should not be too different, otherwise
this indicates that the model may not fit to the claims reserving problem. In
order to estimate ϑi we could now take a credibility weighted average between
ϑ̂
(1)
i and ϑ̂

(2)
i . For simplicity we set ϑ̂i as the arithmetic mean between ϑ̂

(1)
i

and ϑ̂
(2)
i . Anyway the appropriateness of this choice should always be checked

on the data. Using equality (3) we can estimate the accident year inflation
parameter νi by

ν̂i = α̂i/ϑ̂i for i = 1, . . . ,m. (8)

Thus, it remains the estimation of the parameters πl and µj,l (j, l = 0, . . . ,m−
1). There are different ways to estimate these parameters. We start with πl

using the equality (4). If we rewrite this equation in vector notation we have

(λ0, . . . , λm−1)
′ = Bβ (π0, . . . , πm−1)

′ ,
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for an appropriate matrix Bβ = Bβ0,...,βm−1 ∈ Rm×m. This matrix is estimated

by B̂β = B
β̂0,...,β̂m−1

∈ Rm×m and then we can provide estimates, π̂0, . . . , π̂m−1,
by solving the following system:

(π̂0, . . . , π̂m−1)
′ = B̂−1

β

(
λ̂0, . . . , λ̂m−1

)′

. (9)

The estimation of µj,l needs more care because the model is over-parametrized.
In order to reduce the number of parameters we make one of the following
two assumptions

µj,l ≡ µl or (10)

µj,l ≡ µj. (11)

Using the condition (10) and the equality (5) we have that

(γ0, . . . , γm−1)
′ = Bβ (π0µ0, . . . , πm−1µm−1)

′ ,

for matrix Bβ = Bβ0,...,βm−1 ∈ Rm×m. If this matrix is again estimated by

B̂β = B
β̂0,...,β̂m−1

∈ Rm×m we obtain estimates π̂µ0, . . . , π̂µm−1 as the solution
of the following system:

(
π̂µ0, . . . , π̂µm−1

)′
= B̂−1

β (γ̂0, . . . , γ̂m−1)
′ , (12)

and, finally, the estimator for µj,l assumption (10) is given by µ̂j,l = µ̂l =
π̂µl/π̂l.

On the other hand, using assumption (11) and rewriting (5) we have the
following system: provides

(γ0, . . . , γm−1)
′ = Bπ (β0µ0, . . . , βm−1µm−1)

′ ,

for matrix Bπ = Bπ0,...,πm−1 ∈ Rm×m. And again plugging in the estimated

matrix B̂π = Bπ̂0,...,π̂m−1 ∈ Rm×m, we obtain the estimates, β̂µ0, . . . , β̂µm−1,
by solving the system

(
β̂µ0, . . . , β̂µm−1

)′

= B̂−1
π (γ̂0, . . . , γ̂m−1)

′ , (13)

It yields the estimator µ̂j,l = µ̂j = β̂µj/β̂j.
The above procedure provides estimates for all the parameters required

for point prediction purposes, under the additional assumption (10) or (11).
In the next section we are going to describe how they are used to predict
the outstanding loss liabilities X c

m at time m. Moreover, we will also discuss
further adjustments to these estimators in practise.
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4 Point forecasts

Point predictions for the outstanding loss liabilities can be derived as es-
timated unconditional (or conditional) means of the aggregated payments,
Xi,j, in the lower triangle, Jm. In the previous section we have estimated
all the parameters in the model from the observations Nm, Rm and Xm. It
only remains the estimation of the second moment parameters sj,l (j, l =
0, . . . ,m − 1) of the size of the individual payments. But as we pointed in
the previous section such higher order moments are not involved in the point
forecasts. Therefore we have all that is necessary to predict the outstand-
ing liabilities, X c

m. At time m the conditionally expected outstanding loss
liability cash flows in X c

m are given by

Zm =
m∑

i=2

m−1∑

j=m−i+1

E [Xi,j| Nm,Rm,Xm] .

If we only rely on the observations Xm, then we can only estimate the pa-
rameters αi and γj. Thus, in this case we set

ẐCL
m =

m∑

i=2

m−1∑

j=m−i+1

α̂i γ̂j,

which provides an estimator for Zm. The crucial property of this estimator
ẐCL

m is that it exactly provides the chain ladder reserves (see Kremer 1985,
Mack 1991 and Section 2.4 in Wüthrich and Merz 2008). Having additional
information Nm and Rm we can refine this estimate. We have

Zm =
m∑

i=2

m−1∑

j=m−i+1

j∑

l=0

E




Ri,j−l,l∑

k=1

Y
(k)
i,j−l,l

∣∣∣∣∣∣
Nm,Rm,Xm




=
m∑

i=2

m−1∑

j=m−i+1

j∑

l=i+j−m

E




Ri,j−l,l∑

k=1

Y
(k)
i,j−l,l

∣∣∣∣∣∣
Nm,Rm,Xm




+
m∑

i=2

m−1∑

j=m−i+1

i+j−m−1∑

l=0

E




Ri,j−l,l∑

k=1

Y
(k)
i,j−l,l

∣∣∣∣∣∣
Nm,Rm,Xm


 .

Note that the decoupling separates RBNS and IBNR claims: if i+ j− l ≤ m
then the payment Y

(k)
i,j−l,l belongs to a claim that has been reported prior to

(and including) accounting year m, and henceforth is an RBNS claim at time
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m. Therefore, we define

ZRBNS
m =

m∑

i=2

m−1∑

j=m−i+1

j∑

l=i+j−m

E




Ri,j−l,l∑

k=1

Y
(k)
i,j−l,l

∣∣∣∣∣∣
Nm,Rm,Xm


 ,

ZIBNR
m =

m∑

i=2

m−1∑

j=m−i+1

i+j−m−1∑

l=0

E




Ri,j−l,l∑

k=1

Y
(k)
i,j−l,l

∣∣∣∣∣∣
Nm,Rm,Xm


 .

Using assumptions (A1)–(A3) we obtain the following result.

Proposition 1

ZRBNS
m =

m∑

i=2

νi

m−1∑

j=m−i+1

j∑

l=i+j−m

Ni,j−l πl µj−l,l, (14)

ZIBNR
m =

m∑

i=2

ϑi νi

m−1∑

j=m−i+1

i+j−m−1∑

l=0

βj−l πl νi µj−l,l. (15)

Using the previous expressions we can estimate the RBNS claims reserve
by plugging estimates of the parameters in (14) and similarly the IBNR

reserve using (15). Let denote the resulting predictions by ẐRBNS
m and ẐIBNR

m ,

respectively. Then the total reserve can be estimated by Ẑm = ẐRBNS
m +

ẐIBNR
m . A straightforward calculation demonstrate that the model defined in

(A1)–(A3) can provide the same reserve as the classical chain ladder just by
making a particular choice. Such result is stated in the following corollary.

Corollary 1 Under the additional assumptions that ϑ̂
(1)
i = ϑ̂

(2)
i , for all i =

2, . . . ,m, and Ni,j = ϑ̂iβ̂j, for all (i, j) ∈ Im, we have Ẑm = ẐCL
m .

Often claims development goes beyond the latest development period
m− 1, which has been observed at time m. Therefore, in practice, one needs
to add a tail estimate to the claims reserves in order to also cover these
additionally expected outstanding loss liability cash flows. The entire tail
can be estimated under assumptions (A1)–(A3) if we additionally assume
that βj = πj = 0 for j = 1, . . . ,m− 1. In this particular case, we know that
all claims are reported after development period j = m− 1. Thus, we define
the claims reserves including the tail by (we re-arrange the summations)

ẐRBNS+
m =

m∑

i=1

ν̂i

m−i∑

j=0

Ni,j

m−1∑

l=m−(i+j)+1

π̂l µ̂j,l,

ẐIBNR+
m =

m∑

i=2

ϑ̂i ν̂i

m−1∑

j=m−i+1

β̂j

m−1∑

l=0

π̂l µ̂j,l,
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and the total reserves including the tail are defined by Ẑ+
m = ẐRBNS+

m +

ẐIBNR+
m .

5 An example with real data

We illustrate the methods proposed in this paper using a real data example
provided in Tables 6, 7 and 8 in the appendix C. The first step is to estimate
the parameters according to Section 3.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

theta^(1)_i theta^(2)_i theta_i 

Figure 1: Real data example: estimates for ϑi. Estimates ϑ̂
(1)
i are based on

Nm, estimates ϑ̂
(2)
i are based on Rm and ϑ̂i is the arithmetic mean between

the latter two estimates.

In Figure 1 we give the estimates for ϑi for i = 1, . . . ,m = 14. We
see that both data sets Nm and Rm provide similar estimates ϑ̂

(1)
i and ϑ̂

(2)
i

for ϑi which confirms the model assumptions (A1)–(A3). Moreover, we see a
strong decrease in the volume in this portfolio, since the exposure parameters
ϑ̂i decrease from 1 to roughly 0.5.

We could now proceed as described above and use the estimates β̂j and

λ̂j. However, we slightly deviate from this approach. Namely, if we plug in

the resulting (adjusted) exposure estimates ϑ̂i from (8) into (6)-(7) we get

adjusted estimates β̃j for βj and similarly λ̃j for λj. We prefer to work with
these adjusted estimates because they assure that the overall level is correct
if calculate the cross-classified means of Ni,j and Ri,j, see Proposition 2.

In Figure 2 we show the estimates for the exposures αi and ϑi, and the
resulting inflation estimate ν̂i is provided by the ratio of the latter two esti-
mates. In general, we see an increase in the time-series ν̂1, . . . , ν̂14, however
accident year i = 8 seems conspicuous and needs further analysis on single
claims data. It may indicate that there is a change in the underlying product
(if it only acts on horizontal axis in the claims development triangle). Indeed
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we observe a substantial decrease in average payments per reported claim in
accident year i = 8 which supports the argument of changes in the product
(or portfolio).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

theta_i alpha_i nu_i

Figure 2: Real data example: estimates for αi, ϑi and νi.

Finally, we estimate πl and µj,l from β̃j, λ̃j and γ̂j. We solve the esti-
mation problem under assumption (10), i.e. µj,l ≡ µl. In that case we set

B̃β = B
β̃0,...,β̃m−1

and then we estimate πl and πlµl from equations (9) and

(12). Figure 3 provides the estimates π̂l. First of all we observe that all

-0.1 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

pi_l pi_l tilde 

Figure 3: Real data example: estimates π̂l and π̃l for πl.

π̂l > 0 except π̂2 < 0 and π̂12 < 0 which contradicts the model assump-
tions (A1)-(A3). Thus, at this point we might ask for a more sophisticated
model. However this would also ask for more micro-level observations. We
refrain from doing so but correct this value. In our particular case, we choose
correction

π̃l =





π̂l − 2|π̂l+1| l = 1,
|π̂l| l = 2,
0 l = 12, 13,
π̂l otherwise.

13



The resulting adjusted estimates π̃l are also given in Figure 3. Note that
we have

∑
l π̃l ≈ ∑

l π̂l = 0.7251, which says that in average we expect
0.7251 payments per reported claim, and in the average almost 1/2 of the
claims can be settled without a payment. An analysis of payments per re-
ported claim shows that this figure is decreasing in time. This decrease can
have various reasons like changes in reporting philosophy, changes in claims
handling process, but it could also be related to changes in the portfolio (we
have already mentioned that the volume is strongly decreasing).

We then estimate µlπl by µ̂πl and, under (10), µj,l by µ̂j,l = π̂µl/π̃l. The

0
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0 1 2 3 4 5 6 7 8 9 10 11

mu_l

Figure 4: Real data example: estimates µ̂j,l for µj,l ≡ µl for l = 0, . . . , 11.

results are presented in Figure 4. We see that the average payments µj,l are
increasing in the payment delay l. We could now further smoothing this curve
for the expected payments µj,l. We refrain from doing so. There are also other

issues like that the payments Y
(k)
i,j,l may not only depend on the accident year

i and the payment delay l but also on the reporting delay j. However, as
described in Section A we cannot model all directions simultaneously because
this would lead to an over-parametrization.

Finally, in Table 1 we present the resulting claims reserves. We observe
that under assumptions (A1)–(A3) and (10) we obtain higher claims reserves
than classical chain ladder (see the last two columns in Table 1). One reason
for this more conservative estimate is that we judge the upper right corner of
the triangle Xm differently. The estimate for later development periods, say
j = 11, 12, 13, is based on a rather small set observations in the chain ladder
method (and hence not very reliable). In our model we use the additional
model structure for the estimation of payments in later development periods
which, in this case, is more conservative. The influence of the tail estimate
is only minor, specifically Ẑ+

m − Ẑm = 7′074. This has to do with the fact we
have a rather short payout pattern π̃l (see Figure 3).
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a.y. i Ẑ
RBNS+
m Ẑ

IBNR+
m Ẑ

+
m Ẑ

CL
m difference in %

1 536 0 536 536

2 1’540 0 1’540 0 1’540

3 23’799 0 23’799 2’220 21’579 971.8%

4 162’275 0 162’275 147’434 14’841 10.1%

5 291’122 790 291’912 280’056 11’855 4.2%

6 415’955 1’590 417’545 408’154 9’391 2.3%

7 584’991 3’300 588’291 569’060 19’231 3.4%

8 605’767 3’676 609’443 583’785 25’658 4.4%

9 704’687 5’039 709’726 675’363 34’363 5.1%

10 803’884 6’343 810’228 764’373 45’855 6.0%

11 1’054’124 10’037 1’064’161 1’004’331 59’829 6.0%

12 1’397’607 22’068 1’419’675 1’352’819 66’856 4.9%

13 1’999’243 84’680 2’083’922 2’076’674 7’248 0.3%

14 4’221’084 1’474’793 5’695’877 5’487’650 208’227 3.8%

total 12’266’615 1’612’315 13’878’930 13’351’921 527’009 3.9%

Table 1: Real data example: resulting claims reserves under (10).

Other possible approach in the previous calculations is to use condition
(11), i.e. µj,l ≡ µj. However the resulting claims reserves derived in this case
seemed to be too low and we have decided not to included in the paper. The
reason is because the main driver of late payments is the payment delay πl and
not the reporting delay βj. This implies that under (11) we underestimate
the amounts of late payments because they are attached too strongly to the
reporting pattern βj compared to the payment pattern πl.

6 Bootstrap predictive distribution

6.1 Conditional mean square error of prediction

In addition to the claims reserves estimates Ẑ+
m we also need to assess the cor-

responding prediction uncertainty. We briefly describe this with the help of
the conditional mean square error of prediction (MSEP) uncertainty measure
which is defined by

msepXm|{Nm,Rm,Xm}

(
Ẑ+

m

)
= E

[(
Xm − Ẑ+

m

)2
∣∣∣∣Nm,Rm,Xm

]
, (16)

where the aggregate cash flow in the lower triangle is defined by Xm =∑m

i=2

∑m−1
j=m−i+1 Xi,j. Thus, the conditional MSEP describes the possible

fluctuations of the true outstanding loss liability cash flows Xm around the
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predictor Ẑ+
m. Since the predictor is σ{Nm,Rm,Xm}-measurable the condi-

tional MSEP can be decoupled into process variance and parameter estima-
tion error, see (3.1) in Wüthrich and Merz (2008),

msepXm|{Nm,Rm,Xm}

(
Ẑ+

m

)
= Var (Xm| Nm,Rm,Xm) +

(
Zm − Ẑ+

m

)2

. (17)

The first term (process variance) can be calculated explicitly under our model
assumptions, the second term (parameter estimation error) is more difficult
to assess. Often, one derives approximations for this latter term. However,
in our case this is too involved, therefore we rely on the bootstrap simulation
method to quantify the prediction uncertainty. In order to apply the boot-
strap method there is the parameter s2j,l that still needs to be estimated.We
do this under calibration (10), i.e. we set

s2j,l ≡ s2l (18)

to avoid over-parameterization. In view of Proposition 5 we have

E

[
Xi,j − αi γj√

αi νi

]
= 0 and Var

(
Xi,j − αi γj√

αi νi

)
= σ2

j .

The sample estimator then provides estimates

σ̂2
j =

1

m− j − 1

m−j∑

i=1

(
Xi,j − α̂i γ̂j√

α̂i ν̂i

)
,

for j = 0, . . . ,m − 2 and we set σ̂2
m−1 = σ̂2

m−2. In view of (21) we have a
second description for σ2

j . If we solve this for s2l and replace all parameters
by their estimates we obtain estimates

((̂πs2)0, . . . , (̂πs
2)m−1)

′ = B̃−1
β (σ̂2

0, . . . , σ̂
2
m−1)

′ − (π̃2
0 µ̂2

0, . . . , π̃
2
m−1 µ̂2

m−1)
′,

and finally we set

ŝ2l = (̂πs2)l/π̃l, for all l = 0, . . . ,m− 1. (19)

If we apply this procedure to Example 1 we obtain the result in Table 2.
In order to justify these estimates we calculate the estimates of the corre-
sponding coefficients of variation given by v̂co = ŝl/µ̂l. Table 2 shows that
these estimated coefficients of variation are in the interval [1.5, 5.5], i.e. the

coefficients of variation for single claims payouts Y
(k)
i,j,l are of order 1.5 to

5.5. These are reasonable values, for instance in the Swiss Solvency Test
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0 1 2 3 4 5 6 7 8 9 10 11
ŝl 2’862 8’511 11’651 26’688 93’291 28’083 52’846 43’333 104’714 59’276 75’632 104’701
µ̂l 818 1’561 2’534 7’712 21’993 18’435 16’113 22’300 40’529 29’540 28’704 46’764
v̂co 3.50 5.45 4.60 3.46 4.24 1.52 3.28 1.94 2.58 2.01 2.63 2.24

Table 2: Real data example: resulting standard deviation estimates ŝl to-
gether with the mean estimates µ̂l and the corresponding coefficient of vari-
ation estimates v̂co.

RBNS IBNR total Mack (1993)
process standard deviation 1’511’860 293’166 1’545’503 1’521’713

conditional MSEP1/2 2’273’294 326’382 2’324’966 2’182’722

Table 3: Real data example: process standard deviation (first row) and
rooted conditional MSEP (second row) under model (A1)-(A3) for the pre-
dicted RBNS, IBNR and the total claim reserves. The last column gives the
results of the Mack formula (Mack 2010).

(SST) the coefficients of variation for single claim sizes (not payouts) are
estimated between 2.25 and 11 depending on the underlying line of business,
see Section 8.4.4 in FINMA (2006). These estimators now allow for applying
bootstrap methods which are close to those proposed by Mart́ınez-Miranda
et al. (2011, 2012). Specifically, we derive the predictive distribution using a
parametric bootstrapping procedure which exploits the model assumptions
in Section 2. In a first step we define a bootstrapping scheme based on Monte
Carlo simulation from the model (A1)–(A3) where the unknown parameters
are simply replaced by the estimated parameters (ignoring the parameter
estimation uncertainty). This gives an estimation of the process variance
defined as the first term in equation (17). The resulting process variances
for RBNS, IBNR and total reserves (for all the years) are given in the first
row of Table 3. To quantify the second term in equation (17), i.e. the pa-
rameter estimation error, we consider a more general bootstrap algorithm
which also simulates the distribution of the involved parameters. From such
general bootstrap method - formally described below - we derive the desired
conditional MSEP. The resulting errors are displayed in the second row of
Table 3. The last column displays the same uncertainties obtained from the
Mack’s distribution-free chain ladder model Mack (1993). We observe that
our bootstrap results are slightly more conservative compared to the classical
Mack formula.
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6.2 Bootstrapping the RBNS and IBNR reserve

The predictive distribution which describes the possible fluctuations of the
true outstanding loss liability cash flows can be derived using parametric
bootstrap methods. By exploiting the distributional assumptions (A1)–(A3)
we describe in the appendix B an explicit algorithm to derive separately
the predictive distribution of the RBNS and IBNR cash flows, XRBNS

m and
X IBNR

m , respectively. With this resampling scheme the RBNS and IBNR cash
flows can be simulated using Monte Carlo methods. We have derived these
cash flows for the data in Example 1. Table 4 shows the median and the
upper quantiles separately for the RBNS and IBNR cash flows. Here we
consider B = 10′000 replications in the resampling scheme. As we expect
the means imitate the predicted reserves given in Table 1. The calculated
medians however are slightly lower which reveals that the derived distribution
is negatively skewed.

RBNS IBNR
a.y. i mean median 95% 99% mean median 95% 99%
1 522 0 0 882 0 0 0 0
2 1658 0 0 38’893 0 0 0 0
3 23’947 0 140’730 352’637 0 0 0 0
4 165’490 73’036 633’033 1’172’022 0 0 0 0
5 297’554 199’030 932’461 1’579’736 202 0 18 3’910
6 418’854 321’105 1’106’734 1’840’653 688 0 2’509 16’514
7 586’159 476’807 1’435’075 2’194’285 1’617 0 8’521 30’389
8 609’403 522’311 1’377’117 2’047’477 2’312 8 12’839 34’068
9 712’294 615’028 1’548’731 2’236’150 3’750 92 18’937 49’613
10 809’344 716’227 1’660’795 2’374’073 5’108 639 22’475 58’796
11 1’056’515 953’340 2’092’864 2’990’605 9’096 2’896 37’051 78’573
12 1’410’137 1’295’048 2’537’813 3’437’648 21’487 13’153 69’200 125’271
13 2’008’886 1’899’042 3’271’259 4’179’189 86’354 72’050 188’811 327’241
14 4’211’291 4’126’027 5’463’231 6’402’499 1’552’438 1’512’135 2’074’502 2’514’402

total 12’312’055 12’040’963 16’325’473 18’860’539 1’683’054 1’640’097 2’222’831 2’709’200

Table 4: Real data example. Simulation of predictive distribution of RBNS
and IBNR reserves by accident year: mean, median and 95% and 99% quan-
tiles over B = 10′000 repetitions. Column 2–5 give the RBNS reserves,
Column 6–9 give the IBNR reserves.

For comparison purposes we also consider the double chain ladder method
(DCL) proposed by Mart́ınez-Miranda et al. (2012). This method is defined
under a simpler distributional model which makes the following assumptions
on the first two moments E[Y

(1)
i,j,l] = νiµ and E[(Y

(1)
i,j,l)

2] = ν2
i σ

2. Table 5 re-
ports the summary of the distribution for the RBNS, IBNR and total claims
reserves. The resulting reserves are similar when we consider the sum over
all accident years. However, we observe more variability in the method pro-
posed in this paper, under assumptions (A1)–(A2), compared to the DCL
method. This is due to the fact that in DCL method there is the assumption
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model (A1)-(A3) DCL
RBNS IBNR total RBNS IBNR total

mean 12’312’055 1’683’054 13’995’109 11’758’152 1’585’151 13’343’303

MSEP1/2 2’273’294 326’382 2’324’966 1’881’154 485’312 2’018’112
1% 8’090’717 1’131’376 9’615’040 8’081’739 687’623 9’314’398
5% 9’088’207 1’262’754 10’685’634 9’012’040 897’886 10’408’658
50% 12’040’963 1’640’097 13’723’567 11’637’796 1’532’079 13’243’493
95% 16’325’473 2’222’831 18’101’695 14’869’197 2’448’915 16’729’435
99% 18’860’539 2’709’200 20’660’941 16’516’558 2’941’469 18’487’830

Table 5: Real data example. Bootstrap predictive distribution: RBNS, IBNR
and total claims reserves. The first three columns give the summary of the
distribution under model (A1)–(A3). The last three columns provide the
bootstrap distribution from the DCL method proposed in Mart́ınez-Miranda
et al. (2012).

that a claim is settled by a single payment and hence there is less volatility
in the cash flow process. Besides the model in this paper involves more pa-
rameters than the DCL model and therefore it increases the uncertainty of
the parameters, which we are taking into account in the resampling scheme
(see algorithm in appendix B).

7 Conclusions

In this paper we have defined the claims reserving model on an individual
claims processes basis (micro-level). The definition of the model on this
micro-level has been done such that on the aggregate level we re-discover
the classical chain ladder reserving method. Under such model we show how
extended data collection can provide us with more and better information
to act in time on unforeseen patterns of outstanding liabilities. In particu-
lar we have focused in how various claims delays impact severities and how
to incorporate this information in the reserve. Our approach in this paper
shares the simplicity and intuitive appeal which have popularized the chain
ladder method in claims reserving. But, with a little more effort in calcula-
tions and data requirements, our approach reports several other advantages.
Since chain ladder is only based in the aggregated payments triangles, it can-
not provide the split of the claims reserves into RBNS and IBNR and the
tail as we do. Such split is required for the calculation of unallocated loss
adjustment expenses ULAE and it is a valuable information for the insurer.
Besides to work under a well-defined and firm statistical model provides a
suitable framework to develop consistent bootstrap methods to quantify the
uncertainty in the predictions. In future work we will also consider simula-
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tion of coefficients of variance following the insights of for example Gulhar,
Kibria, Albatineh and Ahmed (2012).
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A Moments calculations

Here we provide calculations about the two first moments of the stochastic
variables in the triangles Nm, Rm and Xm. Hereafter we work under the
model assumptions (A1)–(A3) formulated in Section 2.2.
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A.1 Calculation of means

We start with the claims payments Xi,j,l given in (A3). The conditional and
unconditional means are given by

E [Xi,j,l|Ni,0, . . . , Ni,m−1] = Ni,j πl νi µj,l,

E [Xi,j,l] = E [E [Xi,j,l|Ni,0, . . . , Ni,m−1]] = ϑi βj πl νi µj,l.

The total number of payments Ri,j of accident year i in accounting year
i+ j has, conditionally given {Ni,0, . . . , Ni,m−1}, a Poisson distribution with
conditional mean

E [Ri,j|Ni,0, . . . , Ni,m−1] =

j∑

l=0

E [Ri,j−l,l|Ni,j−l] =

j∑

l=0

Ni,j−l πl.

This implies for the unconditional mean

E [Ri,j] = E [E [Ri,j|Ni,0, . . . , Ni,m−1]] = ϑi

j∑

l=0

βj−l πl.

Define λj =
∑j

l=0 βj−l πl, for j = 0, . . . ,m− 1, then we have just proved the
following proposition.

Proposition 2 E [Ni,j] = ϑi βj and E [Ri,j] = ϑi λj.

Thus, the pair (Ni,j, Ri,j) satisfies the double chain ladder model of Mart́ınez-
Miranda et al. (2012) with inflation parameter set equal to 1. ϑi describes an
exposure measure for accident year i, (βj)j gives the claims reporting pattern
and (λj)j provides the number of payment count pattern.

The accounting year payments Xi,j for accident year i in accounting year
i + j have, conditionally given {Ni,0, . . . , Ni,m−1}, a compound Poisson dis-
tribution with conditional mean

E [Xi,j|Ni,0, . . . , Ni,m−1] =

j∑

l=0

Ni,j−l πl νi µj−l,l.

This provides the unconditional mean for Xi,j given by

E [Xi,j] = ϑi νi

j∑

l=0

βj−l πl µj−l,l.

We define the parameter γj which only depends on the development period
j given by γj =

∑j

l=0 βj−l πl µj−l,l. Thus, we obtain a cross-classified uncon-
ditional first moment for Xi,j which is stated in the following proposition.
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Proposition 3 We have for αi = ϑi νi that E [Xi,j] = αi γj.

This moment property is similar to the Bornhuetter-Ferguson models used
by Mack (2008) and Saluz, Gisler and Wüthrich (2011), Models 4.11 and
4.16. Moreover, Proposition 3 explains how the claims development reporting
pattern (βj)j for Ni,j is related to the claims development pattern (γj)j for
claims payments Xi,j.

A.2 Calculation of variances

In a similar fashion to the first moments we calculate the variances. First we
have under the conditional compound Poisson assumptions (A3)

Var (Xi,j,l|Ni,0, . . . , Ni,m−1) = Ni,j πl ν
2
i s2j,l,

and for the unconditional variance we have

Var (Xi,j,l) = Var (E [Xi,j,l|Ni,0, . . . , Ni,m−1])

+ E [Var (Xi,j,l|Ni,0, . . . , Ni,m−1)]

= ϑi βj ν
2
i

(
π2
l µ2

j,l + πl s
2
j,l

)
.

The total number of payments Ri,j of accident year i in accounting year
i+ j has, conditionally given {Ni,0, . . . , Ni,m−1}, a Poisson distribution with
conditional variance

Var (Ri,j|Ni,0, . . . , Ni,m−1) =

j∑

l=0

Var (Ri,j−l,l|Ni,j−l) =

j∑

l=0

Ni,j−l πl.

This implies for the unconditional variance

Var (Ri,j) = Var (E [Ri,j|Ni,0, . . . , Ni,m−1]) + E [Var (Ri,j|Ni,0, . . . , Ni,m−1)]

= ϑi

j∑

l=0

βj−l π
2
l + ϑi

j∑

l=0

βj−l πl.

Define for j = 0, . . . ,m− 1

t2j =

j∑

l=0

βj−l πl (1 + πl) ≥ λj, (20)

then we have just proved the following proposition.

Proposition 4 Var (Ni,j) = ϑi βj and Var (Ri,j) = ϑi t
2
j .
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In view of Proposition 2 we see that for the number of payments Ri,j we
obtain over-dispersion parameter

φj =
t2j
λj

= 1 +

∑j

l=0 βj−l π
2
l∑j

l=0 βj−l πl

≥ 1.

Note that Ri,j has a mixed Poisson distribution which is exactly reflected in
this over-dispersion parameter φj ≥ 1.

The accounting year payments Xi,j for accident year i in accounting year
i + j have, conditionally given {Ni,0, . . . , Ni,m−1}, a compound Poisson dis-
tribution with conditional variance

Var (Xi,j|Ni,0, . . . , Ni,m−1) =

j∑

l=0

Ni,j−l πl ν
2
i s2j−l,l.

This provides the unconditional variances for Xi,j given by

Var (Xi,j) = Var (E [Xi,j|Ni,0, . . . , Ni,m−1]) + E [Var (Xi,j|Ni,0, . . . , Ni,m−1)]

= ϑi ν
2
i

j∑

l=0

βj−l π
2
l µ2

j−l,l + ϑi ν
2
i

j∑

l=0

βj−l πl s
2
j−l,l.

We define the parameter σ2
j which only depends on the development period

j given by

σ2
j =

j∑

l=0

βj−l πl µj−l,l

(
πl µj−l,l +

s2j−l,l

µj−l,l

)
. (21)

Thus, we obtain a cross-classified model for Xi,j with first moment given by
E[Xi,j] = αi γj and variance given in the following proposition:

Proposition 5 Var (Xi,j) = αi νi σ
2
j .

Again it is similar to the claims reserving models used in Mack (2008) and
Saluz et al. (2011), Models 4.11 and 4.16, but now the parameters have an
explicit meaning.

B Resampling schemes

Here we provide the algorithm to derive the predictive distribution of the
RBNS and IBNR cash flow: XRBNS

m andX IBNR
m . We denote by θ = {πl, µl, sl, νi; l =

0, . . . ,m−1, i = 1, . . . ,m} the set of parameters involved in the model, under
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calibration (10). Moreover, let θ̂ denote the parameters estimated from the
data (Nm,Rm,Xm) which can be calculated using the methods described in
Section 3 and expression (19).

Algorithm RBNS

Step 1. Estimation of the parameters and distributions. From the observed
data (Nm,Rm,Xm) estimate the model parameters θ by the estimator

θ̂ = {π̂l, µ̂l, ŝl, ν̂i; l = 0, . . . ,m − 1, i = 1, . . . ,m}, as described above.
The payment delay distribution is estimated by a Poisson distribution
with estimated parameter, i.e. Ri,j,l|{Ni,0,...,Ni,m−1} ∼ Poi(Ni,jπ̂l). The

distribution of the individual payments, Y
(1)
i,j,l is estimated by a gamma

distribution with shape parameter λ̂ = µ̂2
l /(ŝ

2
l −µ̂2

l ) and scale parameter
κ̂ = (ŝ2l − µ̂2

l )ν̂i/µ̂l.

Step 2. Bootstrapping the data. Conditional on the observed number
of reported claims Nm generate new bootstrapped triangles R∗

m =
{R∗

i,j; i+ j ≤ m} and X ∗
m = {X∗

i,j; i+ j ≤ m} as follows:

(i) Simulate the payment delay: from each Ni,j, i + j ≤ m, generate
the number of payments, R∗

i,j,l from a Poisson distribution with
parameter Ni,jπ̂l estimated in Step 1. Calculate the bootstrapped
total number of payments,R∗

m = {R∗
i,j; i+j ≤ m} from expression

(1).

(ii) Get the bootstrapped aggregated payments, X ∗
m = {X∗

i,j; i+ j ≤
m}, from the gamma distribution estimated in Step 1 and using
expression (2) but replace Ri,j−l,l by R∗

i,j−l,l.

Step 3. Bootstrapping the parameters. From the bootstrap data, (R∗
m,X ∗

m),
and the original Nm, estimate again the parameters and get boot-
strapped parameters θ∗.

Step 4. Bootstrapping the RBNS predictions. Simulate the RBNS cash flow,
XRBNS∗

m , in the lower triangle using similar specifications to (i) and (ii)
in Step 2 but with bootstrapped parameters θ∗.

Step 5. Monte Carlo approximation. Repeat Steps 2-4 B times and get the
empirical bootstrap distribution of the RBNS cash flows {XRBNS,b

m ; b =
1, . . . , B}.

The IBNR algorithm to simulate the IBNR cash flows X IBNR∗
m follows

the same steps as the algorithm RBNS but, in addition, involves the es-
timation and the simulation of the number of reported claims Ni,j in the
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lower triangle Jm. In this case and under assumption (A1), we simulate
N ∗

m = {N∗
i,j; (i, j) ∈ Im} from a Poisson distribution with parameters esti-

mated by the chain ladder estimates {ϑ̂i, β̂j; i, j + 1 = 1, . . . ,m} (for more
details we also refer to Mart́ınez-Miranda et al. 2011).

C Run-off triangles
ay / dy 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 18’247 3’083 124 22 5 5 3 1 0 1 1 0 0 0
2 17’098 2’567 98 25 6 1 1 3 0 1 0 0 0
3 16’110 2’700 107 18 7 5 4 1 4 0 0 0
4 14’426 2’253 103 17 10 3 2 1 1 1 0
5 14’142 2’173 62 11 7 4 0 1 1 0
6 14’275 1’850 86 25 6 2 0 0 1
7 14’019 1’797 97 19 5 1 1 1
8 13’933 1’602 84 24 6 3 1
9 12’962 1’503 65 11 2 2

10 12’226 1’352 74 18 7
11 11’124 1’347 57 12
12 10’360 1’307 56
13 10’371 1’141
14 10’435

Table 6: Example 1, number of reported claims Ni,j, (i, j) ∈ Im.

ay / dy 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 11’761 4’800 324 71 39 14 10 6 3 5 5 2 2 0
2 10’927 4’077 303 60 28 12 13 5 8 4 5 5 0
3 9’856 4’168 294 71 23 23 16 10 9 4 4 3
4 8’915 3’682 246 70 27 16 7 7 4 7 4
5 8’854 3’340 265 46 33 9 4 6 2 5
6 8’881 3’000 199 70 22 15 8 8 4
7 8’170 2’983 221 46 18 8 5 6
8 7’827 2’741 184 55 22 15 3
9 6’999 2’540 166 44 18 7

10 6’240 2’420 184 45 18
11 5’652 2’210 184 45
12 5’223 2’317 148
13 5’627 2’024
14 5’483

Table 7: Example 1, number of payments Ri,j, (i, j) ∈ Im.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 9’829’717 5’690’608 874’882 420’112 154’884 55’497 46’239 313’960 290’204 12’936 6’218 18’755 4’678 0
2 9’263’718 5’004’173 971’523 660’324 208’000 531’391 495’368 48’367 566’099 49’905 362’747 388’190 0
3 9’402’126 5’625’116 805’027 322’263 325’505 101’469 160’747 310’837 30’754 69’395 8’123 51’756
4 8’650’875 5’150’702 752’354 802’485 209’590 466’859 197’654 41’763 25’349 367’750 123’091
5 8’848’118 4’748’516 1’390’699 1’140’610 412’090 359’991 20’169 220’227 54’395 240’967
6 9’070’691 5’890’678 519’808 539’202 127’701 86’472 122’060 83’853 6’660
7 8’763’254 4’293’444 1’339’396 292’330 1’515’615 155’402 28’210 36’709
8 7’777’082 4’145’234 642’816 504’127 92’030 101’250 6’620
9 7’212’984 3’498’230 778’132 354’855 626’442 342’182

10 6’265’457 3’737’631 546’644 182’490 297’995
11 5’737’447 3’281’469 748’102 456’983
12 5’612’232 3’495’586 593’774
13 6’386’024 3’289’703
14 6’110’750

Table 8: Example 1, claims payments Xi,j, (i, j) ∈ Im.
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