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Abstract—In a medium sized network, an Intrusion Detection
System (IDS) could produce thousands of alerts a day many of
which may be false positives. In the vast number of triggered
intrusion alerts, identifying those to prioritise is highly challeng-
ing. Alert Correlation and prioritisation are both viable analytical
methods which are commonly used to understand and prioritise
alerts. However, to the author’s knowledge, very few dynamic
prioritisation metrics exist. In this paper, a new prioritisation
metric - OutMet, which is based on measuring the degree to
which an alert belongs to anomalous behaviour is proposed.
OutMet combines alert correlation and prioritisation analysis and
in given attack scenarios, is capable of reducing false positives by
upto 100%. The metric is tested and evaluated using the recently
developed cyber-range dataset provided by Northrop Grumman.

I. INTRODUCTION

Intrusion Alerts are raised by an Intrusion Detection System

(IDS) which is usually situated at the network’s perimeter to

monitor incoming and outgoing traffic. When suspicious or

malicious traffic is observed by the IDS, an alert is raised.

IDS’s identify suspicious or malicious traffic using either

a signature-based approach or an anomaly-based approach.

With signature-based IDSs, traffic is matched against a set of

pre-configured attack patterns called signatures. In the latter

IDS type, statistical methods are used to learn the normal

behaviour of network traffic and alerts are triggered when

traffic deviates from normal behaviour. Both approaches have

limitations – most IDSs are known to trigger a high volume of

intrusion alerts. In the vast number of triggered intrusion alerts,

identifying which alerts to prioritise is challenging. According

to early research [1], [2], upto 99% of raised alerts can be

false positives. False positives indicate alerts either triggered

on normal traffic or alerts triggered on benign attacks (attacks

that are non-successful or cause no network harm).

Thus, most IDS advancements in research and industry

particularly focus on improving the IDS detection rate and

reducing the false positive rate. In this research, the latter

is focussed on by filtering false positive alerts using our

newly proposed prioritisation metric, “OutMet”. We focus

particularly on alerts produced by a signature-based IDS.

Although most signature-based IDSs provide a default priority

level for each alert, it is solely based on the signature matched.

This is argued to be insufficient as attacks launched on a

network trigger multiple alerts therefore the context of a single

attack is unlikely to be captured by analysing a single alert [3].

Alert Correlation is a common approach used in under-

standing this attack context[4]. In alert correlation, a set of

related alerts are grouped into a higher level meta-alert which

represents a single intrusion activity.

Our background research reveals the existence of other

prioritisation and severity metrics however very few focus on

attack context and none are known to prioritise meta-alerts.

In our work, alert correlation is used to derive higher level

meta-alerts which represent attack context. Various properties

which could be used to prioritise meta-alerts were investigated

(Described in Section-III-B1), however, we chose to priori-

tise meta-alerts based on their outlier degree property. This

property was chosen because outliers reflect infrequent and

anomaly behaviours in attack analysis and this often correlates

with true attacks.

The proposed prioritisation metric is evaluated on a recent

intrusion detection dataset provided from a cyber-range exper-

iment carried out by Northrop Grumman [5]. The effectiveness

of the prioritisation metric is illustrated by comparing it to

1)A similar prioritisation metric proposed by Alsubhi et al[6],

[7] and 2)An alternative prioritisation metric which ignores

attack context (i.e. alert correlation). An evaluation on some

of a meta-alert’s properties is also carried out to measure how

relevant they could be under certain attack scenarios.

The rest of this paper is organised as follows. Section-II

describes the related work, Section-III details the proposed

approach for alert prioritisation, Section-IV describes the

results from our experiment,and Section-V describes our plans

for future work.

II. RELATED WORK

To the knowledge of the authors, very little work has

been done on defining Alert Prioritisation metrics for IDS

alerts. Porras first proposed an alert ranking framework, M-

Correlator, with a prioritisation component that consisted of

two security metrics - relevance and the priority scoring[8].

The relevance scoring measured the validity of an alert i.e.

the likelihood of the alert being a true positive. The priority



scoring measured the severity of an alert given the targeted

asset’s value. The priority score also combined an interest

score which measured the degree to which an analyst ex-

pressed interest in the attack category the alert belonged. Using

a Bayesian model they determine the overall priority of an

alert based on the acquired evidence e.g. P(priority = critical

— relevance = low). A limitation in their approach is that

knowledge from alert correlation is not taking into account

during the prioritisation despite their framework consisting of

a similarity based correlation component. Since it is solely

based on user and network knowledge the framework is limited

to discovering known incidents while novel attack incidents

remain un-prioritised.

Noel et al proposed an alert prioritising framework which

used a different metric [9]. The metric calculated the proximity

of an alert to a critical asset. Thus, alerts targeted at assets

closer to critical assets had a higher priority over those further

away. Similarly to Porras et al’s framework, it only uses

network knowledge and no alert or correlation context is taken

into consideration.

A more robust alert prioritisation system is proposed by

Alsubhi et al [6], [7] who defines 7 metrics for prioritising

alerts. Two of the metrics, an alert relationship metric and

a social activity metric, are relevant to our work since they

are based on alert correlation context. The alert relationship

metric measures the degree to which the alert correlates with

successive alerts whereby a high value indicates the alert is

potentially a causal alert. The Social Activity metric is briefly

introduced as a metric used to measure the activity of the

source and destination IP addresses included in each alert.

Zomlot et al also proposed a prioritisation model for the

alert correlation system they had previously presented [10]

[11]. In their work on prioritisation, they use dempster-shafer

to assign a degree of belief to each meta-alert (generated by

the correlation system) which indicated the likelihood of true

positivity given the quality of the IDS sensor which raised the

alerts.

Unlike alert prioritisation, more effort has been focussed

on alert correlation techniques. Using Salah et al’s correlation

model taxonomy, these can be classified into case-based,

similarity-based and sequential-based methods. Case-based

methods involve a rule language that uses expert domain

knowledge to define alert types that may occur in a given

attack scenario.Cuppens et al, Cheung et al, Eckmann and

Kemmerer, and Cedric and Ludovic proposed LAMBDA,

CAML, STATL, and ADELE respectively[12]–[15]. Although

these provide high-quality correlations capturing known at-

tacks, their limitation is that they are difficult to implement and

maintain on a large-scale. In similarity methods, the correla-

tion is based on feature similarity. Valdes and Skinner as well

as Dains first introduced this approach. Although simpler to

implement, such methods do not capture complex nor hidden

correlations [16],[17]. More Recently,Hoffman et al proposed

alert clustering technique[18]. Sequential-based correlation is

more suitable for capturing causally correlated alerts with little

or no apriori knowledge. Sequential-based methods include

those proposed by Ning, and Debar and Wespi[19] [20]. Both

used rule-like pre-requisites and consequences for correlating

alerts. Qin also used abstract pre-requisites and consequences

combined with statistical evaluation for correlating alerts[21].

Sequential-based alert correlation models which use little to no

a-priori knowledge are based on Bayesian inference. Examples

include work by [22]–[24] and [25]. Each of these alert corre-

lation models output a set of meta-alerts represented in a graph

like structure known as an Alert Correlation Graph (ACG).

[26] addresses how ACGs can be made useful to an analyst

by simplifying the graphs using node and edge reduction

techniques. However, few has focussed on how to prioritise

alert correlation graphs in the event where many are produced.

Based on our experiments with alert correlation models this

however, is typical in real environments. In environments

where a vast amount of alerts are produced, it is likely to

achieve an equally vast amount of alert correlation graphs.

This is one of the challenges our work aims to address.

III. OUTMET: THE PROPOSED PRIORITISATION METRIC

Figure 1 represents a sample Snort IDS alert output in

text format. Only certain alert attributes are used in our

analysis process. Each alert is represented using a 6-tuple

a = (α1, α2, ..., α6) where each element of the tuple is the

attribute value of the following attributes: source IP, source

port, destination IP, destination Port, priority (default) and

intrusion type respectively.

Fig. 1. Snort IDS Alert Example

For each alert that is received, the OutMet is calculated over

a series of steps:

A) Alert Correlation: A heuristic similarity measure is used

to correlate alerts into meta-alerts. Each new received

alert is either added to a new meta-alert or joins a

previously existing meta-alert. Meta-alerts are represented

as alert correlation graphs. An alert correlation graph

is a directed acyclic graph G = (E, V,W ) where

each vertex, v ∈ V represents a single intrusion alert,

each edge evi,vj ∈ E indicates a correlation between

two alert vi, vj ∈ V and W contains the weight of each

edge indicating the correlation strength between two alerts.

B) Alert Correlation Graph Comparison: The difference

between each two or more meta-alerts is computed. A set

of additional features which are unique to meta-alerts are

extracted and used in the distance measurement. Graph

Edit Distance (GED)[27] is applied to compare the graph

structure of alert correlation graphs.



C) Alert Correlation Graph Prioritisation: Given a set of

meta-alerts, A prioritisation value is assigned to each meta-

alert based on the degree to which it differs to other meta-

alerts. We use Local Outlier Factor, LOF [28] to derive

this value. Furthermore, we refer to a meta-alert with a

prioritisation value greater than Pθ as an outlier meta-

alert. Such a meta-alert is an alert correlation graph that

differs to the rest of the graph set to a degree which

causes suspicion to arise. Each low-level IDS alert assumes

the prioritisation value of its containing meta-alert. Non-

prioritised meta-alerts (those with prioritisation values less

than Pθ) are filtered and labelled as false-positives.

The next section details each step accordingly.

A. Alert Correlation

Given a stream of intrusion alerts, the most recent-alert,

aj is added to a pre-existing alert correlation graph, gmax as

follows:

gmax ← argmax{C(aj , gi)}
n
i=1 if max{C(aj , gi) > θ}

(1)

Let it be assumed that G is the set of all pre-existing alert

correlation graphs and |G| = n. If n = 0 then a new alert

correlation graph, g0 is initialised and aj becomes the first

alert in g0. Otherwise, the Correlation Strength between aj
and any alert correlation graph is defined as:

C(aj , g)← max{C(ai, aj) : ai ∈ g}mi=1 (2)

where m is the number of alerts in a given alert correlation

graph that occurred less than Tθ seconds apart from aj .

A new alert correlation graph may also be initialised if

max{C(aj , gi)}
n
i=0 is less than a defined threshold θ.

The Correlation Strength, C(ai, aj) between two alerts is

given as:

C(ai, aj) =

∑

f∈F

ωf × f

∑

f∈F

ωf
(3)

1) Features: The correlation strength between two alerts

is dependent on the degree to which the alerts share similar

features. In the equation 3, F is a set of correlation features.

Based on the importance of each feature, each feature is

assigned a weight ωk. Each is described subsequently.

(i) Time Proximity (f1) . This feature represents the time

proximity between two alerts. It is derived as a sigmoid

function such that the time proximity between two alerts

decreases as the time between them increases.

f1 =
1

1 + et
where: t =

|tai
− taj

|

Tθ
(4)

(ii) IP Similarity (f2). This compares the source and the

destination IP of ai to the source and destination IP of

aj respectively. It is a common similarity measure that

indicates that ai and aj are targets to a similar destination

node or/and are from a similar attacker. The higher the

value, the more likely this statement holds true.

A common IP similarity measure is applied for all IP

address features. The IP Similarity Measure S(ip1, ip2)
is the common subnet mask between any two IPs as

shown in Table I.

TABLE I
IP SIMILARITY

172.16.113.20 10101100 . 00010000 . 01110001 . 11001111

172.16.115.20 10101100 . 00010000 . 01110011 . 00010100

Common Mask 11111111 . 11111111 . 11111100 . 00000000

22/36 = 0.61

(iii) Cross IP Similarity (f3). This compares the source and

the destination IP of ai to the destination and source

IP of aj respectively. This feature indicates that aj is

a responsive intrusion to ai. For example, if DestIPai

== SourceIPaj
it could indicate that ai was a successful

attempt to exploit DestIPai
. After this success,aj could

indicate that this host is now performing intrusive activ-

ities. On the other hand, aj could be an echo alert to ai.
In this case not only is the above condition satisfied but

also SourceIPai
== DestIPaj

. Since f2 and f3 conflict

each other, i.e. the relationship between two intrusions is

likely to be one or the other but not both, we select only

one of the features based on the feature with the highest

similarity.

(iv) Port Similarity (f4). This feature indicates 1 if both alerts

share the same destination port and 0 if they don’t.

2) Process: To add aj to gmax, aj is added as a vertex in

gmax and the value of C(aj , gmax) is assigned to the edge

between aj and amax ∈ gmax for amax is the alert which

produced the correlation strength. Algorithm 1 describes the

entire correlation process.

3) Complexity: For each incoming alert aj , the time com-

plexity to find the most optimal alert correlation graph to add

aj to is O(N) for N is the total number of alerts in all the pre-

existing alert correlation graphs with timestamps that satisfy

TaJ
− Tai

.

N increases as the number of incoming alerts increases.

It is also likely to increase if Tθ increases. Thus, though

the complexity for correlating a single alert is reasonable,

in an environment where hundreds of incoming alerts are

received per second, the task of alert correlation becomes

highly complex.

An intuitive approach to ensuring the complexity is feasible

is to ensure N is always of a reasonable size. To achieve this,

sampling is used to select a set of M alerts from N given M

is significantly less than N. A random approach described in

work by Bateni et al was adopted[29].

B. Alert Correlation Graph Comparison

Each alert correlation graph represents a meta-alert where

all the low level IDS alerts contained within it are part of



Algorithm 1 Correlation Process

1: function CORRELATE(aj )

2: aj ⊲ an incoming alert

3: G ⊲ A set of pre-existing alert correlation graphs

4: if G == ∅ then

5: INITIALISEGRAPH(aj )

6: else

7: m = 0
8: for all g ∈ G do

9: for all ai ∈ g do

10: if C(ai, aj) > m then

11: m = C(ai, aj)
12: gmax = g
13: amax = ai

14: end if

15: end for

16: end for

17: if m > θ then

18: gmax(V )← gmax(V ) ∪ v(aj)
19: gmax(E)← eamax,aj

20: else

21: INITIALISEGRAPH(aj )

22: end if

23: end if

24: end function

25:
26: function INITIALISEGRAPH(aj )

27: g ← new graph

28: g(V )← aj

29: end function

the same or similar intrusion. Therefore, it may be meaning-

ful to distinguish similar meta-alerts from highly dissimilar

meta-alerts. This may help in identifying common intrusion

activities and non-frequent intrusive activities.

To achieve this, the alert correlation graphs are compared

using a distance metric. The distance between two alert

correlation graphs, d(g1, g2) is the normalised value of four

weighted features combined. The features are described.

1) Features:

1) Interval Rate (I). The interval rate indicates the average

time interval in milliseconds between any two alerts with

an alert correlation graph. An alert correlation graph with

a low interval rate indicates that the alerts occurred with

rapid succession. This is often found to be the case in

denial of service attacks.

I =

n
∑

k=1

tk
n

(5)

and d(Ig1 , Ig2) = |Ig1 − Ig2 |

t = {t1, t2, ...tn} is a list of all the time intervals where

t1 is the interval between the first two alerts in a graph,

t2 and next two and so on.

2) Time Duration (TD). The time duration indicates how

long the intrusion activity lasted and is measured as the

time interval between the first alert v1 and last vn alert

in the alert correlation graph.

TD = |tv1
− tvn | (6)

and d(TDg1 , TDg2) = |TDg1 − TDg2 |

The time duration feature provides more information

when observed alongside the interval rate. E.g. If a high

time duration and a low interval rate is observed then the

alert correlation graph is likely to contain a high number

of alerts.

3) Incoming Rate (IR). This is the ratio of incoming intru-

sions in the alert correlation graph. Domain knowledge

is required to distinguish internal IP addresses from

external.

IR =
# of incoming Alerts

# of Alerts
(7)

and d(IRg1 , IRg2) = |IRg1 − IRg2 |

This feature may prove useful when trying to understand

the context of the intrusive behaviour. For instance, an

alert correlation graph with a higher value (i.e. higher

incoming rate) could potentially indicate a DoS attack

and a graph with a lower value (i.e. higher outgoing

rate) would indicate that the internal host may be being

used to perform malicious activities. A graph with an

average value could indicate a constant activity between

an internal host and an intruder. A case where an attack

pattern graph consists of many ICMP pings and echo

replies would yield an average value.

4) Graph Structure (gs). The nodes and edges of an alert

correlation graph reflect the behaviour of the intrusion

activity and the relationship between alerts of the corre-

lation graph at varying times and stages of the intrusion

activity. The graph structure of any two alert correlation

graph is compared using “Graph edit distance” (GED)

[27]. GED represents the distance between any two graph

structures sg1, sg2 (of g1, g2 respectively) by counting the

minimal number of actions required to transform sg1 into

sg2 by manipulating sg1 using a number of operations

such as node deletion/insertion, edge deletion/insertion

and node/edge substitution. Algorithm2 details the edit

distance process.

2) Process: In Algorithm 2, Lines 2 & 3 are used to sim-

plify the alert correlation graph. The complexity of calculating

the GED between any two graphs is bound by |V| and |E|.
In order to minimize this complexity, the nodes and edges

in the alert correlation graph are aggregated and simplified.

Therefore, an aggregated graph g’ of g is a graph where

all the nodes (i.e. alerts) in g with the same intrusion type

are aggregated in g’ and all edges in g with labels evi,vj are

relabelled Et(vi),t(vj) in g’ where t(v) is the value of the

vertex’s (i.e. alert’s) intrusion type. Furthermore, edges in g’

with identical labels are aggregated.
3) Comparison: The distance between any two alert corre-

lation graph is:

D(g1, g2) =

n
∑

i=0

ωpi × pi

n
∑

i=0

ωpi

(8)



Algorithm 2 EditDistance between graph structure

1: function EDITDISTANCE(sg’1, sg’2)

2: sg’1 ← Aggregate(sg1)

3: sg’2 ← Aggregate(sg2)

4:
5: L ← maximum cost allowed

6: Q ← ∅ ⊲ A queue sorted by minimum path cost

7: vi ← random vertex from sg’1
8:
9: for vj in sg’2 do

10: s = new substitutePath(vi,vj )

11: Q ← Q ∪ s

12: end for

13: d ← new deletePath(vi)

14: Q ← Q ∪ d

15: while true do

16: e = Q.firstPath()

17: if e.isComplete() then

18: return e

19: end if

20: if e.cost() > L then ⊲ The maximum cost has been exceeded

21: return L

22: end if

23: EXTEND(e, sg’1, sg’2, Q)

24: end while

25: end function

26:
27: function EXTEND(e, sg’1, sg’2, Q)

28: if g’1(V) ⊆ e == true then

29: vi = next vertex in g’1 : vi /∈ e

30: for vj ∈ sg’2 do

31: s ← e ∪ new substitutePath(vi,vj )

32: Q ← Q ∪ s;

33: end for

34: d ← e ∪ new deletePath(vi)

35: Q ← Q ∪ d

36: else

37: for vi ∈ sg’2 do

38: if vi /∈ e then

39: i ← e ∪ new insertPath(vi)

40: end if

41: end for

42: end if

43: end function

44:

C. Alert Correlation Graph Prioritisation

A prioritisation value is assigned to each alert correlation

graph based on its dissimilarity to a set of other alert cor-

relation graphs, G. The prioritisation value is a real number

between 1 and 4 (inclusive) where 1 indicates the least priority

and 4 the highest priority.

p(g) =



















1 0 ≤ nlof(g) ≤ 0.25

2 0.25 < nlof(g) ≤ 0.50

3 0.50 < nlof(g) ≤ 0.75

4 0.75 < nlof(g) ≤ 1

(9)

nlof(g) =
lof(g)

max{lof(gi)}
|G|
i=0

nlof(g) is a normalised value which represents the degree

to which g is dissimilar with respect to a set of neighboring

graphs in otherwords, it is the degree to which g is an “outlier”.

This is more coherently illustrated in 2

In figure 2, each point represents a single alert correlation

graph. Graphs closer together indicate the graphs are similar.

Both g1 and g2 are highly outliers and would have high

prioritisation values. g1 is a local outlier to C1 since it is

Fig. 2. Outlier Example

somewhat similar to the members of cluster 1 but also varying.

g2 on the other hand is a global outlier as it is highly dissimilar

to all other alert correlation graphs.

1) Process: lof(g) is computed over three steps:

i Derive g’s kth reachanbility distance and neighborhood:

rdk(g, gj) = max{kDist(g), D(g, gj)}

ii Derive g’s local density: This is the inverse of the average

reachability distance which is defined in equation 10.

lrd(g) := 1/

∑

gj∈Nk(g)

rdk(g, gj)

|Nk(g)|
(10)

iii Derive lof(g):

lof(g) =

∑

o∈Ng

lrdg
lrdgj

|Ng
| (11)

Finally, we calculate nlof of each meta-alert, map it to its

respective prioritisation value and drop all alerts with a priori-

tisation value less than Pθ.

IV. EXPERIMENTS AND RESULTS

The experiments were based on an attack scenarios con-

tained in the cyber-range dataset provided by Northrop Grum-

man[5]. Each attack was carried out over a day’s period. Our

objective is to illustrate the usefulness of OutMet in filtering

out false positive alerts. We choose to use three metrics:

evaluation techniques.

i False positive Rate Comparison (FPR): This compares

the false positive rate in the alert dataset before and

after applying the OutMet prioritisation metric. A good

performance will indicate a lower FPR. The false positive

rate is measured below:

FPR =
FP

N
=

# of incorrectly prioritised alerts

# of prioritised alerts
(12)

ii True Positive Rate (TPR): The true positive before OutMet

is applied is unknown hence no before and after com-

parison can be made. However, since the number of true

positives before the OutMet application is known, we can

atleast measure the TPR of the OutMet analysis. A good

performance will indicate a higher TPR.

TPR =
TP

P
=

# of correctly prioritised alerts

# of true positive alerts
(13)



iii Reduction Rate (RR): This measures the degree to which

OutMet filters alerts. It takes a lesser preference to TPR

and FPR but we have used it to be useful in scenarios

where the TPR and FPR are uncertain. For example, if a

low FPR and a high TPR is observed, the evaluation is

that the results are good even if the reduction rate is very

low.

RR =
# of alerts after prioritisation

# of alerts before prioritisation
(14)

A. Attack Scenario – DMZ Attack

In this attack an attacker launches an attack on a web server

situated on the DMZ zone of a medium size network (200

clients). The intrusion detection system raises alerts during the

web server attack however it also raises various alerts on non-

malicious traffic. In total, ≈20% of the alerts triggered by the

IDS were false positives triggered on normal traffic related to

email content, host pinging (are you alive?), and unreachable

servers. The web server attack included casual port scanning

of the DMZ servers followed by intrusive scans to discover

and exploit vulnerable services using a brute force approach.

During the entire day course, 3226 DMZ intrusion alerts were

raised.

TABLE II
PARAMETERS USED

θ Tθ k Pθ ω(f1) ω(f2)

0.7 30 mins 10 3 0.25 0.35

ω(f3) ω(f4) ω(I) ω(TD) ω(IR) ω(gs)

0.25 0.15 1 1 1 1

Based on the truth score of the Attack Scenario provided,

only 649 of the alerts were false positives. We set the expected

TPR, FPR and RR rate are 100%, 0%, and 20% respectively.

In other words, this means that the metric should prioritise

2577 alerts, and eliminate 649 alerts. Using the parameters in

TABLE II, OutMet prioritised 1,853 and filtered the remaining.

A TPR of 71.91% and FPR of 0.32% were achieved.

Figure 3 shows a set of Alert Correlation Graps with their

assigned priority values. Due to the frequent communication

between servers on the network, many ICMP Ping and Reply

alerts were triggered by the intrusion detection System. This

resulted in many frequent alert correlation graphs such as

3(b) which capture the Ping-Reply behaviour between servers.

Since these graphs were consistently observed within the

intrusion alert traffic, a low priority value of 1 or 2 (depending

on the number of pings and replies in a single graph) was often

assigned to such a graph.

TABLE III
RESULTS FROM DMZ ATTACK ANALYSIS

TPR FPR RR

Expected 1 0 0.20

OutMet 0.719 0.003 0.426

Alushbhi et al 0.95 0.184 0.202

OutMet *(No AC) 0 1 0

Fig3(a) illustrates an alert correlation graph which captures

the behaviour of an outsider sending suspicious email to a

client residing on the network. After studying the network

topology and configurations it was discovered that packets

were routed from the outsider to the DMZ mail server and

from the DMZ mail server to the internal mail server were

the mail content becomes available to the local client. Many

graphs (although with variations of size and noise) captured

this network behaviour. These graph patterns were less fre-

quent than that observed in 3(b) and were often assigned a

priority value of 2.

Finally, Fig3(c) shows the alert correlation graph of the

real attack launched by the attacker on a DMZ web server.

Most of the attacks in this graph were targeted to exploit web

vulnerabilities. This graph was therefore assigned a higher

priority value since it varied highly to the past observed

behaviour (i.e. graphs) such as those in in Fig3(a) and Fig3(b).

The Alert Relation Metric proposed by Alsubhi et al pri-

oritises alerts based on how similar an alert is to other alerts.

[7].

A comparison between the results of Alsubhi et al and our

work show that we have successfully reduced the false positive

rate despite a lesser true positive rate. We discuss methods for

improving the true positive rate in Section V.

In our research our argument is that alert correlation aids

in capturing attack context. Therefore, analysing the output of

alert correlation is more effective than analysing raw alerts

without correlation. To validate this argument, we performed

OutMet on low-level alerts without first correlating the alerts

i.e. Each alert is assigned an OutMet value based on the degree

to which it is an outlier. (Note that the initial results assigned

OutMet values to alerts based on the degree to which its parent

Meta-alert was an outlier). In this case, Euclidean distance is

used as the distance measure between any two alerts. As the

results show, no alerts were successfully prioritised.

V. FUTURE WORK

The future work of this research focusses around three

core areas. Firstly, in some attack cases, outlier alerts many

not correspond to real attacks, therefore OutMet may not be

suitable for all attack scenarios. To address this, it is aimed to

use other prioritisation metrics used alongside OutMet.

Secondly, our approach to prioritisation is based on static

analysis, i.e. at every set interval, a set of recent meta-alerts are

extracted from the database and their prioritisation values are

calculated. Once done, prioritised meta-alerts are then flagged

for the attention of a security analyst. Although low intervals

could be near real-time it requires high computational power to

run the prioritisation component frequently. On the other hand

larger time intervals may result in detecting an attack too late.

To address this, real-time prioritisation is being investigated

which are based on Incremental local outlier detection[30].

Lastly, OutMet is highly reliant on the quality of the

correlated alerts (i.e. meta-alerts). If meta-alerts contain het-

erogeneous alerts from different intrusive behaviours then it is

highly likely that OutMet will produce a high false positive



Fig. 3. Sample Alert Correlation Graphs (Meta-alerts) derived from analysis with prioritisation values 2 assigned to graph(a), 1 to graph(b) and 4 to graph(c)

rate. We validated this observation by running an additional

experiment where correlation threshold value was between 0.2

and 0.3. This produced a set of alert correlation graphs which

contained a high noise rate. Thus the prioritisation analysis

was highly affected. A possible method to address this is to

improve the correlation component [23], [31]. More statisti-

cally refined alert correlation techniques including probablistic

techniques have been recently proposed[24], [25], [32].

Our research also focuses on investigating new methods for

prioritising and particularly understanding intrusive behaviour.

More recently, we have focussed on extracting attack patterns

from alert correlation graphs and using such patterns as the

basis for labelling attack classes.

VI. SUMMARY

In this research we have presented a new prioritisation

metric. We have argued and proven that (in some cases), true

attacks correlate with outlier activity therefore the OutMet

prioritisation metric can be useful. Our results support this

claim and using a recently developed dataset to measure its

performance, we achieved a TPR of 71% with less than 1%

false positives. The metric is currently being further tested and

integrated into an experimental Cyber Analysis tool developed

at the BT Security Future Practise Research Labs.
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