
MacFarlane, A., Robertson, S. E. & McCann, J. A. (2000). PLIERS AT TREC8. Paper presented at

the Eight Text REtrieval Conference (TREC 2008), 16-11-1999 - 19-11-1999, Gaithersburg, USA.

City Research Online

Original citation: MacFarlane, A., Robertson, S. E. & McCann, J. A. (2000). PLIERS AT TREC8.

Paper presented at the Eight Text REtrieval Conference (TREC 2008), 16-11-1999 - 19-11-1999,

Gaithersburg, USA.

Permanent City Research Online URL: http://openaccess.city.ac.uk/4444/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/29017642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

PLIERS AT TREC8

A. MacFarlane1,2, S.E.Robertson1,2, J.A.McCann1

1 School of Informatics, City University, London EC1V OHB
2 Microsoft Research Ltd, Cambridge CB2 3NH

Abstract: The use of the PLIERS text retrieval system in TREC8 experiments is

described. The tracks entered for are: Ad-Hoc, Filtering (Batch and Routing) and the

Web Track (Large only). We describe both retrieval efficiency and effectiveness results

for all these tracks. We also describe some preliminary experiments with BM_25 tuning

constant variation.

1. INTRODUCTION

The work described here is a continuation and expansion of last year’s PLIERS entry [1] that concentrated

on the VLC2 track. In TREC-8 we have entered for three main tracks: Ad-Hoc, Filtering and the Web

Track. For the Filtering track we have entries for the Batch Filtering/Routing sub-tasks only and the large

task in the Web Track. The main focus of our research is in the area of retrieval efficiency and we

continue that theme in this paper (we accept that this focus differs from much of the other work done in

TREC). However we have attempted to improve the retrieval effectiveness in our system by looking at the

issue of tuning constants for BM_25 and the relationship between them.

The hardware used for much of these experiments is the “Cambridge Cluster” that consists of 16

nodes each with two Pentium PII-30 processors (32 processors in all), 384 MB of RAM and 9 GB of disk

space on each. The nodes are connected by a fast Ethernet switch for general operation and a Myrinet

(Gigabit class) switch for use by parallel programs. Also used for comparison and indexing purposes is a

Pentium PII with 1 processor, 128 MB of RAM (much less than the Cluster nodes) and 9 GB of disk

space. All 16 nodes of the Cluster were used in the parallel experiments, but we did not utilize all of the

processors. In Indexing we used 17 processors (1 timer process and 16 indexer processes). For search we

used 18 processors (1 batch client, 1 client interface and 16 leaf processes mapped). For the Filtering track

we used 16 processors (mapping was 1 processor for a master Router, 15 processors for Slave Routers).

The topology used is given in [1].

The structure of the paper is as follows. Details of indexing experiments and the

databases/collections used are described in section 2. Initial work done on tuning constants is outlined in

section 3 and a hypothesis is put forward concerning their use. The TREC-8 Ad-Hoc experiments are

described in section 4. The Filtering Track experiments are described in section 5, while the Web Track

experiments and some prior experiments with VLC2 data are outlined in section 6. A conclusion is given

in section 7 particularly with regard to the tuning constant hypothesis.

2. INDEXING EXPERIMENTS AND DATABASE DETAILS

The text collections used for the experiments described in this paper are taken from the 5 GB Tipster

collection and the 100 GB VLC2 collection. The same stop word list [2] and stemming algorithm (Lovins)

used in the VLC2 experiments [1] was applied to all of the Indexed text. An SGML/HTML parser was

used to identify various aspects of documents such as end of document: it was also used to remove the

<SUBJECT> field in the LA Times collection (disk 5). Controlled Fields such as XX, CN, IN etc found in

FT data were indexed. We record a number of different aspects of these collections. Collection data such

as the number of documents in the collection, total word length of collection and total size of text is

declared. For each indexing run we record aspects of the index such as the type of distribution used for

Inverted file (partitioning or replication), type of Inverted file (with or without position data), Inverted file

size (together with % of text) and relevant documents per collection used for training (Filtering Track

only). Information on timing data includes indexing times plus various parallel processing measures such

as speedup (sequential time/parallel time), efficiency (speedup/number of processors) and load imbalance

(LI) [3] (Max node time/Average node time).

2.1 AD-HOC TRACK

Inverted File Type Machine Time

(Hours)

Speedup Efficiency LI Index Size

(% of Text)

Postings Only Pentium

Cluster

0.81

0.059 13.68 0.85 1.06

324 Mb (17%)

342 Mb (18%)

With Position Data Pentium

Cluster

1.04

0.064 16.17 1.01 1.06

832 Mb (43%)

851 Mb (47%)

Table 1 - Ad-Hoc Indexing Experiment Details

Table 1 show details of Ad-Hoc Indexing experiments. The Ad-Hoc text collection consists of Tipster

Disk4 and Disk5 minus the Congressional record on disk4. It consists of 528,155 documents and the text

size is 1,904 MB: the total word length detected was just under 270 million words. Indexing experiments

on both the Cambridge Cluster and the single Pentium were done. Inverted files were partitioned on the

cluster using the local build method with document identifier partitioning [4]: a method which keeps all

data local during Indexing. A total of 17 processors was used to map 16 Indexer processes and 1 timer

process. This is the same method used in last year's experiments [1]. Indexes with and without position

data were produced. The cluster yielded good results particularly on Indexes with Position Data where the

extra memory on the Cluster paid dividends: super-linear speedup and efficiency were recorded. There is a

slight increase in Index size on the Cluster due to repetition of keyword records found in the type of Index

used. The increases are only minor however: 0.05% for postings only files and 0.02% for files with

position data.

2.2 FILTERING TRACK

DATABASE Batch

Filtering

Routing Training

1: EXTRACT

Routing Training

2: SELECT

Test Collection

Index Time (hrs) 0.085 0.42 0.50 0.18

No Documents 64,139 251,396 256,761 140,651

Text Size in MB 167 979 1,013 382

Index Size in MB

 (% of Text)

37.72

(22.3%)

158

(16%)

162

(16%)

85

(22%)

Relevance

Judgments (Avg)

548

(10.96)

1836

(36)

1797

(35)

1276

(25.52)

Collection Word

Length (Million)

27 138 142 60

Description FT 1992:

Disk 4

1/2 of Disk4/5

Minus FT1993/4

1/2 of Disk4/5

Minus FT1993/4

FT1993/4:

Disk 4

Table 2 - Filtering Track Indexing Experiment Details

Table 2 shows details of Filtering Track experiments. The Indexing for all the databases was done on the

single Pentium. Indexes with postings only data were produced for all the databases. The Batch Filtering

database was replicated (by copying) across the Cluster that is each node in the Cluster has the same

index. The Routing Training data was split into two collections: one for query extraction and another for

query optimization: named EXTRACT and SELECT. Files from the Routing collection were distributed

evenly to EXTRACT and SELECT, which differs from the method used in Okapi experiments of the same

type [5]. Of the Routing collections only SELECT was replicated (by copying) across the Cluster (the

EXTRACT database is used to make the term pools and is not used in the term selection process). The

Test collection was kept on the single Pentium.

2.5 WEB TRACK

COLLECTION WT100g BASE10 BASE1

Index Time (hrs) 3.04 0.29 0.025

LI 1.10 1.06 1.10

Scaleup - WT100g:0.91 WT100g:0.8

BASE10:0.87

No Documents 18,500k 1,870k 187k

Text Size in GB 100 10 1

Index Size in GB

 (% of Text)

10.64

(11%)

1.21

(12%)

147MB

(14%)

Collection Word

Length (Million)

8,600 865 87

Description Full Db 10% of WT100g 1% of WT100g

Table 3 - Web Track Indexing Experiment Details

The Web Track collection (WT100g) consists for 100 GB of spidered web data and was originally used in

last years VLC2 track [6]. The BASE1 and BASE10 are baseline collections of the WT100g. All three

collections were distributed as evenly as possible across the 16 nodes of the Cluster by linear assignment

i.e. 1
st x files are placed on the 1st node, 2nd x files are placed on the 2nd node etc: x is approximately total

collection files divided by the number of nodes. Inverted files were partitioned on the cluster using the

local build method with document identifier partitioning [4]. A total of 17 processors was used to map 16

Indexer processes and 1 timer process. The indexing times for the Web Track collections compare

favorably with the results given at last years VLC2 track: the times stated above are faster than all VLC2

indexing times and meet the standard sought at last years VLC2 (an indexing time of 10 hours or less).

The load balancing for all Indexing experiments on the Web Track is good with only slight levels of

imbalance recorded: this confirms that the strategy used for distributing the collection to nodes was a good

one. The Index time scaleup from the baselines to WT100g and from BASE1 to BASE10 are good, with

very little deterioration in time per index unit. The index sizes also compare very well with only one

VLC2 participant yielding smaller Indexes than the figures we quote above. The Indexes produced on all

collections contained postings only data.

3 TUNING CONSTANTS FOR BM_25

One aspect of PLIERS that has yet to be fully investigated is the retrieval effectiveness of the system. One

way of looking effectiveness is to examine the issue of tuning constants for the weighting function BM_25.

The method does not require much effort in order to increase effectiveness and experiments can be

conducted very quickly and easily. There are two constants defined for BM_25 [7]: K1 that effects the

influence of term frequency while the constant B is used to modify the effect of document length. Given

that there has been no systematic work done with Okapi we also decided to examine the relationship

between the two constants as well as the relationship between those constants and other variables such as

Recall and Precision.

The collection used for initial experiments on tuning constants was AP 1989/90 from last years

Filtering track (also used for preliminary Filtering/Routing runs – see below) and the VLC2 collection

also from TREC-7. We used topics' 1-50 over the AP data in with queries defined from Title Only, Title

& Description and Title/Description/Narrative. For the VLC2 data we used topic 351-400 in Title Only

form (we wanted the best possible figure in order to improve effectiveness for the Web Tracks small

queries). The relevance judgments used were taken from TREC-7 for those topics. The values for B

ranged from 0.1 to 0.9 as B is always in the range 0-1. We were more flexible with K1 as values can go

from 0 to infinity and varied values with each query type depending on how interesting the results were.

We investigated a number of different measures including TREC average Precision, Recall and Precision

at 20. Our criterion however was to find the best combination of B/K1 on average Precision criterion. We

plotted B against K1 and ran experiments against each other plotting the evaluation measure as a third

variable. We then chose the best K1/B combination for a given query for use in Ad-Hoc and Web Track

experiments (the constants chosen are reported in the relevant sections below).

We give a very brief description of our experimental results and some conclusions arising from

them. In the case of average precision on the AP data it was found that K1 tended to be more significant

than B except when B < 0.3 with Title/Description/Narrative queries. The VLC2 data was measured with

Precision at 20 with which B was more significant. With Recall there tended to be more of an interaction

between the constants, apart from Title/Description on AP data where K1 was dominant. It is clear from

the data that there are trends and that the tuning constant variation data is not random. The data does

however yield different shapes of surface depending on effectiveness measure, query content and

collection used (given the small number of collections used). We would say that in general K1 is more

significant than B, but there does appear to be a noticeable interaction between the constants with some

evaluation measures. The implication is that Term Frequency tends to be significant when using the

BM_25 term weighting function with some measures.

We wish to investigate the following hypothesis: K1/B values from one data set (where a data set

is defined as a set of queries and a collection), are good predictors for retrieval effectiveness in another

data set, irrespective of measurement used. We will return to the validity of this hypothesis in the

conclusion.

4 AD-HOC TRACK EXPERIMENTS

The purpose of the Ad-Hoc experiments was to examine the issue of term weighting with no passages

(referred to simply as term weighting in the rest of this paper) versus passage retrieval search. The

passage retrieval mechanism used is from Okapi experiments at TREC [8]. We submitted five runs and

recorded extra runs for the two types of search for queries derived on topics' 401-450. For passage

retrieval we did one parallel run and one uniprocessor run. For Term Weighting we did two parallel runs

and two sequential runs composed of runs on Indexes with and without position data. We prepared Title,

Title/Description and Title/Description/Narrative queries for each topic from Okapi generated queries.

The run identifiers together with their query processing type and query type are given in table 4. Extra

runs were done on the single database as well in order to compare times.

TRACK

RUN-ID

QP TYPE QUERY TYPE COMMENTS

plt8ah1 PASSAGE Title Only 2 Timing runs

plt8ah2 PASSAGE Title/Description 2 Timing runs

plt8ah3 PASSAGE Title/Descr./Narr. 2 Timing runs

plt8ah4 Term W. Title Only 4 Timing runs.

plt8ah5 Term W. Title/Description 4 Timing runs.

plt8ah6 Term W. Title/Descr./Narr. 4 Timing runs. Not submitted.

Table 4 - Details of Ad-Hoc Track runs

The term weighting function used for all runs was BM25. The tuning constants for Title Only

are: K1=2.5 and B=0.9. For Title and Description we used a K1 value of 2.5 and a B value of 0.6. A

value of 4.0 for K1 and 0.7 for B was used for Title/Description/Narrative queries. The choice of this

tuning constant data was based on experiments described in section 3. The average length of the queries

was: 2.42 for Title Only, 9.88 for Title/Description and 24.74 for Title/Description/Narrative.

4.5 Retrieval Effectiveness

Table 5 shows our Ad-Hoc results for TREC8. We include in the table the results for submitted runs,

results for revised runs after a bug (in the parallel program) was fixed and the best values found by

varying the tuning constants K1 and B.

TRACK

RUN-ID

SUBMIT

EVALS

REVISED

EVALS

BEST

(CONST VALS)

plt8ah1 0.165 0.212 0.238 (K1=1.0,B=0.3)

plt8ah2 0.160 0.190 0.189 (K1=1.5,B=0.6)

plt8ah3 0.135 0.165 0.161 (K1=1.5,B=0.8)

plt8ah4 0.139 0.181 0.234 (K1=1.0,B=0.3)

plt8ah5 0.149 0.180 0.190 (K1=1.5,B=0.6)

plt8ah6 0.123 0.150 0.157 (K1=1.5,B=0.8)

Table 5 – Average Precision Results for AD-HOC runs

The original results submitted were very poor, but the revised results for the Title Only query

using passage retrieval with the chosen tuning constants are much improved, if a little low. Results on

long queries are not particularly good for any of those runs. The passage retrieval Title Only revised run

(plt8ah1) produced results in which 24 out of the 50 topics were better than the median. This figure was

reduced to 22 out of 50 for the revised term weighting run (plt8ah4). In both of these revised runs we

record an average precision for topic 431 which was better than the best Ad-Hoc run: 0.558 compared to

0.526. It should be noted that nothing special was done with the queries such as using relevance feedback

and/or thesauri.

The tuning constants chosen for all Ad-Hoc queries were not good predictors for the data used

this year. In all cases with all types of query, the graph shape of the Ad-Hoc data is entirely different to

that of the AP data. In the Ad-hoc data K1 tending to be more significant for short queries while B tended

to be more significant for longer queries. A better pair of constants was available and we show them with

their results in table 5. We can state that the hypothesis declared in section 3 above is invalid when a

source collection for choosing tuning constants is different from the target collection on which the

constants are to be applied.

With respect to retrieval effectiveness gain of passage retrieval over term weighting we found

that there were slight improvements for revised submitted runs, but for the best term weighing constant

values there was little improvement and for Title/Description queries we actually recorded a slight

reduction in average precision. It seems likely from this that the best tuning constants in term weighting

search may not be the best pair when applied to query processing using passage retrieval: all tuning

constants applied to Ad-Hoc were gathered on term weighting runs. It should be noted that the problem

we had last year with the passage retrieval module was a minor bug and easily resolved when found.

4.6 Retrieval Efficiency

The response times for all 18 processor parallel runs were good with all average query processing times

under 10 seconds [9]: 7 of the 9 parallel runs were under a second. The single processor runs registered

good times with a maximum of 11 seconds for Title/Description/Narrative, while 7 of the 9 runs had an

average query processing time of under 5 seconds.

The measurements of parallelism (speedup,efficiency, Load Imbalance [LI]) varied considerably

depending on Query and Inverted file type. The most disappointing was Title Only queries on postings

only data: a speedup of 4 and efficiency of 0.29 was registered with the worst LI of 1.44. It is clearly

difficult to justify parallelism for queries applied to a small collection Index loaded on the “Cambridge

Cluster” as communication time will dominate processing time. The best speedups were found with

Title/Description/ Narrative queries on files with position data: a super linear speedup of 16.89 was

recorded with an efficiency of 1.05: more memory is available in the parallel machine. LI was good in 6

out of the 9 runs with recorded measurements of 1.06 or under. With passage retrieval the parallel version

examines 16 times more documents (16,000 as against 1,000) than the sequential version. All the passage

retrieval runs managed to reduce the average query processing time and still examine the extra data: the

best example was Title Only that took 0.83 seconds on average (sequential run) as against 0.36 on average

for the parallel run.

There are a number of extra costs involved in utilizing Passage Retrieval and the position data

which is recorded in Inverted files, that is costs of searching an Index with postings only data as compared

with searching on one that contains position data. With respect to the extra costs of Passage Processing,

there was very little noticeable difference on the sequential runs (largely because of main memory

restrictions on the data used). However there was a marked change comparing search times on the parallel

processing runs with much larger times for Passage retrieval over ordinary term weighting search: the

worst being a factor of 18 when using Title/Description/ Narrative queries. The extra cost on Term

Weighing search on Indexes with position data as against Indexes without position data was found to be

consistent with a factor just over 2.2 for sequential runs, while the extra cost on the parallel runs was 1.5.

The extra I/O bandwidth that is deployed with this type of parallelism (Shared Nothing) yields benefits

when comparing the search performance on Indexes with postings only data and those containing

position data. It should be noted that the figures declared in this section and used for comparison are

optimistic given that each node in the "Cambridge Cluster" has three times the memory of the

uniprocessor Pentium used.

5 FILTERING TRACK EXPERIMENTS

TRACK RUN-ID SUB-TRACK ALGORITHM OPERATION

plt8f1 BATCH FILT. FIND BEST ADD/REMOVE

plt8f2 BATCH FILT. FIND BEST ADD/REWEIGHT

plt8r1 ROUTING FIND BEST ADD/REMOVE

plt8r2 ROUTING FIND BEST ADD/REWEIGHT

Table 6 - Details of Filtering Track runs

The main purpose of the Filtering track experiments is to show speed efficiency for the term selection

algorithms used in the past for Filtering/Routing by Okapi at TREC [5]. Recall that 16 processors were

used in these experiments. For the purpose of these experiments we used the Find Best algorithm: this is

largely because earlier experiments (to be published later [11]) indicated that the best time

reduction/effectiveness is achieved with that method of term selection. In this paper we report only on

runs done on 16 nodes using 16 processors (other runs will be reported in [11]). Topics without relevant

documents were not treated differently from topics with relevant documents as we were testing the

parallelization of the query optimization algorithms. We used two operations in conjunction with the Find

Best algorithm: Add/Remove terms and Add terms with re-weighting. They are both more

computationally intensive than Add only and yields better retrieval effectiveness. We treated the databases

differently in the different sub-tracks. With Batch Filtering runs we did extraction of terms and term

selection on one database: this was because of the small number of relevant documents available in the

training set. However with Routing we were able to do extraction of terms on one database and term

selection on another as per Okapi experiments [5]. The number of relevant documents in the Routing

training set allowed us this flexibility (the main reason for splitting the training set when using the term

selection algorithms is to reduce the overall level of overfitting). All term selection runs were optimized

using TREC average Precision: we tried using the utility function LF1 but the results were poor. This

confirms the Okapi experiments result which predict that average Precision is a good predictor for other

measures, but the other measures do not predict each other well. All Batch Filtering runs were optimized

for the U1 utility function.

We did some initial experiments with last year's AP Filtering track data to test the software: the

results are reported briefly in the retrieval effectiveness sections below. We split the discussion of Filtering

track experiments into two sections one of effectiveness and one for efficiency. Each section has

discussion on the sub-tracks entered: Batch Filtering and Routing. We entered four runs for TREC 8:

details of these can be found in table 6.

5.1 Retrieval Effectiveness

a) Batch Filtering

TRACK

RUN-ID

SELECTION

(Recall/Prec)

TEST DB

(Recall/Prec)

AVERAGE

EVALUATIONS

PER TOPIC

AVG

SCALE

D

LF1

plt8f1 0.856/0.843 0.142/0.280 907 0.354

plt8f2 0.855/0.849 0.149/0.287 2022 0.376

AP Run 0.852/0.816 0.250/0.118 5764 -

Table 7 - Details of Batch Filtering Efficiency Results

Both submitted filtering runs were optimized for the LF1 utility function. We present the results in table

7: the average scaled utility function used is from Hull [10]. The Recall/Precision for the selection runs are

all very good indeed: the number of relevant documents per topic is 51 compared with just under 11 per

topic for the FT data therefore our runs this year have done better with less data. This is also true of

Precision on the FT test database but not true of Recall. Our filtering runs for this year sacrifice Recall for

Precision. The Precision for filtering is comparable with Routing results (see table 8 below) and much

higher than was expected given the type of method used for filtering and the number of relevant

documents available. Comparing Add/Remove operation to Reweight we found an increase of 2.5% for

the former over the latter: this increase is not particularly significant given that Reweighting need 2.2

times the Average evaluations per topic than Add/Remove. The increase in scaled average utility was

more significant: using Reweight operation yielded a 6% advantage over Add/Remove.

b) Routing

TRACK

RUN-ID

SELECTION

(Recall/Prec)

TEST DB

(Recall/Prec)

AVG EVALS

PER TOPIC

plt8r1 0.873/0.696 0.858/0.286 1932

plt8r2 0.887/0.734 0.845/0.288 5364

AP Run 0.824/0.608 0.543/0.286 5481

Table 8 - Details of Routing Efficiency Results

As with Batch Filtering we did one test run on AP data with Find Best using the Add re-weight operation.

The Precision/Recall for term selection was high with values of 0.824 and 0.608 respectively. The results

on the test collection compared favorably with participants of the TREC-7 Routing sub-track: 5 of the 10

runs submitted produced a better average Precision of 0.286. Recall/Precision for this years runs on

selection data was very good indeed with Recall just under 0.9 and precision around 0.7. Results on the

test database are very good on recall which is about 0.85, while precision was adequate at around 0.28.

Comparing Reweight operation as against Add/Remove we found that Reweight did bring benefits over

Add/Remove but the gain was only 0.7%. This figure is not much of an increase for the extra work needed

in Reweight where a factor of 2.78 more evaluations where needed over Add/Remove. With respect to

precision on run plt8r1, 20/50 topics were better than median while two equaled the best: topics 355 and

380. For run plt8r2 15/50 were better than median and the same two topics as in plt8r1 equaled the best. It

should be noted however that these two best yielding precision topics only contained one relevant

document each. In two of the topics 387 and 394 run plt8r2 recorded the best average precision. Overall

the results where acceptable, if a little disappointing compared with other participants in the Routing sub-

track.

5.2 Retrieval Efficiency

a) Batch Filtering

 The average query selection time for the AP data set was 115 seconds, taking on average 26.56 iterations

to select an average of 28.2 terms. The results submitted on the FT data set for TREC-8 are in stark

contrast. For run plt8f1 the average term selection time per topic was 6.7 seconds with an average of 8

iterations choosing an average of 9.3 terms. Run plt8f2 was slightly more costly computationally taking 19

seconds per topic on 8.5 iterations with an average of 10 terms chosen per topic. The LI was very poor for

FT data: a LI of 1.65 was recorded for plt8f1 while for plt8f2 the figure was 2.15. The LI for AP data was

1.46, an improvement on the FT data figures but are still not particularly good. The reason for the reduced

load balance in these experiments is that some nodes had terms which were far more costly to evaluate

than others: even though the processes were given virtually the same number of terms to inspect. In the

context of time it would not therefore seem to be any use in applying parallelism to the Okapi term

selection algorithms for smaller databases where there are only a limited set of relevance judgments. It is

important to try and find the accumulation level for relevant documents on topics where parallelism could

be applied to the term selection algorithms usefully.

b) Routing

The average term selection time for AP data was 23 minutes with an average of 49.5 iterations choosing

51.5 terms on average. The average term selection times for FT data were much smaller: taking 1.75

minutes for run plt8r1 and 6 minutes for plt8r2. The number of terms chosen was an average of 21 for

plt8r1 and 27 for plt8r2. The number of iterations on FT data was also much reduced being on average 20

for plt8r1 and 25 for plt8r2. The LI for add with re-weight operation was much better than for

Add/Remove operation: term selection on AP data yielded a LI on 1.25 while for plt8r2 the figure was

1.28. Run plt8r1 yielded a LI of 1.33 by contrast. The results with respect to efficiency are far superior in

Routing than batch Filtering: this is largely due to the size of the data set used and the number of

relevance judgments available in the Routing task compared with Filtering. The size of the data set used

has a considerable impact on load imbalance. The size of the collection would be therefore a factor when

examining the viability of deploying term selection algorithms. Results from runs which use lesser

numbers of processors will be reported later [11].

6. LARGE WEB TRACK EXPERIMENTS

TRACK RUN-ID QP TYPE DATABASE COMMENTS

plt8wt1 Term W. WT100g 1 Timing run

plt8wt2 Term W. BASE10 1 Timing run

plt8wt3 Term W. BASE1 1 Timing run

Table 9 – Details of Web Track runs

The purpose of our Web Track experiments was to examine the scalability of the PLIERS data structures

and algorithms as well as contribute to the debate on centralized versus distributed web search indexes.

We submitted three runs, one for the full WT100g and the other two for the baselines. We ran all 10,000

of chosen web queries against each of the databases, using the same query configuration for each run

using 18 processors of the Cambridge Cluster. We used term weighting search with the BM25 weighting

function. Details of the Web Track runs are given in table 9. We also report details of our preparatory

VLC2 experiments.

6.1 Retrieval Effectiveness

a) VLC2 Experiments

QUERY GEN. BASE1 BASE10 VLC2 QUERY

SIZE

Title 0.102 (0.130) 0.235 (0.264) 0.318 (0.377) 2.46

Title/Descr. 0.117 0.256 0.370 9.46

Title/Descr/Narr 0.103 0.228 0.392 26.54

Okapi VLC2 0.111 0.240 0.429 19.34

Table 10 – Precision at 20 for VLC2 Experiments

We present the retrieval effectiveness results on the VLC2 data in table 10. The figures in brackets are

evaluations with tuning constants set as: K1= 1.5 and B = 0.2. These were found to be the best

combination on VLC2 data evaluations. The other runs are with tuning constants set as K1=2.0 and B =

0.6: these settings were used in last years VLC2 experiments [1]. We declare runs on generated queries

based on the Title, Description and Narrative as wells at the Okapi generated VLC2 Queries we used last

year. Queries were generated from topics 351 to 400.

We have managed to improve the retrieval effectiveness of PLIERS considerably since last year’s

entry [1]. For example comparing the results for PLIERS at VLC2 with the Okapi VLC2 queries used we

have a figure of 0.111 compared with 0.08 and 0.056: an improvement of 39% and 98% respectively.

Examining the tuning constant data has allowed us to improve our Title Only queries quite considerably

(we did not do experiments on other query type because of time constraints). Our Title Only results

compare favorably with last years VLC2 runs where 0.377 is higher than 4 out of 18 submitted runs

(which were based on tile/description in the main). However our Okapi VLC2 query runs results are only

higher than 5 out of the 18 submitted runs and we therefore need to examine the issue of effectiveness on

larger queries (including experiments with tuning constant variation). As with other participants in last

year’s VLC2 track, we also recorded a significant rise in precision at 20 moving from the baselines to the

full collection [6].

b) Web Track Experiments

DATABASE MODIFIED

AV PREC

PREC @ 10 PREC @ 20

BASE1 0.189 0.320 0.269

BASE10 0.323 0.476 0.436

WT100g 0.458 0.550 0.561

Table 11 – Large Web Track Retrieval Effectiveness Results

The results from the 50 evaluated Web Track queries are very good indeed on all collections, particularly

the full 100 Gbyte collection (see table 11). They represent a vast improvement over last years results and

clearly reinforce the evidence provided by the Ad-Hoc experiments that effectiveness on short queries is

good. The most important aspect of these experiments is that the tuning constants chosen in Title Only

VLC2 runs were good predictors for retrieval effectiveness for Precision at 20: the chosen K1 and B

values were best in the 50 evaluated Web Track runs. The trend in both tuning constant data sets is very

much the same. We can clearly state from the evidence provided with the data used in the Web track

experiments that the hypothesis stated in section 3 holds when the source and target collection are the

same. This demonstrates the possibility of examining statistics from a given collection (and perhaps using

some form of heuristic process) in order to choose a given pair of tuning constants for incoming queries.

6.2 Retrieval Efficiency

a) VLC2 Experiments

In Table 12 we present the average query processing times in seconds together with the ratios to the

appropriate baseline measures. The ratio is defined as: Big Collection Response time/Little Collection

Response Time. We also give a measure of Scalability that is the proportion of time as against the

database or collection size: The equation is as follows:

 Scalability = Average Query Response Time (Smaller Collection) * Data Size (Larger Collection)

 Average Query Response Time (Larger Collection) Data Size (Smaller Collection)

Equation 1 – Scalability Measurement

This metric has the advantage over simple ratios in that its result actually relates query

processing times to the size of data in question. We give two figures in our results for comparison

purpose; one relating to the actual text size and one to the Inverted file size.

QUERY GEN. BASE1 BASE10 WT100g

Title 0.052 0.074 (1.4) 0.87 (16.8, 11.78)

Title/Descr. 0.063 0.339 (5.4) 4.4 (69.8, 12.99)

Title/Descr/Narr 0.11 1.06 (10.05) 14.64 (138.2, 13.76)

Okapi VLC2 0.14 0.93 (6.83) 12.21 (89.9, 13.2)

Table 12 – Average Query Processing times for VLC2 experiments (ratios to baselines)

The processing speed for most runs is very good. We report the average of the two runs submitted

for each database. Only two of the VLC2 runs exceed the 10 second requirement for query response times,

but these are the two largest queries applied to the index (see table 10 for query sizes). One of the runs,

namely Title Only meets the VLC2 requirement of a 2 second or less response time for queries over the

full collection [6] and compares favorably to query response times for VLC2 participants. Query

processing times in proportion to the collection size showed sub-linear growth when comparing BASE1 to

the other collection runs: the exception was the larger Title/Description/Narrative runs. The ratio from

BASE10 to WT100g shows super-linear growth for response times for all runs.

QUERY GEN. BS1-BS10

INV TXT

BS1-100g

INV TXT

BS10-100g

INV TXT

Title 5.953 7.03 4.43 5.76 0.744 0.819

Title/Descr. 1.581 1.867 1.07 1.39 0.675 0.743

Okapi VLC2 1.239 1.464 0.826 1.07 0.670 0.733

Title/Descr/Narr 0.843 0.996 0.537 0.698 0.637 0.701

Table 13 – Scalability Results for VLC2 experiments

The Scalability results are given in table 13. The best scalability results are found with Title Only

queries, some of which are very spectacular for both text and index Scalability. It is clear from the data

that there is a strong correlation between query size and scalability: as we increase the size of the query,

scalability declines. We have organized table 13 in descending order of Scalability so this can be clearly

seen. This effect is due to memory use: more constituent query terms mean that larger numbers of sets

have to be manipulated: this effect would clearly be more of a problem on uni-processor experiments.

b) Web Track Experiments

DATABASE QP TIME (LI) SCALE-INV

 Bs1 Bs10

SCALE-TXT

 Bs1 Bs10

RATIO

 Bs1 Bs10

BASE1 0.027 (1.08) - - - - - -

BASE10 0.121 (1.03) 1.93 - 2.28 - 4.32 -

WT100g 1.616 (1.02) 1.27 0.655 1.65 0.721 57.9 13.4

Table – 14 Average Query Processing times (secs) for Large

Web Track experiments (Scalability/Ratios)

The processing speed for all runs is also very good, but not as good as for Title Only VLC2 runs.

However, all runs meet the 10 second requirement for query response times. Load balance is good for all

runs. The prepared average query length was found to be 2.49 terms: many terms in the queries were non-

content bearing words and some queries contained none at all. A frequent query was the single term “a”.

Why was the response time for Web Track queries higher than Title Only on WT100g (nearly double)

despite the fact that Web Track Queries are only slightly larger than Title Only Queries? We compared

the average set size of the 50 Title Only to a sample of 50 Web Track queries and found that the average

set size per term for Title Only was 28K, whereas for the sample Web Track queries the average set size

was 48K. The memory requirements for sets are very much larger for Web Track queries than for Title

Only. We experimented with differing levels of in-core keyword on the sub-set of Web Track queries and

found that we got best results with only 9% of the keyword dictionary in main memory (a document map

file is kept in main memory that contains document lengths needed for BM_25). There is clearly an offset

between the number of keywords and document lengths you keep in memory persistently against sets

being retrieved and manipulated for Query service. Having to do I/O for list elements when weighting

inverted list could reduce the search performance dramatically.

Measuring Scalability over both the text and Inverted file we found that the figures for BASE1 to

WT100g were very good, while the corresponding figures from BASE10 to WT100g were acceptable. The

same pattern with respect to elapsed time ratios found with VLC2 Title Only runs was found with Web

Track runs: BASE1 to the other collections yielded sub-linear ratios, while BASE10 to WT100g yielded

super-linear ratios. From Table 13 it can be seen that Title Only VLC2 queries yield better Scalability

from BASE1 to other collections than the Web Track queries: this is another effect of the memory

requirements for Web Track queries stated above.

It should be noted that the Scalability/Ratio measurements from BASE1 to the other collections

should be treated with some caution, since the memory requirements and communication overheads for

search times are vastly different. As with some of the smaller Ad-Hoc runs it is not clear that parallelism

brings much benefit on collections of BASE1's size (see section 2.1). While these results are good there is

clearly some scope for improvement, in particular the application of various query optimization

techniques available [12].

7 CONCLUSION

We draw a number of conclusions from the experiments described above. From our work on tuning

constants we state that a hypothesis which asserts that tuning constants from one set of experiments can be

applied to another set is correct, providing the same collection is used in both experiments. We further

restrict this assertion by stating that we only have evidence for the validity of the hypothesis for small 2 to

3 work queries on the Precision at 20 variable. However given that we have shown there are collection

dependent variables which affect the retrieval effectiveness of the chosen tuning constants (as applied to

the BM25 weighting function), we would hope that further experiments on larger queries will produce

further positive evidence for the validity of our hypothesis. We would also hope that other variables such

as Recall and Average precision would yield favorable results. Clearly there is scope for the investigation

of factors which might affect the choice of constants. This would require a much more rigorous

methodology and extensive experimental framework than we have applied in our experiments.

We need to investigate why longer Ad-Hoc queries in our system do not yield good retrieval

effectiveness results. Further research into query optimization techniques for Ad-Hoc search would be

fruitful: this would also require an investigation into the trade offs with respect to effectiveness and

efficiency found with such techniques. In the case of the Filtering/Routing track we need more evidence

on the number of relevant documents needed for choosing the type of term selection technique, for a

collection of a given size.

References

[1] A. MacFarlane, S.E.Robertson and J.A.McCann, “PLIERS at VLC2”, In: Eds, E. M. Voorhees and D.

K. Harman, NIST Special Publication 500-242: Proceedings of the Seventh Text Retrieval Conference

Conference, Gaithersburg, U.S.A, November 1998, Gaithersburg: Department of Commerce, National

Institute of Standards and Technology, 1999.

[2] C. Fox, “A Stop List for General Text”, SIGIR FORUM, ACM Press, Vol 24, No 4, December 1990.

[3] D. Hawking, “The Design and Implementation of a Parallel Document Retrieval Engine”, Technical

Report TR-CS-95-08, Department of Computer Science, Australian National University, 1995.

[4] A. MacFarlane, J.A.McCann, and S.E.Robertson, “PLIERS: A Parallel Information Retrieval System

using MPI”, In: Dongarra, J., Luque, E., Margalef, T., Eds, Proceedings of EuroPVM/MPI'99, Barcelona,

LNCS 1697, Springer-Verlag, 1999.

[5] M.M. Beaulieu, M. Gatford, X. Huang, S.E. Robertson, S. Walker and P. Williams, “Okapi at TREC-

5”, In: Ed, D.K.Harman, NIST Special Publication 500.238: Proceedings of the Fifth Text Retrieval

Conference, Gaithersburg, U.S.A, November 1996, Gaithersburg: Department of Commerce, National

Institute of Standards and Technology, 1997.

[6] D. Hawking, N. Craswell and P. Thistlewaite, “Overview of TREC-7 Very Large Collection Track”,

In: Eds, E. M. Voorhees and D. K. Harman, NIST Special Publication 500-242: Proceedings of the

Seventh Text Retrieval Conference Conference, Gaithersburg, U.S.A, November 1998, Gaithersburg:

Department of Commerce, National Institute of Standards and Technology, 1999.

[7] S.E.Robertson and K. Sparck Jones, “Simple, proven approaches to text retrieval”, Cambridge

University Technical Report No. TR 356, May 1997.

[8] S.E. Robertson, S. Walker, S. Jones, M.M. Hancock-Beaulieu, and M. Gatford, “Okapi at TREC-3”,

In: D.K. Harman, NIST Special Publication 500-226: Proceedings of Third Text Retrieval Conference,

Gaithersburg, U.S.A., November 1994, Gaithersburg: Department of Commerce, National Institute of

Standards and Technology, 1995.

[9] W.B. Frakes, “Introduction to Information Storage and Retrieval Systems”, In: W.B. Frakes, and R.

Baeza-Yates, Eds. “Information Retrieval: Data Structures and Algorithms”, Prentice-Hall, 1992, 1-12.

[10] D.A. Hull, "The TREC-7 Filtering Track: Description and Analysis", In: Eds, E. M. Voorhees and D.

K. Harman, NIST Special Publication 500-242: Proceedings of the Seventh Text Retrieval Conference

Conference, Gaithersburg, U.S.A, November 1998, Gaithersburg: Department of Commerce, National

Institute of Standards and Technology, 1999.

[11] A. MacFarlane, S. Walker, S.E. Robertson and J.A. McCann, “Parallel computing for a very large

search space in Routing/Filtering using Relevance Feedback”, Unpublished Paper.

[12] D. Hawking, “Efficiency/Effectiveness Trade-offs in Query Processing”, SIGIR Forum, Vol 32, No 2,

Fall 1998.

