
Alvino, C. V., Unal, G.B., Slabaugh, G.G., Peny, B. & Fang, T. (2007). Efficient segmentation based 

on Eikonal and diffusion equations. International Journal of Computer Mathematics, 84(9), pp. 

1309-1324. doi: 10.1080/00207160701324249 

City Research Online

Original citation: Alvino, C. V., Unal, G.B., Slabaugh, G.G., Peny, B. & Fang, T. (2007). Efficient 

segmentation based on Eikonal and diffusion equations. International Journal of Computer 

Mathematics, 84(9), pp. 1309-1324. doi: 10.1080/00207160701324249 

Permanent City Research Online URL: http://openaccess.city.ac.uk/4410/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/29017609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


International Journal of Computer Mathematics
Vol. 00, No. 00, Month 200x, 1–10

Efficient Segmentation Based on Eikonal and Diffusion Equations

Christopher Alvino∗† Gozde Unal†, Greg Slabaugh†, Bertrand Peny†, Tong Fang†
(Received 00 Month 200x; revised 00 Month 200x; in final form 00Month 200x)

Segmentation of regions of interest in an image has important applications in medical image analysis, particularly in computer aided diagnosis. Segmentation
can enable further quantitative analysis of anatomical structures. We present efficient image segmentation schemes based on the solution of distinct partial
differential equations (PDEs). For each known image region, a PDE is solved, the solution of which locally represents the weighted distance from a region
known to have a certain segmentation label. To achieve this goal, we propose the use of two separate PDEs, the Eikonal equation and a diffusion equation. In
each method, the segmentation labels are obtained by a competition criterion between the solutions to the PDEs corresponding to each region. We discuss how
each method applies the concept of information propagationfrom the labeled image regions to the unknown image regions.Experimental results are presented
on magnetic resonance (MR), computed tomography (CT), and ultrasound images and for both two-region and multi-region segmentation problems. These
results demonstrate the high level of efficiency as well as the accuracy of the proposed methods.

1. Introduction

Content extraction from images typically relies on segmentation, i.e., extraction of the borders of target structures.
Automated segmentation by computer algorithms has been a focus of decades of research [1–3] and remains an
active problem in the computer vision literature [4–6]. In practice, the accuracy of segmentation algorithms can be
hampered by noise in the image acquisition and the complexity of the arrangement of target objects with respect to
their surroundings within the image. In order to achieve robustness to such hindrances, many algorithms demand
an increase in computational cost. However, practically useful segmentation techniques should be accurate and
computationally efficient for clinical interpretation andso that extensive quantitative analysis can be automated.
In this study, highly efficient and mathematically principled techniques are presented to segment the boundaries of
closed structures. The techniques are based on ideas of anisotropic information propagation apparent in certain types
of partial differential equations (PDEs). This work is motivated by anatomical structures such as lymph nodes, as
shown in Fig. 1, whose extraction from medical images, such as magnetic resonance (MR) images, is an important
task for subsequent quantitative analysis.

Segmentation methods based on information propagation have been performed using distance functions. For
example, in [7], simultaneous propagations are performed to estimate two potentials between two points in order to
extract the path made by a vessel. The minimal paths between two points,p0 andp1, are computed by simultaneous
propagations from the two points until they meet at a common point p2, and by back-propagating to the original
two points. They also described an approach to build a path given only a starting point and a given path length.
While this approach is suitable for the extraction of tubular structures, our goal is different. Although we also make
use of two distance maps, we do not need to extract a minimal path from the point where the two fronts meet, but
we seek the result of the competition of the two fronts in reaching a given point. Similarly, in [8,9] a fast marching
algorithm was used for segmenting tubular structures like vessels. A multiphase fast marching algorithm was used
in [10] in a Bayesian framework, where all distinct regions are propagated simultaneously according to different
velocities, which each depended on the posterior distributions for each region.

There are also similarities between distance function based algorithms and the watershed algorithm. The Eikonal
PDE has been used in [11] for modelling watershed segmentation that is constructed from the watershed of the
gradient image. Different segmentation results were obtained by changing the flooding criterion [12]. A form of
diffusion has been used for image segmentation in [5] by a random walk concept motivatived by electric potentials.
This technique differs from our approach in that it was introduced in a graph theoretic framework, as has become

∗Corresponding author. Email: christopher.alvino@siemens.com

†Intelligent Vision and Reasoning, Siemens Corporate Research, Princeton, NJ 08540, USA

International Journal of Computer Mathematics
ISSN 0020-7160 print/ISSN 1029-0265 onlinec© 200x Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/0020716YYxxxxxxxx



2 Efficient Segmentation with Eikonal and Diffusion Equations

popular recently [3,4], and formulated as system of linear equations solved through conjugate gradient.
Distance functions are intimately linked to level set methods that provide implicit ways to represent boundaries in

a way that is free of parameterization and allows for naturaltopology change. The original applications of level set
methods to image segmentation were introduced by Caselles et al. [13], Malladi et al. [14], and Kichenassamy et al.
[15]. Distance functions are used in these techniques to enforce a mathematically well-behaved embedding function
for the level set of interest, typically the zero level set. Level set methods were soon applied to implementations of
the Mumford-Shah functional [16–18].

In this paper we present four methods. The first three methodscompute distance functions treating image loca-
tions containing edges or higher gradient magnitude as locally slower to propagate information or as having higher
local distance. These three methods employ the Eikonal equation and thus can be computed inO(N log N), where
N is the number of image pixels, by the fast marching algorithm[19]. Inspired by the same information propagation
concepts, we also present a fourth method based on diffusionPDEs, in which edge information is propagated from
the interior of the desired anatomical structure or from theboundary of the region of interest.

Figure 1. Example of magnetic resonance (MR) image with a region of interest (ROI) around a lymph node.

2. Segmentation by Distance Function Competition

We will explain the technique for the case of two-region segmentations and later explain the natural generalization
to the case of multiple region segmentations. The first step in the proposed segmentation technique is to compute
a distance function for each known image region. Each distance function represents the distance to the nearest of a
set of prespecified points interior to the desired structure. The second distance function represents the distance to
a set of prespecified points exterior to the structure. We will defer choice of the prespecified interior and exterior
points until later, but for now we will state that they should, respectively, be clearly inside or outside the boundaries
of the desired structure to be segmented. The local travel cost for each distance function depends on the local
image intensity variation. Regions that are more likely to be edges should be interpreted as regions that have higher
local distance. After the computation of the two distance functions, a simple competition criterion between the two
distance functions determines which image pixels belong tothe interior region and which belong to the exterior
region.

This concept will be implemented in several different ways.In the first, we weight the distance function directly
on the binary map resulting from an edge detection on the image, for instance using a Canny edge detector [20].
In this method, edges correspond to impassable obstacles and the distance function is computed accordingly. The
second method generalizes the first method, by defining the local distance as a function of the gradient magnitude of
the image. The third method combines the different weights on the distance function. The fourth method is inspired
by distance propagation ideas but uses diffusion PDEs as will be explained. The next sections briefly describe the
techniques in more detail.
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2.1. Eikonal Equation Method

The Eikonal equation,

‖∇D‖ = F ,D = 0 onG (1)

is a well known PDE whose solution,D : Ω ⊂ R
n −→ R, wheren is the dimensionality of the image, represents

the arrival time of a moving front with spatially varying speed,1/F , that starts at a given set of points,G ⊂ Ω, at
time 0. Here∇ denote the gradient operator. When the speed of the front is uniform within the domain, the arrival
time is proportional to the minimum distance toG, the set of starting points. It is for this reason that the solution to
the Eikonal equation is often called a “distance” function.Thus, a common alternate interpretation of the solution
to Eq. (1) is thatD represents the weighted distance to the setG with locally varying travel cost,F . In this paper,
we will use this interpretation and therefore refer toD as a distance function. In our segmentation method the local
distance weight will vary accordingly with the presence of image edge or with local intensity variation.

The fast marching algorithm was introduced to yield an efficient solution to the Eikonal equation on a uniform
discrete grid [19]. While the theory behind the proposed method holds for continuous image domains with differen-
tiable images, we will herein refer to discrete grid locations and thus, we will use finite difference approximations
to the derivatives.

The proposed Eikonal PDE-based methods proceed as follows:

(i) Initialize for the computation of two distance functions, Di andDe, corresponding to the distance from the
interior and exterior regions, respectively.
a) Di will be solved on the image domain by settingG to a set of points inside the structure to be segmented.

Discretely, this will be done by setting the corresponding pixels to a value of 0 and by labelling the corre-
sponding pixels asKnown.

b) De will be solved on the image domain by settingG to a set of points clearly outside the structure to
be segmented. Discretely, this will be done by setting the corresponding pixels to 0 and by labelling the
corresponding pixels asKnown.

(ii) Compute the two distance functions,Di andDe, by solving two Eikonal PDEs.
The Eikonal PDE (solved through fast marching): Label the pixels that are neighbors of the alreadyKnown

points asTrial pixels. All other image pixels are labeled asFar points. Then, until noTrial pixels remain, do the
following action: take theTrial pixel with the lowest distance value,q, label it as aKnownpixel, and verify that
each neighbor pixel toq that is notKnownis labelled as aTrial pixel while updating its value according to the
chosen distance function. See [19] for more details.
a) Interior: Compute the distance function to the interior set with local travel cost,F , as will be explained in

the next sections. The value of each pixel then corresponds to the weighted distance to the interior set and is
denoted asDi. This step is initialized with interior points asKnownset.

b) Exterior: Compute the distance function to the exterior set with local travel cost,F . The value of each pixel
then corresponds to the weighted distance to the exterior set and is denoted asDe. This step is initialized
with exterior points asKnownset.

(iii) The interior region is considered the set of points where the interior distance is less than the exterior distance,
i.e., the interior set is{(x, y) : Di(x, y) < De(x, y)} in the case of a two-dimensional image.

The local travel cost,F , of the distance functions are explained in the following sections. We are proposing
three different techniques for assigning this travel cost based on the image data. The first technique is based on the
presence or absence of edge in the image. The second is based on local intensity variation and the third is a hybrid
of the first two techniques.

2.1.1. Fast Marching with Edge Map. Our first approach is to compute the distance function in a waysuch that
edge pixels represent points where the moving front cannot propagate at all. The Eikonal equation is then,

‖∇D‖ =
1

1− E
,D = 0 onG, (2)
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whereE is the edge map that assumes the value of1− ǫ where there are edges and the value of0 at all other pixels.
Note that we are interested in the nature of the solution where ǫ > 0 approaches 0 in order to represent locally
infinite travel cost1. The edge map can be derived from any edge detection algorithm that has binary output. In our
results, we use a Canny edge detector [20].

At this point it is important to note how the proposed method differs from using the Canny edge detection
algorithm alone. The Canny edge detection algorithm simplyreports an edge map that has noa priori known
topology, i.e., it does not necessarily partition the region of interest into clear interior and exterior regions. The
problem of obtaining a labelling for each pixel as an interior or exterior region is thus not solved by edge detection
alone. It for this reason that we propose the use of the competition algorithm.

In the fast marching algorithm the edge pixels are marked as having infinite local travel cost and their initial label
is set toKnown. In this way they will not be processed during the distance function computation. The first column
in Figure 2 depicts the two distance functions computed by starting from both the exterior and the interior seed
points. The distance is represented in gray scale with whitecorresponding to high distance and black corresponding
to low distance. Note how the exterior distance function hashigh distance inside the lymph node and low distance
outside the lymph node, and the opposite is true for the interior distance function.

2.1.2. Fast Marching with Gradient. In the second method, we treat regions with high gradient magnitude as having
high local travel cost, and regions with low gradient magnitude as having low local distance. The Eikonal equation
then takes the form:

‖∇D‖ = ‖∇I‖ ,D = 0 onG, (3)

Note that this method has the potential to be more robust to errors in the edge map since it allows moderate levels
of intensity variation to affect the local travel cost by a moderate amount instead of necessarily being classified as
either edge or non-edge, neither of which classification is completely appropriate. Contrast this to the edge map
method in Section 2.1.1 in which pixels that are erroneouslyconsidered as edge or non-edge will have a definite
negative impact on the distance functions and, as a result, on the final segmentations.

Furthermore, note that by considering the Eikonal equation, ‖∇D‖ = f(‖∇I‖), we further generalize this
method. Note thatf should typically be non-negative and monotonically increasing. Certain choices of the function,
f , in particular those that resemble thresholding functionssuch as the sigmoid, show the relationship between the
current method and the method in Section 2.1.1 since edge maps typically resemble such functions of the image
gradient magnitude,‖∇I‖.

The second column in Figure 2 depicts the two distance functions computed in this way.

2.1.3. Combined Method. In the second method explained in Section 2.1.2, which uses the gradient magnitude in
the computation of the distance function, there were cases where the distance function was allowed to propagate
too quickly through breaks in the boundary of the structure to be segmented. To prevent such leaks and to increase
robustness to noise, one can combine the first two methods in Section 2.1.1 and 2.1.2. This corresponds to weighting
the distance function by edge information. The method consists of the computation of the edge map,E, to result in
a binary image assuming the valueE = 1 on edge pixels andE = 0 elsewhere. This binary image is then directly
added to the gradient image by a factorα. The Eikonal equation then takes the form:

‖∇D‖ = (‖∇I‖+ αE) . (4)

Specific choice of the parameter,α, depends on the level of trust that can be placed in the edge map, with higher
trust corresponding to higher values ofα. This will result in increased gradient effects where thereare edges as
compared with the method in Section 2.1.2.

1The implementation of this technique does not require the use of limits or a specific choice ofǫ since we can implement the locally infinite travel cost
present at edges by simply not allowing information to propagate with the fast marching algorithm.
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Figure 2. Top row: Exterior distance function; Bottom row: Interior distance function. Columns 1. edge map method; 2. image gradient magnitude method;
3. diffusion method.

Note that this technique, which assigns additional travel cost to areas where there are definite image edges, is in
the spirit of considering the Eikonal equation,‖∇D‖ = f(‖∇I‖), i.e., with non-linear functions of the gradient
image. For instance, choosing the function,

f(z) =
1

1 + e(−z+t)
(5)

wheret represents an image gradient magnitude threshold and can bechosen automatically based on the range
values that magnitude of the image gradient assumes. Many choices can be made for the function,f , but a full
exploration of these choices is beyond the scope of this paper. We find that the Eikonal equation in Eq. 4 achieves
suitable results and combines the previous two methods in a natural fashion.

Part of the flexibility of the proposed methods in this paper are that different PDEs can be used for each region.
That is, the interior distance function can be obtained by solving a different PDE than that producing the exterior
distance function. This flexibility may, for example, assist in the segmentation of interior regions that are textured.
One can add, to the interior distance function, some interior intensity based term, which will smooth the local
gradient and decrease some texture or noise influence. Due tothe nature of the main application, i.e., lymph node
segmentation, we do not smooth the exterior distance function in a similar fashion since exterior regions may
include other structures that may interfere with the segmentation. In order to achieve this, we compute the mean
intensity of a set of points adjacent to the foreground seed points asÎ. The image at each pixel,p, will then have
a local weight of(I(p) − Î)2, which we add to the local travel cost in the Eikonal equationfor the interior region
with a weighting parameter,β as follows,

‖∇Di‖ =

(

‖∇I‖+ αE + β
(

I − Î
)2

)

, (6)

where again,E is the binary edge map and̂I is the mean intensity of points adjacent to the interior region seed
points. Thus, the final combined method assumes the use of Eq.4 for computation of the exterior distance function
and Eq. 6 for the computation of the interior distance function.

2.2. Diffusion Equation

The technique proposed in this section differs from the above techniques in that we use a diffusion equation to
propagate image information rather than the Eikonal equation. Note that although the nature of information prop-
agation in diffusion equations is significantly different than that in the Eikonal equation, particularly that diffusion
equations propagate information with infinite speed, we findthat this technique propagates information in a similar
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manner to the previously mentioned distance function basedtechniques. Perhaps the reason for this similarity is that
diffusion equations propagate information in a gradual manner that depends on the proximity to the information
source. Diffusion equations propagate information with infinite speed, but in a way such that the majority of the
effect is local.

The linear heat equation on a functionD(x̄, t) : Ω× [0,∞) −→ R, wherex̄ ∈ Ω, is given bydD
dt

= ∆D. Here,
∆ denotes the Laplacian operator. We consider initial conditionsD(x̄)|t=0 = D0(x̄) = 0 and Dirichlet boundary
conditionsD = 1 onG for a prespecified seed setG ⊂ Ω. For more information on the linear heat equation, initial
conditions, and Dirichlet boundary conditions, we refer the reader to [21]. An update equation corresponding to
the finite difference approximation to this equation for two-dimensional images, that is obtained by implementing
a forward Euler numerical scheme with the maximally stable time step (∆t = 0.25) is,

D(x, y)← D(x, y) + ∆t (∆D(x, y)) (7)

D(x, y)←
1

4
D(x + 1, y) +

1

4
D(x− 1, y)

+
1

4
D(x, y − 1) +

1

4
D(x, y + 1) , (8)

hence diffusing edge information from the boundaries towards the non-boundary regions.
Inspired by the Eikonal equation and fast marching techniques, where we propagate the information from the

boundaries or the seeds of the image domain towards unlabeled points, diffusion equations can also be used for
segmentation by creating two smooth distance functions1, one for the interior seed points and one the exterior seed
points. For the interior distance function,Di, the boundary conditions are set to 1 at the interior seed points and the
function is initialized to a value of 0 at all other points in the image domain. For the exterior distance function,De,
the boundary conditions are set to 1 at the exterior seed points and the function is initialized to a value of 0 at all
others points in the image domain.

To introduce image dependent terms to the diffusion equation, we propose the use of an anisotropic diffusion that
depends on the local image variation, allowing less diffusion in directions where the image derivative is lower and
more diffusion where the image derivative is higher. The definition of the four one-sided image derivatives around
a pixel are given by

I−
x

(x, y) = I(x, y) − I(x− 1, y), I+

x
(x, y) = I(x + 1, y)− I(x, y)

I−
y

(x, y) = I(x, y) − I(x, y − 1), I+

y
(x, y) = I(x, y + 1)− I(x, y)

We can create an image-based discrete diffusion equation byintroducing the image-driven weights to the discrete
heat equation as follows,

D(x, y) =
wE

∑

i w
i
D(x + 1, y) +

wW

∑

i wi
D(x− 1, y)

+
wN

∑

i wi
D(x, y − 1) +

wS

∑

i w
i
D(x, y + 1), (9)

wE = e−γ(I+
x

)2 , wW = e−γ(I−

x
)2 ,

wN = e−γ(I−

y
)2 , wS = e−γ(I−

y
)2 , i ∈ {E,W,N, S}.

Note thatγ represents a damping coefficient that affects the level of anisotropy inherent in this method. Higher
values ofγ allow for greater anisotropy, i.e., allow for the information diffusion to be more sensitive to differences
in image intensity across the image. We have found a reasonable range for this parameter is0.001 < γ < 0.01.

Hence, using the set of seeds for the exterior region and the interior region as two distinct set of boundary
conditions, we estimate the two distance functions,De andDi, corresponding to the exterior and interior after a

1Note that for consistency with the previous sections, we refer to these functions as distance functions, however that they more closely resemble heat
functions as is typically the case with such diffusion equations.
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set amount of diffusion time. Similar to our approach using Eikonal equation, we form the segmentation map by
considering the interior region to be the set of points wherethe interior distance function is higher than the exterior
distance function. The third column in Figure 2 depicts the resulting distance functions estimated by the diffusion
method. We run the diffusion for a sufficiently long time for all pixels to be affected by the diffusion but for a short
enough time for the diffusion to be practically useful, i.e., to avoid the constant solution D = 1 along the entire
domain. In practice, we found thatk = 1000 forward Euler iterations produced suitable results and that the results
were not particularly sensitive to moderate variations ink.

This image-weighted diffusion we seek for our distance function D is similar to that of the diffusion equation
presented in the work of Perona and Malik [22] who used anisotropic diffusion for filtering images based on
the direction of the image gradient. Using a weighted diffusion equation based on image gradients as,∂I/∂t =
∇ · (w(|∇I|)∇I), their purpose is to diffuse intensities of the original image,I, in an edge-preserving manner and
not to derive distance functions,De andDi, as we do.

3. Experimental Results

3.1. Two Region Segmentations

The algorithm is not sensitive to the placement of the interior and exterior seed points. It is possible to use any set
of exterior or interior seed points as long as they are clearly outside or inside of the target structure, respectively.
Of course, a carefully hand labelled contour placed at a uniform distance from the outside of the structure may be
ideal for the exterior seed points. However, for simplicity, and to show the robustness of the proposed method to
the choice of initial contour, we opted to use a simple mouse drag operation on the image that sets exterior seeds
in the form of a 2D rectangular border, as shown in Fig. 1, thenthe interior seeds are automatically set to the set of
pixels in the center of this rectangle. This type of 2D initialization is used in both the 2D and 3D experiments, and
is simple and fast for the user since it essentially only requires specifying two points, i.e., the top left point and the
bottom right point of the rectangular region of interest.

In Figure 3, sample segmentation results (labeled as blue contours) are presented for different lymph nodes in
MR images. In analyzing the results based on the edge map algorithm, we see that in some cases the segmentation is
not as precise as the other methods. The Canny edge detector propagates strong edges and discards the weak ones,
and this leads to either “holes” in the edge map as in row 1, or edge noise as in rows 3, 4 and 5. This will directly
influence the distance functions and in turn, will influence the final segmentation. Still, the result is acceptable and
can be used as a suitable fast initialization to a more sophisticated segmentation algorithm. Those errors are reduced
by our second approach that uses image gradient in the Eikonal PDE. The distances found are more robust to errors
in the edge map functions, and our segmentation matches the desired structure more closely. In cases where a strong
edge is situated near the edges of the lymph node, but yet external to the lymph node itself, the method presented
in this paper may be slightly attracted to it, such as the bottom right the image in row 1 and the entire surrounding
region for the image in row 5. Note that such errors can be fixedby assuming more than two regions are present in
the image. We will show example of this in the next section.

The diffusion method performs well when images edges are strong and is robust to higher levels of image noise
especially the noise that occurs at a single pixel as is commonly referred to as “salt and pepper” noise. The reason
for this is the ability of the diffusion equation to propagate information around a single pixel that, due to noise, has
an abnormally high intensity value. This property does not hold for the image gradient based techniques since such
noise affects the image gradient in a neighborhood around the pixel, thereby creating a larger region of high local
travel cost. However, this method is prone to error when the target objects are merged with other external structures
containing high edge content. A startling example of this can be seen in the fifth row of Fig. 3. The high amounts
of external intensity variation that are external to the target object will often produce such unsatisfactory results.

Finally, our combined method produces the best results, achieving a suitable tradeoff between the results in the
edge map method and the image gradient method, even in difficult nodes. This method specifically prohibits the
propagation of information where edge is detected, whereassuch information often propagates in the image gradient
method. However, when edge is not detected, it allows for varying degrees of information propagation depending
on the magnitude of the image gradient. We can see in the results Fig. 3 that a suitable tradeoff between the first
two methods is achieved and excellent segmentations are produced even in such noisy and complex images.
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3.2. Comparison with Ground Truth

The results are confirmed by the statistics we found during our tests as shown in Table 1. The ground truth of each
node segmentation was hand labelled by our own learned interpretation from clinicians. We estimated the empirical
probabilities of pixels falsely accepted as foreground (Type I error) or pixels falsely rejected as foreground (Type II
error) on the resulting contours of the presented four segmentation methods compared with the manually delineated
node contours. These results are compiled over a database of50 different regions of interest containing lymph
nodes in T2 weighted and T2-star weighted magnetic resonance images. The seed regions were kept constant for
each node and only the segmentation method varied.

The very low value in the Type I error of the edge map method is explained by its preference to label pixels
as foreground. This is highlighted by the large probabilityof Type II error. On the other hand, the gradient and
diffusion methods are more prone to erroneous information propagation around edges and thus have then a higher
Type I error. However, it is important to note that the overall probability of error is lower in the gradient and
diffusion methods than in the edge map method. Finally, the combined method yields the lowest overall error rate.

3.3. Further Experimental Results

Segmentation in 3D through Eikonal PDEs is easily achieved by extending the fast marching, and the gradient com-
putations to three dimensions. Example results from two nodes are shown in Fig. 4. We also show the effectiveness
of the proposed segmentation techniques in other imaging modalities. The example in Fig. 5 on a Computed To-
mography (CT) image shows a selected region of interest containing a liver tumor on the left and the segmentation
of the tumor as shown on the right.

In Fig. 6, we show segmentation results on the same slice of the same CT volume as in Fig. 5. However, in Fig. 6
we vary the region of interest (ROI) substantially to show the robustness of the segmentation result to different
possible ROIs that are likely to have been designated for thetumor in question. In the first row, we show the
performance of the algorithm with expected input ROIs, i.e., shifted around the tumor, and the corresponding stable
segmentation results. In the second row, we show the performance of the algorithm with extreme, not commonly
expected ROIs. In these cases, the proposed algorithm stillcaptures the tumor boundaries in a reasonable way.

The 3D tumor extraction results are shown in Fig. 7. Such 3D segmentations can be useful when trying to
determine the volume of a tumor, for example to assess the longitudinal efficacy of treatment. Figure 8 shows an
example of a breast mass segmentation in an ultrasound image. As we can see, ultrasound images have speckle
noise that hampers segmentation, and therefore we had to pre-process the image with high level of smoothing to
reduce it. However, the method remains accurate and efficient when the proper level of smoothing is applied. The
results show that our algorithm works for different types ofstructures that have a clear interior and exterior and
may be tuned for applications other than lymph node segmentation.

3.4. Computation Speed

The Eikonal PDE-based approaches presented in this paper, as expected, are very fast due to the fast computation of
the fast marching algorithm. On a60 by 60 pixel region of interest, the segmentation is complete in less than 0.03
seconds for the 2D algorithm, and 0.76 seconds for the 3D algorithm on a 60 by 60 by 60 pixel region of interest. All
results are reported with the algorithms running on a Pentium 4 processor operating at 2.4 GHz. With the diffusion
PDE, the segmentation is completed in 1.75 seconds for a 2D implementation. Although we extended the diffusion
approach to 3D, the computation times increased to approximately 1 to 2 minutes, therefore, we have not used the
diffusion-based approach for the 3D experiments. Considering the high level of accuracy of the proposed algorithms
in noisy and complex images, and the relative simplicity of the user supplied labelling, these algorithms achieve a
very high computational efficiency.

3.5. Multi-Region Segmentation

To illustrate the principled nature of the proposed segmentation techniques, particularly the distance function tech-
niques, we explain the generalization of this technique to segmentation of multiple regions. We will show examples
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on regions of interest that have three clear regions. The generalization of this technique is mathematically natural.
Instead of choosing only interior and exterior seed regionsas in the two region segmentation, the multiple region
segmentation technique allows for any number of seed regions where each seed region should correspond to a struc-
ture of interest within the image. For each seed region, we then compute a distance function from that seed region
as before. The segmentation labels are assigned by determining which distance function has the lowest value for a
given pixel. That is, for a each label index,i, the set of points corresponding to that region,Li is given by,

Li = {(x, y) : Di(x, y) ≤ Dj(x, y) , ∀j 6= i} . (10)

Note that some pixels may be defined with multiple labels withsuch a definition, however, these pixels are typi-
cally pixels that are on the border between two or more regions and can be thus considered border pixels, or can
be assigned to one region of the other without any loss in the utility of the method. This generalization is both
mathematically natural and matches our geometric intuition.

Figure 9 shows some examples of three region segmentations.Each row in this figure corresponds to a different
region of interest in the MR lymph node segmentation application. The left column shows the initial region of
interest (ROI) along with the user specified seeds in yellow.Note that there are typically two foreground seeds and
a single background seed surrounding the entire region. In the final row however, there are two foreground seeds,
one of which is split along the two dark blood vessels, and oneof which is in the white lymph node.

The middle column shows the gradient of the smoothed ROI, andthe right column shows the corresponding
final segmentation result using the method of distance function locally weighted by the image gradient alone, i.e.,
‖∇D‖ = ‖∇I‖. For each image, one seed region is the rectangular box surrounding the structure and two interior
seed regions are chosen, one inside of each region of interest as shown in the first column. Using a multi-region
segmentation method is particularly helpful in that it allows for explicit modelling of structures that have significant
edge information and that are external to the structure of interest, rather than having these structures confound the
distance functions and thus, create errors in the final two-region segmentation. This is particularly the situation for
the lymph node application, where lymph nodes are found in the vicinity of the vessels.

We should finally note that, as shown in the example in Fig. 6, the multi-region version of the algorithm shows
similar levels of flexibility when the center points are no longer directly in the center of the object to be segmented.
This level of flexibility is attained by the design of the distance functions, which are not very sensitive to small
shifts in the center points.

4. Conclusion

In conclusion, we presented efficient image segmentation techniques based on ideas from the Eikonal and diffusion
PDEs, by computing the distance functions for the exterior and interior regions, and by determining the final seg-
mentation labels by a competition criterion between the distance functions for reaching a given point. Each method
has its pros and cons, according to the image characteristics, but our experiments demonstrated that among the pre-
sented methods, the combined edge map and image gradient method achieves the most accurate segmentations, and
hence the best utility when compared to the other three methods. We have additionally shown the natural generaliza-
tion of the two-region method to segmenting multiple regions. The segmentations resulting from this algorithm are
both fast and accurate and are beneficial for clinical applications that require segmentation with a minimal amount
of user interaction.
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Table 1. Estimate type I and type II error probabilities overa database of 50 nodes

Edge Map Method Gradient Method Diffusion Method Combined Method

Type I 0.015 0.247 0.256 0.081
Type II 0.453 0.115 0.189 0.257
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(a) (b) (c) (d) (e) (f)
Figure 3. Segmentation Results. Columns(a–f): a. ROI image; b. Node manually delineated; c. Edge Map Method; d. Gradient Method; e. Diffusion

Method, f. Combined Method.

Figure 4. 3D Segmentation of anatomic structures based on Eikonal PDEs.

Figure 5. A liver tumor is segmented using the Combined Algorithm on a CT volume.
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Figure 6. Liver tumor from same CT volume as in Fig. 5 segmented with different regions of interest (ROIs) of varying size and shape. The resulting
segmentations of the liver tumor are shown. First row: with expected input ROIs, shifted around the tumor, and stable segmentation results. Second row: even

with extreme, not commonly expected ROIs, the proposed algorithm still captures the tumor boundaries in a reasonable way.

Figure 7. 3D Segmentation results on CT sequences of Fig. 5

Figure 8. A breast mass segmented using the Combined Algorithm on a Ultrasound image.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

Figure 9. Example three-region segmentations with lymph nodes and blood vessels as the two foreground regions respectively.


