
Slabaugh, G.G., Mihalef, V. & Unal, G.B. (2005). A Contour-Based Approach to 3D Text Labeling

on Triangulated Surfaces. In: Fifth International Conference on 3-D Digital Imaging and Modeling,

2005 (3DIM 2005). (pp. 416-423). IEEE Computer Society. ISBN 0-7695-2327-7

City Research Online

Original citation: Slabaugh, G.G., Mihalef, V. & Unal, G.B. (2005). A Contour-Based Approach to

3D Text Labeling on Triangulated Surfaces. In: Fifth International Conference on 3-D Digital

Imaging and Modeling, 2005 (3DIM 2005). (pp. 416-423). IEEE Computer Society. ISBN 0-7695-

2327-7

Permanent City Research Online URL: http://openaccess.city.ac.uk/4405/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/29017604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Contour-Based Approach to 3D Text Labeling on Triangulated Surfaces

Greg Slabaugh

Intelligent Vision and Reasoning Department

Siemens Corporate Research

Princeton, NJ USA

greg.slabaugh@siemens.com

Viorel Mihalef

Center for Computational Biomedicine Imaging and Modeling

Division of Computer and Information Sciences

Rutgers University

New Brunswick, NJ USA

mihalef@paul.rutgers.edu

Gozde Unal

Intelligent Vision and Reasoning Department

Siemens Corporate Research

Princeton, NJ USA

gozde.unal@siemens.com

Abstract

This paper presents a simple and efficient method of

forming a 3D text label on a 3D triangulated surface. The

label is formed by projecting the 2D contours that define

the text silhouette onto the triangulated surface, forming

3D contour paths. Surface polygons upon which the 3D

contour paths lie are retriangulated using a novel approach

that forms a polyline defining the region outside the contour.

This algorithm produces labeled 3D surfaces that conform

to the specifications of the STL format, making them suit-

able for fabrication by a rapid prototyping machine. We

demonstrate the effectiveness of the algorithm in forming

flat and extruded labels on non-trivial surfaces.

1 Introduction

Object labeling is essential for many tasks, such as in-

ventory control, object identification, and tracking. For ex-

ample, in manufacturing, assembly of a product composed

of many parts is considerably simpler when each individual

component is labeled so that it can be identified. Likewise,

given an object, one might like to know about its history or

attributes. If the object is labeled, one can input the label

into a database to retrieve such information.

In this paper, we present a digital, geometric approach

to form a 3D label on a 3D triangulated surface. An appli-

cation or user supplies the computer with a set of charac-

ters and a position on the surface for placement of the label.

The technique then back-projects the 2D contours of the text

onto the surface, merges the text to the surface, and extrudes

the text into a 3D label, in a way that produces a 3D model

that can be fabricated by a rapid prototyping machine.

Several steps of this process, such as back-projection and

3D extrusion are quite straightforward. However, the most

challenging aspect of this 3D labeling task is integrating the

text geometry with that of the surface. In our application,

this geometric integration must achieve the following goals:

1. It should not distort the geometry of the surface for

points located outside of the projection of the label.

2. It should be fast; i.e., labeling an object should take at

most a few seconds.

3. The 3D labeled surface should conform to the spec-

ifications of the STL format. In particular, the sur-

face should be triangle-based and satisfy the vertex-to-

vertex rule, which states that each triangle must share

two vertices with each of its adjacent triangles.

We achieve the above goals by introducing an algorithm

that quickly integrates each text character of the label with

the surface, by retriangulating the triangles upon which the

character projects so that the region outside the character

consists of triangles, and the region inside the character is

empty space, as depicted in (a) and (b) of Figure 1. This

algorithm is the primary contribution of this paper. Once

integrated, the character geometry can be extruded into 3D

so that the text label is indented, flat, or protruding rela-

tive to the surface. This process can be repeated for more

characters, forming a longer text string. The labeled surface

can then be output as an STL file for fabrication on a rapid

prototyping machine.

2 Relation to previous work

We are unaware of any papers specifically focused on the

problem of 3D text labeling as described above. However,

there is much literature devoted to merging and cutting 3D

surfaces in the computer graphics and computer aided de-

sign (CAD) literature. We discuss the most related work

below.

Constructive solid geometry (CSG) [3, 6, 8] is a pow-

erful way to model 3D surfaces by the application of reg-

ularized Boolean set operations. For example, using such

techniques, a complex polyhedral object can be formed as

the union, intersection, and/or difference of simpler polyhe-

dral objects. The method presented in [6] applies CSG to

two polyhedral surfaces. First, all polygons in each of the

two surfaces are subdivided so that no two polygons inter-

sect. Then, the polygons of each object are classified with

respect to the surface of the other object. This classifica-

tion is achieved by casting rays from the polygon through

the other object and checking the surface normal. Based

on this classification and the set operation, the technique

will retain or delete the polygon. Alternatively, the method

presented in [8] implements polyhedral set operations using

BSP trees.

These general-purpose CSG techniques require numer-

ous tests to determine which polygons intersect and to clas-

sify polygons of surface A as being in, out, or on the bound-

ary of surface B. In contrast, the method presented in this

paper reduces the complexity of the problem by first pro-

jecting the points defining the text characters onto the 3D

surface. Doing so obviates the need for complicated in-

tersection tests, and reduces the 3D/3D surface intersection

problem to a simpler contour-based problem on the 3D sur-

face. Furthermore, such CSG methods will not, in general,

produce a triangle-based surface that satisfies the vertex-

to-vertex rule. Therefore, if such methods are used, post-

processing of the surface is necessary to generate a valid

STL file for rapid prototyping applications.

Since our text labeling approach extrudes letter contours

from a 3D surface, it bears some relation to offset curve

methods [7, 9] that appear in the CAD literature. The

specific nature of text labeling ensures that the extrusion

distance is kept small enough so that local or global self-

intersection does not become an issue. In addition to pro-

ducing offset curves during extrusion, we integrate the ex-

truded text with the surface to produce the label.

One could regard the core of our 3D labeling method

as a mesh-cutting technique; following [1], our method

is characterized by placing a template through the mesh

and remeshing the intersected primitives (triangles, in our

case). The methods falling in the same category with

ours cited in [1] do not report on the implementation of

their local remeshing techniques so it is unclear to what

extent their remeshing is STL compliant and geometry-

preserving. With minimal modifications, our remeshing al-

gorithm could be successfully applied to interactive surface

surgery that preserves the STL attribute of the initial mesh.

Given a set of 3D text character points, along with the

surface triangle vertices, it would be possible to delete all

surface triangles upon which the 3D text points project, and

then retriangulate the region of space between the remain-

ing surface triangles and the 3D text points using a meshing

algorithm like constrained Delaunay triangulation [10] or

advancing front triangulation [4]. However, unless special

care is taken, direct application of these methods will al-

ter the surface geometry for regions outside the text, since

these methods might form new triangles using vertices that

lie on different triangles of the original surface. Where the

surface is non-planar, the new surface geometry will dif-

fer from the original surface geometry. When retriangulat-

ing, in our method we only break apart existing triangles on

the surface and therefore do not alter its geometry outside

the text label. We implement our retriangulation by pass-

ing contours to OpenGL and therefore do not require any

complicated data structures.

Finally, we note that labeling of tracked objects in

video [5] has appeared in the literature. However, unlike

these methods that superimpose a label on top of the video,

our technique modifies the scene geometry to include the

label.

3 Description of the approach

In this section we describe the details of our 3D text la-

beling algorithm.

3.1 Extracting 2D contours and placement on sur­
face

Our labeling approach first begins with a text string for

integration on the surface. This string can be specified auto-

matically (e.g., read from a database) or entered by a user of

(a) (b) (c)

Figure 1. Letter integration and extrusion. In (a), the two gray triangles indicate a portion of a larger
3D surface. The darker gray polyline is the back-projection of a capital L letter onto the surface.
The labeling problem seeks to retriangulate the triangles upon which the character projects so that
the region outside the character consists of triangles, and the region inside the character is empty
space, as shown in (b). Next, the character can be extruded from the surface and closed, as shown
in (c).

the software. We then extract the 2D contours of the letters

in the text string. Most operating systems provide functions

that allow one to obtain these contours. In particular, we use

the GDI path functions [2] that are part of Microsoft Win-

dows. These functions convert the text shape composed of

Bézier curves and straight lines to collection of closed poly-

line contours as shown in Figure 2. Each contour is stored in

a linked list. The points in the polylines are oriented so that

the region outside the letter is always located to the right of

the contour, as depicted in Figure 3.

Figure 2. 2D contours defining letter shape.

Next, the location on the surface where the text label

should be placed is specified. This can be done automat-

ically; however, in our application the user drags the text la-

bel so that it hovers over the region of the surface to where

the label should project. We demonstrate the positioning of

the label in Figure 4.

Next, the approach back-projects the 2D vertices that de-

fine the text onto the 3D surface. These points are shown in

Figure 3. Orientation of 2D contours.

gray in Figure 5, for the capital L example. Figure 5 also

shows the vertices of the surface triangles in black. In order

to perform the retriangulation, we will also need the points

at which the projected contour intersects the edges of the

surface triangles. These intersection points are shown in

white in Figure 5. We compute them by intersecting the

surface triangle edges with a plane formed from points Vi,

Vi+1, and C, where Vi and Vi+1 are two successive 3D

letter contour points, and C is the camera’s center of pro-

jection from which the back-projection occurs. In the ex-

ample shown in Figure 5 (b), our approach computes the

point A, in between Vi and Vi+1. We insert point A in

our list of contour points so that it appears between Vi and

Vi+1. We repeat this procedure to find the other intersec-

tion points in the figure. At the end of this step, we have

a new ordered list of 3D letter contour points that includes

both the back-projected contour points (shown in gray) and

the intersection points (shown in white). If the projections

of Vi and Vi+1 fall inside triangles situated far from each

other, we find the extra edge intersection points by marching

along the surface triangles that are intersected by the plane

(a) (b)

Figure 4. Positioning of the 2D text label. The user clicks the black square to drag the label into
position. We show both shaded (a) and wire-frame (b) renderings.

C Vi Vi+1. We use the local connectivity information to

find these triangles efficiently.

3.2 Merging the label and the surface

To avoid altering the surface geometry, we perform the

remeshing only within existing surface triangles. This has

the additional benefit of reducing the 3D remeshing prob-

lem into a 2D remeshing problem. Each 2D region is

remeshed using OpenGL’s (GLU, Version 1.2) tessellation

functions. These functions create a series of triangles that

satisfy the vertex-to-vertex rule given a closed polyline, and

support triangulation of complex polygons. Thus, our task

is to now identify, using only points on a triangle, a closed

polyline that covers the region of space to be triangulated.

Figure 6 illustrates this process. The method starts with

an entry point, which is an intersection point at which the

text character contour enters a triangle. For example, such

a point is vertex 1. The approach then follows the letter

contour while it is on triangle T1, adding vertices 2 and 3

to polyline. At vertex 3, the letter contour exits T1. Since

we want to only remesh using points that are on T1, we add

vertex 4 to the polyline. We find vertex 4 by identifying the

closest vertex that is on the triangle edge 64 that contains

vertex 3, and positioned on the right (i.e., clockwise) of the

letter contour. We always look in a clockwise direction,

since the region of space to the right of the letter contour is

the region to be filled in. Once at vertex 4, we look along

the triangle edge 45 to see if the edge intersects the letter

contour. If not, we add vertex 5 to the polyline and move

to edge 56. Again, we look to see if the edge intersects the

letter contour. Again, it does not, so we add vertex 6 to the

polyline and advance to edge 64. Edge 64 does intersect

the contour, and we find the closest point of intersection to

vertex 6. In this case, it is vertex 1, the starting vertex in

the polyline. We now have a closed polyline representing

a region of space to be triangulated. We give this polyline

to OpenGL, which triangulates the region, as shown in Fig-

ure 6 (b).

At this stage, we have processed one region of triangle

T1. We repeat the process for other regions of the triangle,

until all regions outside the text contour have been retrian-

gulated. Next, we repeat this process for all triangles to

which the text contour projects, until the entire text contour

geometry has been integrated.

While we described the algorithm in the paragraphs

above and illustrated it in Figure 6 for a specific example,

the principles apply to any letter and any surface triangle.

Pseudo-code for the general algorithm for processing a let-

ter contour is shown in Code Listing 1. For the general

algorithm, we must additionally consider the special cases

where all the points of a contour lie within a triangle, for

which no intersection points exist. However, these cases

are simple to detect and handle. One case is when all ver-

tices of the letter project to one triangle. In this case we

pass a polyline consisting of the 3 vertices of the triangle to

OpenGL, followed by all contours corresponding to the let-

ter. OpenGL will then tessellate the proper region of space

inside the triangle. Another case exists when the contours

of the letter project to different triangles, but each contour

lies within its own triangle. For example, such a case can

occur when the dot of a lower case “i” projects to one trian-

gle, but the base projects to another. In this case, for each

triangle we again send polyline consisting of the 3 vertices

of the triangle to OpenGL, followed by the text contour in

the triangle.

Integration of text brings us to (b) of Figure 1. The next

step is to extrude text into 3D to complete the label. First,

we duplicate each point on the each letter contour, and ap-

ply a small offset either towards or away from the center of

projection C. Using an offset towards C will result in 3D

text that protrudes from the surface, while using an offset

away from C will result in an indented label. Using these

points, we again call the OpenGL tessellation functions to

(a) (b)

Figure 5. 3D points used in the integration. The black vertices at the 4 corners of the image represent
the 3D vertices of the surface triangles. Each 2D point of the letter contour is projected onto the
surface, yielding the gray points. Our approach computes the intersection points (shown in white),
which are located at the intersection of the triangle edge with a plane connecting points C, Vi, and
Vi+1, as shown in (b). See text for details.

(a) (b)

Figure 6. Remeshing. We find a polyline on triangle T1 (a) and tessellate it (b) using OpenGL.

form the walls and the top of the extruded label. All of these

newly formed triangles are added to the surface. This then

completes the formation of the 3D text label for the letter.

It is worthwhile to consider under what circumstances

this method may fail to produce a valid labeling of a surface.

Clearly, if the 2D text contours do not all project onto the

surface then an erroneous result may occur. However, this

case is easily detected, and can be handled by moving the

camera. Additional problems could occur for a surface that

is extremely noisy. While the integration of the text works

properly, extrusion based on the surface normal may cause

the extruded geometry to self-intersect. As before, this case

could be easily detected, and handled by prevention of self-

intersecting extrusions. However, in practice such this issue

has not appeared in our experiments.

4 Examples

We now present examples to demonstrate the labeling

algorithm. In Figure 7 (a) we show a CAD part that we

would like to label with the part number “A43”. We type

the characters “A43” in our program and position the label.

We then project the characters on the surface, merge the

text geometry with the surface, and extrude the text towards

the camera to produce protruding label. Flat shaded and

wireframe renderings of the labeled part are shown in (b)

and (c) of the figure.

Figure 8 shows the process of producing an indented la-

bel on a CAD part. The text “top” is used to label the part

so that its orientation can be easily determined. The labeled

part is shown in the upper right part of the figure, and in the

bottow of the figure we show close-ups of the flat shaded

function ProcessLetter()
extract 2D letter contours c1 · · · cN

back-project c1 · · · cN to the 3D surface, forming surface contours C1 · · ·CN

flag = false
if (all points C1 · · ·CN lie in triangle T)

pass contour formed from T’s three vertices to OpenGL, set flag = true

for each surface contour Ci ∈ C1 · · ·CN {
if (Ci is the only contour in triangle T && flag == false && Ci is oriented counter-clockwise)

pass contour formed from T’s three vertices to OpenGL
processContour(Ci)

}
tessellate using OpenGL
delete all original surface triangles to which the letter projects

function ProcessContour(Ci)
find contour intersection points (white points in Figure 3a)

if (number of intersection points == 0) {
send Ci to OpenGL for tessellation
return

} else {
insert contour intersection points into Ci

select starting point S on a triangle T so that S is an entry point into T, set P = S
add P to L, the polyline that will be passed to OpenGL
P = P + 1, the next point on the text contour Ci

while (true) {
if (P is a point on a triangle edge) {

add P to L
P = closest point on edge of T where point P is located, in a clockwise direction

while (P is a triangle vertex) {
add P to L
P = closest point on edge of T where point P is located, in a clockwise direction

}
if (P == S) {

send L to OpenGL for tessellation, clear L
if (all points in Ci processed)

return
P = next unprocessed entry point, S = P
T = triangle being entered

}
}
add P to L
P = P + 1

}
}

Code Listing 1. Detailed pseudocode for processing a letter. An example is described in Section 3.2.

(a) (b) (c)

Figure 7. A protruding label on a 3D CAD part. Before labeling, the surface is composed of 8,260
triangles. After labeling, it is composed of 8,775 triangles.

and wireframe renderings.

Figures 10 and 11 demonstrate the labeling of surfaces

with higher curvature for protruding and indented labels,

respectively. In (a) and (b) of Figure 11 we show the front

Figure 8. An indented label on a 3D CAD part. The surface is composed of 27,800 and 28,799 triangles
before and after labeling, respectively.

side of the surface, for which label is indented, and in (c)

and (d) we show the back side of the surface, where the

label protrudes. Finally, in Figure 9 we generate a flat label

on the surface, but render the text triangles in a different

color.

Figure 9. Forming a flat text label on a surface.

For all of these examples, the label was integrated into

the surface in less than 5 seconds using a 2.66 GHz Pentium

4 processor and unoptimized C++ code. In addition, using

VisCAM RP 2.01 [11], we have verified that our labeling

satisfies the requirements of the STL format.

5 Conclusion

In this paper we presented a geometric approach to form

a 3D label on a 3D triangulated surface. The method in-

tegrates the geometry of the projected text with that of the

surface, in a way that does not change the surface geometry

outside the label. The algorithm is simple, efficient, robust

in regions of high-curvature, and produces a 3D model that

can be fabricated by a rapid prototyping machine.

For future work, we are interested in further automation

of the method so that it automatically positions the label on

the surface. In addition, we plan on adapting the remeshing

algorithm to perform interactive mesh surgery.

6 Acknowledgements

We thank Jason Tyan and Tong Fang of Siemens Cor-

porate Research for discussions and assistance with this

project.

References

[1] Bruyns, C., Senger, S., Menon, A., Montgomery, K., Wilder-
muth, S., Boyle, R., “A Survey of Interactive Mesh-Cutting
Techniques and a New Method for Implementing Generalized
Interactive Mesh Cutting Using Virtual Tools,” the Journal of
Visualization and Computer Animation, Vol 13, 2002, pp. 21
– 42.

(a) (b) (c)

Figure 10. A protruding label on a surface with curvature. The surface is composed of 10,503 and
11,967 triangles before and after labeling, respectively.

(a) (b)

(c) (d)

Figure 11. An indented label on a surface with curvature.

[2] Chandler, D., and Fotsch, M., Windows 2000 Graphics API
Black Book, Coriolis Technology Press, 2001.

[3] Foley, J., Van Dam, A., Feiner, S., Hughes, J., Computer
Graphics, Principles and Practice, 2nd Edition, Addison-
Wesely, 1996.

[4] George, P., Automatic Mesh Generation: Applications to Fi-
nite Element Method, John Wiley and Sons, 1991.

[5] Geys, I., Van Gool, L., “Virtual Post-its: Visual Label Extrac-
tion, Attachment, and Tracking for Teleconferencing,” Proc.
of 3rd International Conference on Computer Vision Systems
(ICVS), pp. 121–130, 2003.

[6] Laidlaw, D., Trumbore, W., Hughes, J., “Constructive Solid
Geometry for Polyhedral Objects,” Proc. Siggraph 1986, pp.

161 – 170.

[7] Maekawa, T., “An Overview of Offset Curves and Surfaces,”
Computer-Aided Design, Vol. 31, 1999, pp. 165 – 173.

[8] Naylor, B., Amanatides, J., Thibault, W., “Merging BSP Trees
Yields Polyhedral Set Operations,” Proc. Siggraph 1990, pp.
115 – 124.

[9] Pham, B., “Offset Curves and Surfaces: A Brief Survey,”
Computer Aided Design, 1992: 24(4), pp. 223–229.

[10] Shewchuk, J., “Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator,” First Workshop on
Applied Computational Geometry, May 1996, pp. 124–133.

[11] VisCAM Software, http://www.marcam.de

