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Landau levels and edge states in graphene with

strong spin-orbit coupling

A. De Martino, A. Hütten, and R. Egger

Abstract We investigate the electronic properties of graphene in a magnetic and

a strain-induced pseudo-magnetic field in the presence of strong spin-orbit interac-

tions (SOI). For a homogeneous field we provide analytical results for the Landau

level eigenstates for arbitrary intrinsic and Rashba SOI, including also the effect of

a Zeeman field. We then study the edge states in a semi-infinite geometry in the

absence of the Rashba term. We find that, for a critical value of the magnetic field, a

quantum phase transition occurs, which separates two phases both with spin-filtered

helical edge states but with opposite direction of the spin current. Finally,we discuss

magnetic waveguides with inhomogeneous field profiles that allow for chiral snake

orbits. Such waveguides are practically immune to disorder-induced backscattering,

and the SOI provides non-trivial spin texture to these modes.

1 Introduction

The physics of graphene continues to attract a great deal of attention and to pro-

vide a rich source of interesting phenomena [1, 2, 3]. By studying the effects of the

spin-orbit interaction (SOI) in a graphene monolayer, where symmetry allows for an

“intrinsic” (∆ ) and a “Rashba” (λ ) term in the SOI, Kane and Mele [4] made a re-

markable discovery that sparked the exciting field of topological insulators [5]: For
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∆ > λ/2, the system presents a bulk gap with topologically protected edge states

near the boundary of the sample. This is similar to the quantum Hall (QH) effect

but happens in a time-reversal invariant system. The resulting “quantum spin Hall”

(QSH) edge states form a one-dimensional (1D) helical liquid, where right- and left-

movers have opposite spin polarization, and spin-independent impurity backscatter-

ing is strongly suppressed. The QSH state has been observed in HgTe quantum

wells [6], but several works [7, 8, 9] showed that ∆ is probably too small to allow

for the experimental verification of this novel phase of matter in pristine graphene.

Consequently, other material classes have been employed to demonstrate that topo-

logically insulating behavior is indeed possible [5].

Recent graphene experiments, however, have demonstrated that the Rashba cou-

pling λ can be increased significantly by depositing graphene on Ni surfaces

[10, 11]. Moreover, very recent theoretical predictions [12] suggest that already

moderate indium or thallium adatom deposition will dramatically enhance ∆ by

several orders of magnitude. By using suitable adatoms, it is then expected that in

the near future both SOI parameters ∆ and λ can be varied over a wide range of

values in experimentally accessible setups.

In view of these developments, in this paper we study the electronic properties of

a graphene monolayer with strong SOI. Besides the SOI, we include piecewise con-

stant electrostatic potentials, orbital and Zeeman magnetic fields, and strain-induced

vector potentials. The latter cause pseudo-magnetic fields but do not violate time re-

versal invariance. (See Ref. [13] for a review.) While the interplay of the Rashba

term λ with (pseudo-)magnetic fields in graphene has been studied in several theory

works before [14, 15, 16], the effects of the intrinsic SOI ∆ did not receive much

attention so far (apart from recent investigations of the transmission properties of

graphene’s Dirac-Weyl (DW) quasiparticles through barriers with arbitrary SOI but

without (pseudo-)magnetic fields [17, 18].)

The present contribution reports results obtained by the authors in [19]. The

structure is as follows. In Sec. 2 we formulate the model and construct the general

solution for piecewise constant fields, where we allow for orbital magnetic field,

arbitrary SOI parameters ∆ and λ , and Zeeman energy b. The homogeneous case

is addressed in Sec. 3, where we determine the Landau level states for this prob-

lem in closed and explicit form. In particular, the fate of the zero modes residing

at the Dirac point (energy E = 0) is discussed in the presence of the SOI. Our re-

sults also apply to the case of a strain-induced homogeneous pseudo-magnetic field

[20]. Next, in Sec. 4, we study the edge states near the boundary of a semi-infinite

sample for vanishing Rashba coupling, λ = 0. For weak magnetic fields, one ex-

pects to have helical (spin-filtered) QSH edge states. Interestingly, upon increasing

the magnetic field we find that a quantum phase transition takes place between the

QSH phase and a second QSH-like phase with spin-filtered edge states, considered

previously in [21], where the spin current direction is reversed. This spin current

reversal should allow for an experimental detection of the transition, on top of the

obvious consequences for QH quantization rules [22, 23, 21, 24]. In Sec. 5, we

turn to a waveguide geometry, defined by a suitable inhomogeneous magnetic field

[25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. We show that the SOIs give rise to inter-
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esting spin textures of the chiral states propagating in the waveguides. Finally, we

conclude in Sec. 6.

2 Model and general solution

In this section we introduce the model for graphene with SOI in the presence of a

magnetic field, and obtain the general form of the eigenstates for piecewise constant

couplings.

2.1 Model

The low-energy electronic properties of a graphene are well captured by two copies

of a DW Hamiltonian supplemented with various terms describing SOI, (pseudo-

)magnetic fields, and electrostatic potentials [3]. The wavefunction is a eight com-

ponent spinor

Ψ(x,y) = eikxx

(

φ K(y)

φ K′
(y)

)

, φ K,K′
=









ΨA↑K,K′

ΨB↑K,K′

ΨA↓K,K′

ΨB↓K,K′









. (1)

The Pauli matrices σi=x,y,z below act in sublattice space corresponding to the two

carbon atoms (A/B) in the basis of the honeycomb lattice, while Pauli matrices si

act in physical spin (↑,↓) space. Finally, the valley degree of freedom (K,K′) cor-

responds to the two K points [3] and Pauli matrices τi refer to that space. Here we

consider models where the mentioned extra terms in the Hamiltonian are piecewise

constant along the y-direction and uniform along the x-axis. Consequently, the mo-

mentum px is conserved, and we have an effectively 1D problem in terms of the

four-spinors φ K,K′
(y). The orbital magnetic field Bz = εB (with ε =± and B ≥ 0) is

expressed in terms of the vector potential A(x,y), where we choose the gauge

Ax =−εB(y− c0), Ay = 0. (2)

Inclusion of the constant c0 is necessary when connecting regions with different

magnetic fields in order to make Ax continuous. Assuming that the magnetic field

is perpendicular to the graphene sheet, the Zeeman effect determines the coupling

constant b = gsµBB/2, where gs ≈ 2 is the Landé factor and µB denotes the Bohr

magneton. The full Hamiltonian then reads [3] (e > 0)
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H = vF

[

σxτz

(

px +
e

c
(Ax + τzAx)

)

+σy

(

p̂y +
e

c
τzAy

)]

+ V + εbsz +
λ

2
(σxsyτz −σysx)+∆σzszτz. (3)

In Eq. 3 px = h̄kx is the conserved momentum in the x-direction, while p̂y =−ih̄∂y.

The constant c0 in Eq. 2 can be included by shifting px, and we suppose that this

shift has been carried out in the remainder of this section. The Fermi velocity is

vF ≈ 106 m/s, while the SOI couplings ∆ and λ (both are assumed non-negative)

correspond to the intrinsic and Rashba terms, respectively. A constant electrostatic

potential, V , has been included in Eq. (3). Strain-induced forces [13] lead to a renor-

malization of V as well as to the appearance of an effective vector potential,

(

Ax

Ay

)

= κ

(

uxx −uyy

−2uxy

)

,

expressed in terms of the in-plane strain tensor ui j, see Ref. [35].The constant κ
can be found in Refs. [13, 36]. As discussed in Ref. [37] in many cases it is suffi-

cient to consider a piecewise constant strain configuration. Assuming that the x-axis

is oriented along the zig-zag direction, strain causes only a finite but constant Ax

while Ay = 0. This can be taken into account by simply shifting px in this region.

Below we suppose that also this shift has already been done. Estimates for Ax in

terms of physical quantities can be found in Refs. [13, 37]. The resulting pseudo-

magnetic field then consists of δ -barriers at the interfaces between regions of dif-

ferent strain. An alternative situation captured by our model is given by a constant

pseudo-magnetic field, whose practical realization has been described recently [20].

In that case, Ax is formally identical to Ax in Eq. 2. Unless specified explicitly, we

consider the case of constant Ax below.

2.2 Symmetries

Let us briefly comment on the symmetries of this Hamiltonian. For H in Eq. 3 with

ε = sgn(Bz), the time reversal symmetry implies the relation

T Hε(kx)T
−1 = H−ε(−kx), (4)

where T = τx(−isy)C is an antiunitary operator [38] with complex conjugation

operator C . Since H is diagonal in valley space, Eq. 4 implies that the Hamiltonian

HK′
near the K′ point is related to HK by the relation

HK′
−ε(−kx) = sy[H

K
ε (kx)]

∗sy. (5)

By solving the eigenvalue problem at the K point, we could thus obtain the eigen-

states at K′ via Eq. 5. A simpler way to achieve this goal is sketched at the end of

this subsection.
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From now on we switch to dimensionless quantities by measuring all energies

in units of the cyclotron energy h̄ωc, where we define ωc = vF/ℓB. The magnetic

length ℓB = (h̄c/2eB)1/2 sets the unit of length. A field of 1 Tesla corresponds to

h̄ωc ≈ 36 meV and ℓB ≈ 18 nm. Measuring B in units of Tesla, we get for the

Zeeman coupling b = (gsµBB/2)/h̄ωc ≈ 1.6×10−3
√

B[T]. With the dimensionless

coordinate

η = y−2εkx (6)

and the auxiliary quantities

µ± = E −V +b±∆ , ν± = E −V −b±∆ , (7)

we find the representation

E −HK
ε=+1 =









ν− a 0 0

a† ν+ iλ 0

0 −iλ µ+ a

0 0 a† µ−









, (8)

E −HK
ε=−1 =









µ− −a† 0 0

−a µ+ iλ 0

0 −iλ ν+ −a†

0 0 −a ν−









,

where we have introduced the standard ladder operators

a =
η

2
+∂η , a† =

η

2
−∂η , [a,a†] = 1. (9)

According to the above discussion, eigenstates at the K′ point for ε =±1 could be

obtained from the corresponding solutions at the K point with ε =∓1. Alternatively,

there is a simpler way to obtain the K′ states as follows. The 1D Hamiltonians HK,K′

(for given ε) can be written in dimensionless notation as

HK = −εη

2
σx − iσy∂η +∆σzsz +

λ

2
(σxsy −σysx)+Axσx + εbsz,

HK′
=

εη

2
σx − iσy∂η −∆σzsz +

λ

2
(−σxsy −σysx)+Axσx + εbsz.

Both Hamiltonians are therefore related by the transformation

HK′
(Ax) = σyHK(−Ax)σy, (10)

without the need to invert the real magnetic field, since this is not a time reversal

transformation. As a consequence, the 1D eigenstates φ K′
(η) follow from the cor-

responding φ K by multiplying with −iσy and inverting the sign of Ax,

φ K′
(η ,Ax) =−iσyφ K(η ,−Ax). (11)
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2.3 General solution

We now determine the spinors φ solving the DW equation for energy E,

(E −HK)φ(η) = 0, (12)

with E −HK in Eq. 8. We construct the solution to Eq. 12 within a spatial region

where all parameters (magnetic fields, strain, SOI, etc.) are constant but arbitrary.

This general solution will be employed in later sections, where specific geometries

are considered by matching wavefunctions in adjacent parts. Eq. 12 is a system of

four first-order linear differential equations that admits four linearly independent

solutions. For energy E and positive magnetic field we find two states:

φε=+1,p =











pDp−1(−η)
ν−Dp(−η)

i(ν−p)
λ

Dp(−η)
i(ν−p)

λ µ−
Dp+1(−η)











, ψε=+1,p =











−iD−p(−iη)
ν−D−p−1(−iη)

i(ν−p)
λ

D−p−1(−iη)

− (ν−p)(p+1)
λ µ−

D−p−2(−iη)











,(13)

for each of the two values of the parameter p given by

p =
1

2

[

µ +ν −1±
√

(µ +ν −1)2 +4λ 2µ−ν−

]

, (14)

where we define [cf. Eq. 7]

µ = µ+µ− = (E −V +b)2 −∆ 2, (15)

ν = ν+ν− = (E −V −b)2 −∆ 2,

and Dp is the parabolic cylinder function of order p [39, 40]. For details about the

solutions and the solutions for a negative magnetic field (i.e., ε =−1), see Ref. [19].

Next, we analyze the spatially uniform case.

3 The uniform field case

In this section we study an unstrained infinitely extended graphene monolayer where

the magnetic field Bz = B (i.e., we assume ε =+1) and the SOI parameters ∆ and λ
are constant everywhere. (The electrostatic potential V just shifts all states and is set

to zero here.) We are thus concerned with the relativistic Landau level structure for

graphene in the presence of arbitrary SOI parameters, including also the Zeeman

field b. This problem was solved for the special case ∆ = b = 0 by Rashba [16],

see also Ref. [15], and below we reproduce and generalize this solution. We focus

on the K point only, since the spectrum and the eigenstates at the K′ point follow

from Eqs. 5 and 11. We also allow for a constant pseudo-magnetic field. When only
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an orbital or a strain-induced pseudo-magnetic field is present but not both, each

energy level below has an additional twofold valley degeneracy.

In the homogeneous case, the spinors φp in Eq. 13 are normalizable only if the

order p is constrained to integer values p = −1,0,1,2, . . ., while the spinors ψp in

Eq. 13 are not normalizable. Solutions for the homogeneous problem thus have to be

constructed using φp only. Expressing the energy E (we remind the reader that here

all energy scales are measured in units of h̄ωc) in terms of p [Eq. 14], the sought

(valley-degenerate) Landau levels follow as the roots of the quartic equation

[

(E +b)2 − (p+1+∆ 2)
][

(E −b)2 − (p+∆ 2)
]

= λ 2
[

(E −∆)2 −b2
]

. (16)

For b= λ =∆ = 0 this recovers the standard relativistic spin-degenerate Landau lev-

els [3], E±,n =±√
n for n = 1,2,3, . . . (with n = p for spin up and n = p+1 for spin

down states), plus a spin-degenerate zero mode E0 = 0 (for p = 0,−1). We notice

from Eq. 16 that for b = 0, the combination of ∆ and λ breaks particle-hole symme-

try, while the two couplings separately do not. Furthermore, zero-energy solutions

are generally not possible except for special fine-tuned parameters. The φp(η) thus

represent Landau level states in the presence of SOI and Zeeman coupling. The nor-

malization constant 1/
√

Np, entering as a prefactor in Eq. 13, can be computed

analytically since Dp(z) can be expressed in terms of Hermite functions for integer

p [40], see Ref. [19].

Remarkably, for p =−1, we find the exact normalized state,

φ−1(η) =
1

(2π)1/4









0

0

0

D0(−η)









, (17)

with the eigenvalue

Ep=−1 = ∆ −b. (18)

This unique admissible eigenstate for p =−1 is endowed with full spin polarization

in the ↓ direction. For p = 0, the secular equation (16) becomes effectively a cubic

equation: the solution E =∆ +b (i.e., ν− = 0) does not correspond to any admissible

eigenstate. The three allowed states are described by

φp=0(η) =
1√
N0









0

λ µ−ν−D0(−η)
iµ−νD0(−η)

iνD1(−η)









. (19)

This includes a “zero-mode” partner of the p = −1 state, plus a pair of states ob-

tained by mixing the spin-up n = 0 and spin-down n = ±1 Landau orbitals via the

Rashba SOI.
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3.1 Rashba SOI only

For ∆ = b = 0 but finite Rashba SOI parameter λ , Eq. 16 admits a simple solution,

previously given in Ref. [16] and briefly summarized here for completeness. For p=
−1 we have the solution (17), which now is a zero mode, while for p = 0,1,2, . . .,
the eigenenergies are given by

Ep,α,β = α

[

1+λ 2

2
+ pβ

√

(

1+λ 2

2
+ p

)2

− p(p+1)

]1/2

, (20)

with α,β = ±. According to our discussion above, here E0,±,− = 0 should be

counted only once, with eigenstate φ T
0, ,− ∝ (0,D0(−η),0,−iλD1(−η)), while

E0,±,+ = ±
√

1+λ 2 correspond to a particle/hole pair of first Landau levels modi-

fied by the Rashba SOI, with eigenstates φ T
0,±,+ ∝ (0,λD0(−η),±i

√
1+λ 2D0(−η), iD1(−η)).

We thus get precisely two zero-energy states.

For small λ , we find the expansion

Ep−1,±,+ = ±(1+λ 2/2)
√

p+O(λ 4),

Ep,±,− = ±(1−λ 2/2)
√

p+O(λ 4),

which shows that the states Ep,±,+ and Ep+1,±,−, which form a degenerate Landau

level for λ = 0, are split by a finite λ .

3.2 Intrinsic SOI only

Let us next consider the case λ = 0, where one has a QSH phase [4] for B = 0 and

∆ 6= 0. Now the Hamiltonian is block diagonal in spin space and the eigenstates be-

come quite simple even for finite Zeeman coupling, since we can effectively work

with the bi-spinors φ
K,K′
↑,↓ (y) for spin s =↑ / ↓=±. We easily obtain the (unnormal-

ized) eigenstates with p ∈ N0 in the form [41]

φ K
p,±,s(η) =

(

νp,±,sDp−1(−η)
Dp(−η)

)

, (21)

φ K′
p,±,s(y) =

(

−Dp(−η)
νp,±,sDp−1(−η)

)

,

where the eigenenergies follow from Eq. 16,

Ep,±,s = sb±
√

p+∆ 2. (22)

We employ the notation
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νp,±,s ≡ Ep,±,s −E0,−s,s =±
√

p+∆ 2 − s∆ . (23)

For p = 0, the second index in φp,±,s and Ep,±,s should be replaced by −s, i.e.,

there is only one solution for given spin (and valley). Note that E0,+,↓ in the present

notation corresponds [41] to the solution 17. When b = 0, interestingly enough, ∆
does not lift the spin degeneracy of the Landau levels except for the zero mode

(p = 0). [42] A Zeeman term with b = ∆ restores a true doubly-degenerate zero-

energy state for p = 0 again. In Sec. 4 we show that this implies a quantum phase

transition.

3.3 General case

Although the quartic equation (16) can be solved analytically when both SOI cou-

plings are finite, the resulting expressions are not illuminating and too lengthy to be

quoted here. Only the p =−1 state in Eq. 17 remains exact for arbitrary parameters.

We here specify the leading perturbative corrections around the special cases above,

and then show the generic behavior in two figures.

Expanding around the Rashba limit of Sec. 3.1, which is justified for b,∆ ≪ 1,

we get the lowest-order perturbative correction to the finite-energy (i.e., p 6= 0,−1)

Landau levels (20) in the form

δEp,±,+ =−δEp,±,− =
(λ 2∆ +b)

√

(1+λ 2)2 +4pλ 2
. (24)

Expanding instead around the intrinsic SOI limit of Sec. 3.2, we find the fol-

lowing small-λ corrections to the Landau levels in Eq. 22 [41]: For p = 0, the state

E0,+,↓ corresponding to the exact solution 17 is not changed by λ to any order, while

E0,−,↑ gets the lowest-order correction

δE0,−,↑ =
2(∆ −b)λ 2

4b(b−∆)+1
.

The corresponding eigenstate is, however, not a spin-↑ state anymore. For p > 0, the

eigenenergy Ep,±,s [Eq. 22] acquires the perturbative correction

δEp,±,s =± sλ 2

2
√

p+∆ 2

p+2(∆ − sb)(∆ ∓
√

p+∆ 2)

1+4b
(

sb±
√

p+∆ 2
) . (25)

We now consider two different SOI parameter sets consistent with the estimates

in Ref. [12], and show the complete evolution of the Landau levels from the weak- to

the strong-field limit. In Fig. 1, numerical results for the few lowest-energy Landau

levels are depicted for ∆ > λ/2, corresponding to a QSH phase for B = 0. The

(valley-degenerate) spin-split levels corresponding to the ∆ = λ = b = 0 zero mode
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exhibit a zero-energy crossing at B ≈ 11 T for the chosen SOI parameters. This

crossing signals a quantum phase transition from the QSH phase, which survives

for sufficiently small B and ∆ > λ/2, to a peculiar QH phase for large B. As we

discuss in Sec. 4, one then again has helical edge states [21] but with reversed spin

current. Similar crossings can occur for higher Landau states as well, as is shown

in Fig. 2 for a parameter set with ∆ < λ/2 where no QSH physics is expected. For

even larger B, not displayed in Fig. 2, we find an E = 0 crossing where the Rashba-

dominated small-B phase turns into the helical QH phase.

5 10 15 20

B [T]

-1

0

1

E
 /

 ω
 c

∆=0.65 meV
λ=0.15 meV

Fig. 1 Low-lying Landau level energies (in units of the cyclotron energy h̄ωc) vs magnetic field B

(in Tesla) for the SOI parameters ∆ = 0.65 meV and λ = 0.15 meV. For small B, this corresponds

to the QSH phase, ∆ > λ/2. For better visibility, the deviation from the respective ∆ = λ = b = 0

level has been magnified by a factor 10 for each curve.

5 10 15 20

B [T]

-1

0

1

E
 /

 ω
 c

∆=1.5 meV
λ=6.5 meV

Fig. 2 Same as in Fig. 1 but for ∆ = 1.5 meV and λ = 6.5 meV.
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3.4 Spin polarization

Given the Landau level eigenstates, it is straightforward to compute the spin-

polarization densities Si(y) =Ψ † si
2
Ψ (i = x,y,z). We find Sx(y) = 0, while

Sy(y) =
ν − p

λNp

(

pDp−1Dp +
ν−
µ−

DpDp+1

)

, (26)

Sz(y) =
1

2Np

[

p2D2
p−1 +

(

ν2
−− (ν − p)2

λ 2

)

D2
p −

(ν − p)2

λ 2µ2
−

D2
p+1

]

,

where Dp ≡ Dp(−η). In the absence of the Rashba term (λ = 0), the in-plane com-

ponent Sy vanishes identically, since then the eigenstates are simultaneously eigen-

states of sz. For finite λ , integration over y yields a vanishing expectation value for

the overall in-plane polarization, but the Rashba coupling still induces local in-plane

spin polarization. The case ∆ = b = 0 has been discussed in detail by Rashba [16].

4 QH edge states for intrinsic SOI

In this section, we consider the edge states corresponding to the relativistic Landau

level problem in Sec. 3 when a boundary at y = 0 is present. We focus on the case of

purely intrinsic SOI, λ = 0, but the physics should be qualitatively unchanged for

λ ≪ ∆ . In the region y < 0 we then have a homogeneous magnetic field Bz = +B,

i.e, ε = +1. (For a pseudo-magnetic field, this holds at the K point while at the K′

point, Bz →−Bz.)

Since the problem of edge states in graphene has been studied extensively before,

some remarks are in order at this point. In fact, putting ∆ = b= λ = 0, our results are

consistent with those of Refs. [23, 24, 43, 44, 45] reporting chiral QH edge states in

graphene. On the other hand, the B = 0 model is equivalent to the continuum limit

of the Kane-Mele model [4] and thus exhibits helical QSH edge states [6]. (The

helical state has a pair of counterpropagating 1D modes with opposite spin polar-

ization.) The Kane-Mele model with (∆ ,b) 6= 0 but without orbital magnetic field

has recently been studied [46], and a quantum phase transition from a (generalized)

QSH phase for b < ∆ to a quantum anomalous Hall (QAH) phase for b > ∆ has

been predicted. It is worthwhile to stress that the QSH effect survives even when

time-reversal symmetry is broken. In the QAH phase, one has chiral edge states

moving in the same direction for both spin polarizations [47]. The valley analogue

of this quantum phase transition has also been studied [48]. Furthermore, for the 2D

topological insulator realized in HgTe quantum well structures, a related transition

has been predicted [49] by including the orbital field but omitting the Zeeman term.

However, the Zeeman term is crucial in graphene near the Dirac point: for ∆ = 0

and b 6= 0, spin-filtered helical edge states (similar to the QSH case) emerge again

[21, 50]. Our results below show that this QSH-like phase is separated from the
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“true” QSH phase by a quantum phase transition at b = ∆ . Albeit both phases have

spin-filtered edge states, they differ in the direction of the spin current. This feature

should allow to experimentally distinguish both phases and to identify the quantum

phase transition separating them. In practice, one may reach this transition simply

by changing the magnetic field.

Normalizability of the wavefunctions for y →−∞ implies [39] that the only al-

lowed solutions follow from the φp spinors in Eq. 13, while the ψp solutions in

Eq. 13 have to be discarded. Since we do not have to impose normalizability at

y → ∞, the order p is not constrained to integer values and can now take any real

value consistent with suitable boundary conditions at y = 0. For given conserved

momentum kx and spin s, the solutions for p yield the edge state spectrum, Es(kx).
Note that for finite magnetic field and kx < 0, the distance from the boundary is set

by |kx|. Putting λ = 0, possible solutions φ
K,K′
p,±,s(y) must be of the form in Eq. 21,

with energy Ep,±,s given by Eq. 22. While p ∈ N0 in Sec. 3.2, we now consider

arbitrary real p. To make progress, we have to specify boundary conditions at y = 0.

We investigate two widely used boundary conditions, namely the zig-zag edge and

the armchair edge [3, 21, 51, 52].

4.1 Zig-zag edge

For a zig-zag edge with the last row of carbon atoms residing on, say, sublattice

A, the microscopic wavefunction must vanish on the next row outside the sample,

belonging to sublattice B. In the continuum limit, since the x-axis here points in the

zig-zag direction, the lower component of the spinor φ K
p,±,s [Eq. 21] has to vanish at

y = 0 [21, 23]. For both spin directions s =±, this yields the condition

Dp(2kx) = 0, (27)

which has to be solved for the energy, expressed in terms of p as Es = sb±
√

p+∆ 2.

At the other Dirac point, the lower component of the spinor φ K′
p,±,s should vanish at

y = 0, where Eq. 11 implies the condition

νp,±,sDp−1(2kx) = 0, (28)

with νp,±,s in Eq. 23. It is not possible to find simultaneous solutions to both Eqs. 27

and 28. Possible states are thus confined to a single valley: the boundary condition

does not mix the valleys but lifts the KK′ degeneracy. Remarkably, for s = ± and

arbitrary kx, Eq. 28 is satisfied by the K′ solution for p= 0 in Sec. 3.2, with Es(kx) =
s(b−∆), i.e., we find a pair of “flat” states. For all other states, Eq. 28 simplifies to

condition 27 with p → p− 1 (and K → K′). We mention in passing that for ∆ = 0

this condition reduces to Eq. 9 in Ref. [45]. Equation 27 can be solved in closed

form for kx → −∞ using asymptotic properties of the parabolic cylinder function.

To exponential accuracy, with n ∈ N0 we find
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p = n+
|2kx|2n+1

√
2πn!

e−2k2
x . (29)

Numerical analysis of the above equations recovers the expected spin-filtered helical

edge states [21] for b>∆ , but the continuum approach used in this paper fails to give

clear evidence for the helical QSH edge states for b<∆ . As pointed out in Ref. [50],

under the zig-zag boundary condition one needs a more microscopic description in

order to capture these states. The “flat” states above are remnants of the sought

QSH edge states, but the continuum model is not sufficient to describe their proper

dispersion relation. We therefore turn to the armchair boundary condition.

4.2 Armchair edge

Under the armchair boundary condition, we instead impose Ψ K
A +Ψ K′

A = 0 and

Ψ K
B +Ψ K′

B = 0 at the boundary, with Ψ in Eq. 1. This boundary condition mixes

the valleys and involves both sublattices. Since in our coordinate system the x-axis

is parallel to the zig-zag direction, we first rotate the system by π/2 and then im-

pose the boundary condition at y = 0. Written in the original coordinates, we find

(for each spin direction s)

νp,±,sDp−1(2kx)±Dp(2kx) = 0. (30)

We note that the relative phase between the K and K′ components is not fixed by the

Dirac equation, which is diagonal in valley space. However, the only relative phase

compatible with the boundary condition imposed simultaneously on both sublattices

is ±1. Each of the two conditions in Eq. 30 may thus be imposed separately. We have

checked that the numerical solution of Eq. 30 for ∆ = 0 recovers the known results

for the QH edge state spectrum [21, 45]. In addition, for B = 0, the armchair edge is

known [51, 53] to yield QSH edge states.

Our numerical results for the dispersion relation Es,±(kx) for the armchair edge

are shown in Fig. 3, where ± corresponds to the symmetric or antisymmetric linear

combination in Eq. 30 and the magnetic field is B = 15 T. The main panel shows

results for ∆ = 6 meV. Then ∆ > b, and we have the (generalized) QSH phase.

Indeed, for E = 0 we find the helical edge state, where the right- (left-)mover has

spin s =↑ (s =↓). The inset of Fig. 3 is for ∆ = 0.3 meV, where ∆ < b and the

spin-filtered helical QH phase [21] is found. Here we have spin s =↓ (s =↑) for the

right- (left-)mover. Hence the spin current differs in sign for ∆ > b and ∆ < b, with

a quantum phase transition at ∆ = b separating both phases. This feature should

allow for an experimentally observable signature of the transition.
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Fig. 3 Dispersion relation Es,±(kx) of a semi-infinite graphene sheet with an armchair edge at

y = 0, obtained numerically from Eq. 30. We use λ = 0, B = 15 T, ∆ = 6 meV, and the + (−) sign

is for the symmetric (antisymmetric) valley combination in Eq. 30. Inset: Same for ∆ = 0.3 meV.

5 Spin structure in magnetic waveguides

In this section, we consider a spatially inhomogeneous situation, where a magnetic

waveguide [27, 28, 29] along the x-direction can be realized. Since the problem

remains homogeneous along the x-direction, px = h̄kx is still conserved. For the

physics described below, the Zeeman coupling b gives only tiny corrections[29] and

will be neglected. Moreover, there are no valley-mixing terms, thus we can focus on

a single valley.

We distinguish a central strip of width 2L (the “waveguide”), −L < y < L, and

two outer regions y <−L and y > L. In the central strip, we shall allow for arbitrary

SOI parameters ∆ and λ . In addition, strain may cause a constant contribution to the

vector potential, Ax, and a scalar potential, V . The magnetic field in the central strip

is denoted by Bc. For |y|> L, we assume that all strain- or SOI-related effects can be

neglected, ∆ = λ =Ax =V = 0. In principle, by lithographic deposition of adatoms,

one may realize this configuration experimentally. For y <−L, the magnetic field is

Bz = B > 0, while for y > L, we set Bz = εB, where ε = 1 (ε =−1) corresponds to

the parallel (antiparallel) field orientation on both sides. For ε =−1, we take Bc = 0,

while for ε =+1, we set Bc =−B.

The setup with ε = −1 could be realized by using a “folded” geometry [54,

55], cf. recent experimental studies [56]. Note that when the magnetic field changes

sign, one encounters “snake orbits,” which have been experimentally observed in

graphene pn junctions [57]. For the ε = −1 configuration, we have uni-directional

snake orbits mainly localized along the waveguide, while for ε = +1, we get two

counterpropagating snake states centered near y = ±L. For ∆ = λ = Ax = V =
0, both cases (ε = ±1) have been studied in detail in Ref. [28]. Technically, one

determines the eigenstates and the spectrum, E(kx), by matching the wavefunctions

in the three different regions, which results in an energy quantization condition. This
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method can be straightforwardly extended to the more complex situation studied

here by employing the general solution in Sec. 2 for the central strip.

Before turning to results, we briefly summarize the parameter values chosen in

numerical calculations. We take a magnetic field value B= 0.2 T, and the waveguide

width is 2L =
√

8ℓB ≈ 40 nm. The strain-induced parameters in the central strip are

taken as Ax =−16µm−1 and V =−20 meV. These values have been estimated for

a folded setup [55], where V comes from the deformation potential. We consider

two different parameter choices for the SOI couplings: Set (A) has ∆ = 13 meV and

λ = 3 meV, corresponding to the QSH phase. For set (B), we exchange both values,

i.e., ∆ = 3 meV and λ = 13 meV.

5.1 Antiparallel case: Snake orbit

Let us first discuss the ε = −1 configuration, where the magnetic field Bz differs

in sign in the regions y < −L and y > L. The dispersion relation of typical low-

energy 1D waveguide modes is shown in Fig. 4. For kx → −∞ the centers of the

quantum states are located deep in the left and right magnetic regions, far from the

waveguide. Thus one has doubly-degenerate dispersionless “bulk” Landau states.

With increasing kx these states are seen to split up. The dominant splitting, which

is already present for ∆ = λ = 0, comes from the splitting of symmetric and anti-

symmetric linear combinations of the Landau states for y < −L and y > L with

increasing overlap in the waveguide region [28]. Asymptotically, the dispersion re-

lation of all positive-energy snake states is E(kx →+∞)≃ h̄vF kx [28]. For interme-

diate kx and (∆ ,λ ) 6= 0, however, we get spin-split snake states out of the previously

spin-degenerate states. The spin splitting is mainly caused by the Rashba coupling

λ and disappears for λ → 0, cf. the inset of Fig. 4.

The zero-energy bulk Landau state (for kx → −∞) shows rich and interesting

behavior in this setup. While for kx →+∞, we expect one pair of snake states with

positive slope and one pair with negative slope, for the studied parameter set and

range of kxL, there is just one state with negative slope while three branches first

move down and then have a positive slope. Accordingly, at the Dirac point (E = 0),

Fig. 4 shows that there are three right-movers with different Fermi momenta and

different spin texture. Two of those states are indicated by stars (*) in the main

panel of Fig. 4 and their local spin texture is shown in Fig. 5. Evidently, they are

mainly localized inside the waveguide and have antiparallel spin polarization. We

find spin densities with Sx = 0 for both states. For the Rashba-dominated situation

in Fig. 5, spin is polarized perpendicular to the current direction and has a rather

complex spatial profile.
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Fig. 4 Dispersion relation of the lowest few energy branches for a strained magnetic waveguide

with ε = −1 and SOI in the central strip of width 2L. Energies are given in units of h̄vF/L. The

main panel is for parameter set (B). The stars refer to the states further studied in Fig. 5. Inset:

Same for set (A). (See main text for details.)
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Fig. 5 (Color online) Spin density profile Sy,z (in arbitrary units) vs y/L for the two E = 0 right-

moving states indicated by stars in the main panel of Fig. 4. The left star corresponds to kxL =
1.745, the right star to kxL = 2.629. Inset: Particle density, ρ , and current density, Jx (which is the

only non-vanishing component), in arbitrary units vs y/L. We show the result only for kxL = 1.745,

since kxL = 2.629 yields practically the same.

5.2 Parallel configuration

Next we come to the ε = +1 configuration, where the magnetic field is +B for

|y| > L and −B for |y| < L. One therefore expects two counterpropagating snake

states in the x-direction localized around y = ±L. The corresponding spectrum is

shown in Fig. 6. We focus on parameter set (B), since for set (A), the spin splitting

is minimal and less interesting. The spectrum consists of two qualitatively different

states, namely states of bulk Landau character for large |kx|L, and a set of propagat-
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ing waveguide modes [28]. The spectral asymmetry seen in Fig. 6 for all propagat-

ing modes, E(−kx) 6= E(kx), is caused by the strain (Ax)-induced shift of kx. Such

a spectral asymmetry may give rise to interesting chirality and magnetoasymmetry

effects [58]. The spin texture is shown in Fig. 7 for a pair of right- and left-moving

states with E = 1.2h̄vF/L, cf. the stars in Fig. 6. We observe from the main panel in

Fig. 7 that the spin polarization of both states is approximately antiparallel. Because

of their spatial separation and the opposite spin direction, elastic disorder backscat-

tering between these counterpropagating snake modes should be very strongly sup-

pressed. The inset of Fig. 7 shows the current density profile across the waveguide.

Although the profile is quite complex, we observe that the current has opposite sign

for both modes.
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Fig. 6 Same as Fig. 4 but for the setup with ε = +1 and parameter set (B). Solid and dashed

curves are for better visibility only. The two states indicated by stars are studied in Fig. 7.

6 Concluding remarks

In this work, we have studied the magnetoelectronic properties of graphene in the

presence of strong intrinsic and Rashba-type spin-orbit couplings. According to a

recent proposal [12], large intrinsic couplings may be realized by suitable adatom

deposition on graphene. We have presented an exact solution for the Landau level

states for arbitrary SOI parameters. When the intrinsic SOI dominates, by increasing

the magnetic field, we predict a quantum phase transition from the quantum spin

Hall phase to a helical quantum Hall phase at the Dirac point. In both phases, one has

spin-filtered edge states but with opposite spin current direction. Thus the transition
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Fig. 7 Spin density Sy,z (in arbitrary units) vs y/L for the two states indicated by stars in Fig. 6.

The left (right) star corresponds to a left- (right-)mover with kxL =−1.46 (kxL = 2.83). Note that

the spin polarizations of both states are approximately antiparallel. Inset: Particle current profile

Jx (in arbitrary units) vs y/L for both states. Black solid curve: kxL = 2.83. Dashed red curve:

kxL =−1.46.

could be detected by measuring the spin current either in a transport experiment

(e.g., along the lines of Ref. [59]) or via a magneto-optical experiment.

In inhomogeneous magnetic fields, especially when also strain-induced pseudo-

magnetic fields are present, interesting waveguides can be envisioned. Such setups

allow for snake states, where spin-orbit couplings result in a spin splitting. In a

double-snake setup, there is a pair of counterpropagating snake states that carry

(approximately) opposite spin polarization. This implies that scattering by elastic

impurities is drastically suppressed. The resulting spin textures can in principle be

detected by spin resolved ARPES (see, e.g., Refs. [10] and [60]) or spin-polarized

STM measurements.
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